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Abstract
In the case of radiography of a cylindrically symmetric object, the Abel
transform is useful for describing the tomographic measurement operator.
The inverse of this operator is unbounded, so regularization is required
for the computation of satisfactory inversions. We introduce the use of
the total variation seminorm for this purpose, and prove the existence and
uniqueness of solutions of the corresponding variational problem. We illustrate
the effectiveness of the total-variation regularization with an example and
comparison with the unregularized inverse and the H 1 regularized inverse.

(Some figures in this article are in colour only in the electronic version)

1. Abel inversion

Consider a cylindrically symmetric object having cylindrical coordinates (r, θ, z) ∈ [0, R) ×
[0, 2π) × (0, L). Let u = u(r, z) be the density of the object at (r, θ, z); we can regard the
domain of u to be [0, R) × (0, L).

Suppose a radiograph of the object is made by sending parallel beams of radiation through
the object, perpendicular to the axis of symmetry. The transmitted radiation is measured by a
detector lying in the plane y = y0, where y0 > R. A reasonable model, though oversimplified,
is that for each (x, z) the radiograph intensity gives a measure of the attenuation d(x, z) that
is the density integral along the line through the object and perpendicular to the detector plane
at (x, z). Then d will be the Abel transform of u, given by

Pu(x, z) = 2
∫ R

|x|

ru(r, z)√
r2 − x2

dr. (1)

See figure 1. As expected, Pu is symmetric about x = 0; henceforth we regard the domain of d
and Pu to be U = (0, R)×(0, L). The Abel transform defines a linear operator P on functions
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Figure 1. Axial section of a cylindrically symmetric, variable density object. The Abel
transform gives the line integral through the object at each point. The infinitesimals are related by
dl = r dr/

√
r2 − x2.

defined on U. It is an integral operator, with kernel k(x, r) = 2r√
r2−x2 χ{(x,r):x<r}. One easily

checks that ‖k(·, r)‖1 = π for every r and ‖k(x, ·)‖1 = 2
√

R2 − x2 � 2R. Then by a standard

result in measure theory (see [1], for example), ‖Pu(·, z)‖Lp((0,R)) � π
1
p (2R)

1
q ‖u(·, z)‖p

for 1 � p � ∞ and 1
p

+ 1
q

= 1. It follows that P is bounded on Lp(U) and ‖P ‖ �
(πL)

1
p (2R)

1
q .

A left inverse of the Abel transform on Lp is given by

P −1v(r, z) = −1

πr

d

dr

∫ R

r

xg(x, z) dx√
x2 − r2

. (2)

This can be verified by direct calculation, using the Tonelli–Fubini theorems and the almost-
everywhere differentiability of indefinite integrals. Thus P is invertible on its range, and one
can, in principle, determine u from d by computing u = P −1d explicitly. However, in practice
one finds noise in the data. Computing u = P −1d gives poor results. This is because the
operator P −1 is unbounded. An example demonstrating this is v(x, z) = χ(0,a)(x) for arbitrary
a ∈ (0, R). Then ‖v‖1 = ‖v‖2

2 = aL, and P −1v(r, z) = (π
√

a2 − r2)−1χ(0,a)(r). Since
‖P −1v‖2 = ∞ and ‖P −1v‖1 = 1

2 independently of a, we see that P −1 is unbounded on L2

and L1.

1.1. Other methods

Many Abel-inversion techniques have been developed. Several involve fitting functions of
a simple form to the data, and then directly inverting the Abel transform. See [2] for a
comparison of several methods of this sort. Other approaches involve filtering the data by
analysing its Fourier transform (e.g., [3]). Others expand the inverse with respect to a chosen
basis, and then determine coefficients by fitting the Abel transform to the data (e.g., [4, 5]).
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Such approaches resemble in spirit the application of a lowpass filter to the inverse.
A variational approach that does exactly this is H 1 regularization, with which we compare
our method in section 4. Our choice of regularization results in an Abel-inversion model that
is closely related to the total-variation denoising model of Rudin, Osher and Fatemi [6]. It
and H 1 regularization can be regarded as generalizations of Tikhonov regularization [7]. Our
method is particularly suitable when u is discontinuous. For another approach to obtaining
discontinuous Abel inverses, see [8].

2. Regularization via total cylindrical variation

A more realistic model involves imposing a regularity condition on u, while attempting to
keep Pu near d. This can be implemented by minimizing the functional F defined by

F(u) = α

∫
U

|∇u(r, z)|r dr dz +
1

2

∫
U

|Pu − d|2, (3)

where α is a nonnegative tuning parameter. The larger the value of α, the more noise will
be removed, at the cost of Pu straying farther from d. Henceforth, we will use r for the
first-coordinate function on U.

Defining the first term of F(u) and the domain of F requires some care, as we do not
wish to require u to be differentiable, or even continuous. The quantity ∇u is defined in the
distributional sense:∫

U

|∇u|r := sup

{∫
U

u∇ · (rϕ) : ϕ ∈ C1
c (U)2, |ϕ| � 1

}
. (4)

Similarly, ∫
U

|∇u| := sup

{∫
U

u∇ · ϕ : ϕ ∈ C1
c (U)2, |ϕ| � 1

}
. (5)

Note that both (4) and (5) hold by integration by parts when u is smooth.
The L1 functions u for which the seminorm defined by (5) is finite form the space of

functions of bounded variation on U, denoted by BV (U). This space is a Banach space under
the norm obtained by adding the L1 norm:

‖u‖BV (U) :=
∫

U

|∇u| + ‖u‖L1(U). (6)

One can also isometrically identify the space of functions for which (4) is finite with the
cylindrically symmetric functions belonging to BV (Ũ), where Ũ = (0, R)× [0, 2π)× (0, L)

is the cylinder determined by U.

3. Existence and uniqueness of minimizer

We will need the following:

Lemma 3.1. Let u ∈ L1(U). Then∫
U

|∇u|r � max{1, R}‖u‖BV (U). (7)
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Proof. ∫
U

|∇u|r = sup

{∫
U

u∇ · (rϕ) : ϕ ∈ C1
c (U)2, |ϕ| � 1

}
= sup

{∫
U

u(ϕ1 + r∇ · ϕ) : ϕ ∈ C1
c (U)2, |ϕ| � 1

}
�

∫
U

|u| + R

∫
U

|∇u|. (8)

�

Lemma 3.2. ‖u‖L2(U) � C‖u‖BV (U).

Proof. This is a consequence of Poincaré’s inequality for BV [9]. If u ∈ BV (U), then

‖u‖2 �
∥∥∥∥u − 1

|U |
∫

U

u

∥∥∥∥
2

+

∥∥∥∥ 1

|U |
∫

U

u

∥∥∥∥
2

� C

∫
U

|∇u| +
1√|U |

∫
U

|u|
� C‖u‖BV (U). (9)

�

Proposition 3.3. If d ∈ L2, the functional F defined in (3) is continuous on BV (U).

Proof. Suppose un → u in BV (U). By the previous lemma, un → u in L2(U) also. Since
P is continuous on L2(U), it follows that ‖Pun − d‖2

2 → ‖Pu − d‖2
2.

Since the quantity defined in (4) is a seminorm,∣∣∣∣∫
U

|∇un|r −
∫

U

|∇u|r
∣∣∣∣ �

∫
U

|∇(un − u)|r � max{1, R}‖un − u‖BV (U) → 0. (10)

Thus F(un) → F(u). �

Because seminorms and affine transformations are convex and squared norms are strictly
convex, the functional F is strictly convex. Therefore a local minimum of F will be a global
minimum, and a global minimizer will be unique. It remains to prove that such a minimizer
exists.

Theorem 3.4. Let d ∈ L2(U). Then F has a unique global minimizer on BV (U).

Proof. As explained above, if a minimizer exists it will be unique. Since F is nonnegative
valued, choose a sequence (un) ⊂ BV (U) such that F(un) → infu∈BV (U) F (u). Extend
each un to a cylindrically symmetric function ũn ∈ BV (Ũ). We will show that ‖̃un‖BV (Ũ) is
bounded.

Since F(un) is bounded, so is
∫
Ũ

|∇ũn|, as this is simply 2π
∫
U

|∇un|r . This in turn
implies that ∥∥∥∥̃un − 1

|Ũ |
∫

Ũ

ũn

∥∥∥∥
L1(Ũ )

(11)

is bounded by Poincaré’s inequality. Thus, the boundedness of ũn in L1(Ũ), and hence in
BV (Ũ), will follow from the boundedness of the scalar sequence∫

Ũ

ũn = 2π

∫
U

unr. (12)
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But we also have that ‖Pun − d‖2
2 is bounded, hence so is ‖Pun‖2. Since U is a bounded set,

‖Pun‖1 is bounded as well. A Tonelli–Fubini change of integration order gives us that∫
U

Pun =
∫ L

0

∫ R

0

∫ R

x

2run(r, z)√
r2 − x2

dr dx dz

=
∫ L

0

∫ R

0

∫ r

0

2run(r, z)√
r2 − x2

dx dr dz

= π

∫
U

unr. (13)

Thus ∣∣∣∣∫
U

unr

∣∣∣∣ = 1

π

∣∣∣∣∫
U

Pun

∣∣∣∣ � 1

π

∫
U

|Pun|, (14)

which is bounded. Therefore ũn is bounded in BV (Ũ).
The space BV (Ũ) is compactly embedded in L1(Ũ) [10]. Hence we can choose a

subsequence
(̃
unk

)
convergent in L1(Ũ), say to ũ0. Then by the lower semicontinuity of the

BV seminorm,∫
U

|∇u0|r � lim
∫

U

|∇unk
|r. (15)

For each j ∈ N, let Uj = {
(r, z) ∈ U : r > 1

j

}
, and let Vj = Uj\

⋃
i<j Ui . Then∫

Vj

∣∣unk
− u0

∣∣ � j

∫
U

∣∣unk
− u0

∣∣r = j

2π

∫
Ũ

∣∣̃unk
− ũ0

∣∣ → 0. (16)

Thus unk
→ u0 in L1(Vj ), so Punk

converges to Pu0 in measure on Vj . Then by a version of
Fatou’s lemma,

∫
Vj

|Pu0 − d|2 � lim
∫
Vj

∣∣Punk
− d

∣∣. Thus∫
U

|Pu0 − d|2 =
∑

j

∫
Vj

|Pu0 − d|2 �
∑

j

lim
∫

Vj

∣∣Punk
− d

∣∣2

� lim
∑

j

∫
Vj

∣∣Punk
− d

∣∣2 = lim
∫

U

∣∣Punk
− d

∣∣2
. (17)

This and (15) imply that F(u0) � lim F
(
unk

) = infu∈BV (U) F (u). Thus u0 is a global
minimizer of F. �

4. Computational considerations

In order to compute the minimizer of F, it is useful to calculate the derivative of F. Let
u, v ∈ BV (U). Calculating formally, we find that the directional derivative of F at u in the
direction of v is

DvF(u) = α

∫
U

∇u

|∇u| r · ∇v +
∫

U

(Pu − d)Pv. (18)

This makes sense if u is smooth and ∇u �= 0 almost everywhere. Under such assumptions,
we may proceed further and isolate v:

DvF(u) = −α

∫
U

∇ ·
(

r
∇u

|∇u|
)

v +
∫

U

P ∗(Pu − d)v

=
〈
−α

(
∂u
∂r

|∇u| + r∇ · ∇u

|∇u|

)
+ P ∗P − P ∗d, v

〉
2

. (19)
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Figure 2. (a) Density profile; (b) Abel transform, with noise added; (c) unregularized Abel
inversion; (d) H 1-regularized Abel inversion; (e) T V -regularized Abel inversion.

This says that for such u, F has a Gateaux derivative:

F ′(u) = −α

(
∂u
∂r

|∇u| + r∇ · ∇u

|∇u|

)
+ P ∗Pu − P ∗d. (20)

A commonly used procedure for computing the minimum of functionals is gradient
descent, which amounts to introducing an artificial time variable and numerically solving
the PDE ut = −F ′(u). Several issues present themselves. One is the smoothness of u
required for F ′(u) to make sense. However, it is well known that any BV function u can
be approximated arbitrarily well by C∞ functions (un), in the sense that un → u in L1 and
‖un‖BV → ‖u‖BV . (Having ‖un − u‖BV → 0 is not possible in general.) A second issue
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Table 1. Mean-squared difference between the object of figure 2 and the regularized reconstruction,
for various multiples of the regularization parameter chosen by the discrepancy principle.

Mean-squared
error ×1000

Factor H 1 T V

0.25 9.94 2.30
0.5 6.79 1.00
0.75 6.06 1.02
0.9 5.93 1.06
1.0 5.89 1.11
1.1 5.89 1.18
1.25 5.91 1.30
1.5 6.01 1.58
1.75 6.14 1.93
2.0 6.29 2.33

is that in general F ′(u) /∈ BV (U); rather, F ′(u) ∈ BV (U)∗. Thus, it is not clear how to
make sense of an evolution of the form un+1 = un − �tF ′(un). However, thinking in terms
of a numerical implementation on an m × n grid, one can regard F to be defined on the
finite-dimensional space R

mn instead of the infinite-dimensional space BV (U). Then one has
F ′(u) ∈ (Rmn)∗ = R

mn as well. The theory developed above does not directly apply to this
setting, but in practice one tends to obtain at least approximate convergence to an approximate
minimizer. A third issue with gradient descent is that even when convergence occurs, it tends
to occur slowly. For this reason, we sought alternatives to gradient descent.

We use the lagged-diffusivity fixed-point method of Vogel and Oman [11]. Global, linear
convergence of the method is proven in [12]. The iteration used is a discretization of the
equation

un+1 = un − (P ∗P + αL)−1(P ∗Pun − P ∗d + αLun), (21)

where

L = 2πr∇ · ∇
|∇un| + 2π

∂
∂r

|∇un| . (22)

In particular, |∇u| is discretized in the regularized form
√

|∇u|2 + β for a small constant β, to
avoid singularities. For more details of the implementation, see [13].

An example using a simulated two-dimensional object is presented in figure 2. An axial
section of the density function u is shown in figure 2(a). A simulated radiograph is obtained
by computing the Abel transform of u and adding Gaussian noise of variance equal to 1.5% of
the largest data value. The result is shown in figure 2(b). Figure 2(c) shows the unsatisfactory
result of computing the inverse Abel transform of the noisy data.

We compare the results of regularizing the Abel inversion using (3) with that of
regularization with an H 1 penalty term. That is, the quantity |∇u| in (3) is replaced with
|∇u|2. In both cases, the regularization parameter α is chosen according to the discrepancy
principle: the resulting minimizer u should be such that the mean-squared discrepancy between
Pu and d should equal the variance of the noise in d. This reflects the principle that of the
many solutions to an ill-posed inverse problem that are consistent with the data, the solution
that should be chosen is the one that is most regular. The noise variance is not generally known
in practice, so we estimate the noise variance by comparing d with a smoothed version of d.
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Figure 3. (a) Underregularized H 1 Abel inversion; (b) underregularized T V Abel inversion;
(c) overregularized H 1 Abel inversion; (d) overregularized T V Abel inversion; (e) correctly
regularized H 1 Abel inversion; (f) correctly regularized T V Abel inversion.

In the example, we estimated the noise variance to be 7.715, while the actual variance of the
noise was 7.261. The values of α resulting from the discrepancy principle were αH 1 = 32.54
for the H 1 regularization and αT V = 9.644 for the total-variation regularization. Figure 2(d)
shows the result of the H 1 regularization. The result is a smooth inverse, but important
edge information is lost. This is because the H 1 seminorm is infinite for functions with a
jump discontinuity. Our total-variation regularized Abel inverse is shown in figure 2(e). The
reconstruction preserves edges and is smooth between them. The mean-squared difference
between the reconstructed u and the known object density was 0.005 89 in the case of the H 1

regularization, and 0.001 11 in the case of total-variation regularization.
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We also examine the result of different parameter choices. Table 1 shows the mean-
squared difference between the object pictured in figure 2(a) and the reconstructed object, for
various multiples of the parameters chosen above. Figure 3 shows the results for factors of
0.5, 2.0 and 1.0. For the H 1 regularization, the mean-squared error is least for α ≈ αH 1 . For
total-variation regularization, the mean-squared error is least for α ≈ 0.5αT V , suggesting that
the parameter choice above results in over-regularization. However, in figure 3 we see that
the choice of α = αT V gives better preservation of the edges and the geometric nature of the
object. We also note that computing these mean-squared errors is not normally possible in
practice, as the ‘true’ object will not generally be available.
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