
1

Inpainting with Sparse Linear Combinations of
Exemplars: Software Implementation Details

Brendt Wohlberg brendt@lanl.gov

Abstract—A new exemplar-based inpainting algorithm that
represents the region to be inpainted as a sparse linear com-
bination of blocks extracted from the image being inpainted is
introduced in [1]. While the high-level concepts are relatively
simple, the technicalities of implementation are not. These issues
are discussed here in greater detail.

I. INTRODUCTION

Exemplar based methods are becoming increasingly popular
for problems such as denoising [2], [3], superresolution [4],
[5], [6], texture synthesis [7], and inpainting [8], [9]. The
common theme of these methods is the use of a set of actual
image blocks, extracted either from the image being restored,
or from a separate training set of representative images, as
an image model. In the case of inpainting, the approach is
usually to progressively replace missing regions with the best
matching parts of the same image, carefully choosing the order
in which the missing region is filled to minimize artifacts
[9]. Instead, we have proposed an inpainting method that
represents missing regions as sparse linear combinations of
other regions in the same image [1].

II. SPARSE LINEAR COMBINATIONS OF EXEMPLARS

The image model of the proposed approach is that each
block of the restored image should be a sparse linear com-
bination of other image blocks, either from known regions
(i.e. not intersecting the inpainting region) of the image being
restored, or from a separate training image set. These image
blocks are overlapped to reduce blocking artifacts, and, more
importantly, to enable information from the exterior of the
inpainting region to propagate to blocks entirely within the
interior, as illustrated in Fig. 1.

Within this framework, the solution is computed by mini-
mizing a global functional which

1) penalizes the `1 norm of the linear combination coeffi-
cients to encourage a sparse, low complexity, solution,

2) constrains (or penalizes) the mismatch between solu-
tion blocks and known pixels, and

3) constrains (or penalizes) the mismatch between over-
lapping parts of different solution blocks.

In order to discuss this approach in more detail, we need to
establish some notation. Denote the image to be inpainted by
vector s, the inpainting region mask1 by r, and the inpainted

1This mask is an image/vector taking on the value 0 in the region of the
image to be inpainted, and 1 elsewhere. Since this is really the complement
of the inpainting region mask, it would perhaps be better described as the
“known-region mask”.

Tiled blocks Overlapping blocks

Known region
Inpainting region

Known region

Fig. 1. Image blocks which cross the boundary of the inpainting region
can be chosen as the best match to the image model subject to the constraint
that they match the known image pixels outside the inpainting region, but in a
tiled block structure, blocks interior to the inpainting region are unconstrained.
In an overlapping block structure, an additional constraint on the mismatch
between overlapping blocks allows the constraint from the known pixels to
propagate to interior blocks.

result by u. To reduce the complexity of computing the
mismatch between overlapping parts of different blocks, the
blocks are arranged in indexed grids, with the overlap being
produced by an offset of the entire grid, as indicated in Fig. 2.
This structure allows the total block overlap mismatch to be
computed as the mismatch between the grids, without having
to track overlapping parts of individual blocks. Since each grid
does not cover the entire image, we define mask gk for the
region of the image covered by grid k. Each block is indexed
by the number of its grid and its number within that grid,
block k, l being the lth block in grid k. The number of grids
is Ng , the number of blocks in grid k is Nbk

, and the number
of pixels in a block is Np, and the number of pixels in image
s is Ns.

s0,0 s0,1 s0,2

s0,m

s1,0 s1,1 s1,2

s1,n

Fig. 2. Structure of overlapping block grids.

2

The following definitions allow linear-algebraic expressions
for the functional penalties/constraints outlined at the begin-
ning of this section:
Bk,l “Extracts” block k, l of an image to a vector with

the same number of elements as the block.
BT

k,l “Inserts” a block-sized vector as block k, l in a
zero-valued image.

Rk,l Apply the inpainting region mask for block k, l (i.e.
zero out the pixels to be inpainted in block k, l).
Rk,l = diag(Bk,lr).

Gk Apply grid k mask to an image (i.e. zero out the
pixels not in grid k). Gk = diag(gk).

sk,l Block k, l of the image to be inpainted. sk,l =
Bk,ls.

s̃k,l Block k, l, with unknown (i.e. to be inpainted)
region zeroed out, of the image to be inpainted.
s̃k,l = Rk,lBk,ls.

Φk,l The dictionary for block k, l.
αk,l The dictionary coefficients for block k, l.
uk,l The reconstruction of block k, l from its dictionary

coefficients. uk,l = Φk,lαk,l.
Note that we can write

gk =
∑

l

BT
k,lBk,l (1 1 . . .)T

.

Now, for each block uk,l, we wish to minimize or constrain
(either equal to zero, or less than some upper bound) the
following terms:

1) Solution sparsity. This term is computed as the `1

norm of the coefficient vector for block k, l:

‖αk,l‖1

2) Mismatch with known pixels in sk,l. This term is
the `2 norm of the difference between block k, l
of the image to be inpainted and the corresponding
reconstruction from αk,l, after zeroing out of unknown
pixel values by operator Rk,l:

1
2
‖Rk,lΦk,lαk,l −Rk,lBk,ls‖22

3) Mismatch in overlap with block grid m 6= k. This
term measures the extent to which block k, l agrees
with overlapping blocks in grid m. Writing the recon-
struction of grid m as

∑
nB

T
m,nΦm,nαm,n, the part

of that grid overlapping with block k, l is extracted
by operator Bk,l, giving the difference between the
reconstruction of block k, l an the overlapping part of
grid m as Φk,lαk,l − Bk,l

∑
nB

T
m,nΦm,nαm,n. The

final overlap mismatch term is the `2 norm of this
difference, after applying operator diag(Bk,lgm) to
zero out any elements of block k, l which are not in
grid m:

1
2

∥∥∥∥∥diag(Bk,lgm)

(
Φk,lαk,l −Bk,l

∑
n

BT
m,nΦm,nαm,n

)∥∥∥∥∥
2

2

The next step is to join these per-block penalties/constraints
into combined terms for each grid, which is aided by the

following compound definitions

αk =

 αk,0

αk,1

...

 s̃k =

 s̃k,0

s̃k,1

...



Rk =

 Rk,0 0 · · ·
0 Rk,1 · · ·
...

...
. . .

 Φk =

 Φk,0 0 · · ·
0 Φk,1 · · ·
...

...
. . .



Bk =

 Bk,0 0 · · ·
0 Bk,1 · · ·
...

...
. . .

 .

We also define

Ck =
(
BT

k,0 B
T
k,1 . . .

)
,

so that ∑
l

BT
k,lΦk,lαk,l = CkΦkαk,

allowing us to express write combined terms for each grid k
1) Solution sparsity

‖αk‖1

2) Mismatch with s̃k

1
2
‖RkΦkαk − s̃k‖22

3) Mismatch between overlapping parts of block grids k
and m

1
2
‖GmCkΦkαk −GkCmΦmαm‖22

Finally, we need to compine these combined terms for each
grid (or grid-pair) into global terms for all grids (or grid pairs),
which is aided by the following definitions

α =

 α0

α1

...

 =



α0,0

α0,1

...
α1,0

α1,1

...


s̃ =

 s̃0

s̃1

...

 =



s̃0,0

s̃0,1

...
s̃1,0

s̃1,1

...



R =

 R0 0 · · ·
0 R1 · · ·
...

...
. . .

 Φ =

 Φ0 0 · · ·
0 Φ1 · · ·
...

...
. . .



B =

 B0 0 · · ·
0 B1 · · ·
...

...
. . .

 C =

 C0 0 · · ·
0 C1 · · ·
...

...
. . .



G =


−G0 G1 0 · · · 0

0 −G1 G2 · · · 0
...

...
.

...
0 0 · · · −GNG−2 GNG−1

G0 0 · · · 0 −GNG−1


Our global penalties/constraints may then be written as

3

1) Solution sparsity ‖α‖1
2) Mismatch with known pixels in s

1
2
‖RΦα− s̃‖22

3) Mismatch between all pairs 0-1, 1-2, etc. of overlap-
ping block grids

1
2
‖GCΦα‖22

The two most obvious ways of combining these distinct goals
are the unconstrained problem

min ‖α‖1 +
γ0

2
‖RΦα− s̃‖22 +

γ1

2
‖GCΦα‖22

with weights γ0 and γ1, and the constrained problem

min ‖α‖1 s.t. ‖RΦα− s̃‖2 ≤ σ0 and ‖GCΦα‖2 ≤ σ1

with upper bounds σ0 and σ1. For the experiments reported
here, we solve the former problem using an IRLS approach to
minimise the functional

‖Aα− b‖22 + λ‖α‖1,

where

A =
(√

γ0RΦ√
γ1GCΦ

)
b =

(√
γ0 s̃
0

)
.

In minimising this functional, it is also useful to note that

AT =
(√

γ0ΦTRT √
γ1ΦTCTGT

)
and

GT =



−G0 0 0 · · · G0

G1 −G1 0 · · · 0
0 G2 −G2 · · · 0
...

...
.

...
0 0 · · · −GNG−2 0
0 0 · · · GNG−1 −GNG−1


.

The final restored image (or image region, since the com-
putational domain can be restricted to a small region around
the inpainting region) is obtained by averaging the overlapping
block grids to obtain a single value for each image pixel.

III. EFFICIENT FORMULATION

While the conceptually simplest approach, the above for-
mulation exhibits two distinct disadvantages
• Computational inefficiency: the expression RΦα − s̃

has dimensionality Np

∑Ng−1
k=0 Nbk

and the expression
GCΦα has dimensionality NsNg , so that even an in-
principle small problem involving a small inpainting
region requires computational resources on the scale of
the entire image.

• Numerical issues: As a result of the masking operators
Rk and Gk, the operators involved in minimization of
the final functional have zero rows, which can lead to
ill-conditioning and convergence problems.

Here we describe a more efficient (but more conceptu-
ally complicated) formulation of the problem which involves

expressions of significantly lower dimensionality. Define the
following operators
Bk,l “Extract” block k, l from an image
BT

k,l “Insert” block k, l into a zero image.
Rk,l “Extract” known part of block k, l.
RT

k,l “Insert” known part of block k, l into a zero block.
Qk,l “Extract” block k, l from vector representing un-

known region of image, inserting zeros where
block does not intersect inpainting region. The re-
sult is a zero-vector if block k, l has no intersection
with the inpainting region.

QT
k,l “Insert” block k, l into zero vector representing

inpainting region. The result is a zero-vector if
block k, l has no intersection with the inpainting
region.

Gk Apply a mask to the inpainting region vector,
zeroing out any pixels which are not in grid k.
Gk = diag

(∑
lQ

T
k,lQk,l (1 1 . . .)T

)
.

Note that, in this formulation, operator Rk,l maps block k, l to
a vector which excludes any unknown (to be inpainted) pixels
in the block, as opposed to the previous definition of Rk,l

which zeroed these unknown pixels but retained the original
block dimensionality.

We also define

αk =

 αk,0

αk,1

...

 Φk =

 Φk,0 0 · · ·
0 Φk,1 · · ·
...

...
. . .



Rk =

 Rk,0 0 · · ·
0 Rk,1 · · ·
...

...
. . .

 Bk =

 Bk,0 0 · · ·
0 Bk,1 · · ·
...

...
. . .


and

QT
k =

(
QT

k,0 Q
T
k,1 . . .

)
,

allowing us to express penalty/constraint 2) for grid k as

1
2
‖RkΦkαk −RkBks‖22

and penalty/constraint 3) for grids k and m as

1
2

∥∥∥∥∥Gm

∑
l

QT
k,lΦk,lαk,l −Gk

∑
n

QT
m,nΦm,nαm,n

∥∥∥∥∥
2

2

=

1
2

∥∥GmQ
T
k Φkαk −GkQ

T
mΦmαm

∥∥2

2

Now, defining

α =

 α0

α1

...

 =



α0,0

α0,1

...
α1,0

α1,1

...



R =

 R0 0 · · ·
0 R1 · · ·
...

...
. . .

 Φ =

 Φ0 0 · · ·
0 Φ1 · · ·
...

...
. . .



4

B =

 B0 0 · · ·
0 B1 · · ·
...

...
. . .

 QT =

 QT
0 0 · · ·

0 QT
1 · · ·

...
...

. . .



G =


−G0 G1 0 · · · 0

0 −G1 G2 · · · 0
...

...
.

...
0 0 · · · −GNG−2 GNG−1

G0 0 · · · 0 −GNG−1


we can express penalty/constraint 2) over all grids as

1
2
‖RΦα−RBs‖22

and penalty/constraint 3) for grid pairs 0-1, 1-2, etc. as

1
2

∥∥GQT Φα
∥∥2

2
.

In this formulation, penalty/constraint 2) has somewhat
lower dimensionality than in the original formulation, and the
associated operator in the minimisation problem no longer has
zero rows, and penalty/constraint 3) has a much lower dimen-
sionality, being equal to the dimensionality of the inpainting
region multiplied by Ng .

Using these definitions, we have

A =
(√

γ0RΦ√
γ1GQ

T Φ

)
b =

(√
γ0RBs

0

)
and

AT =
(√

γ0ΦTRT √
γ1ΦTQGT

)
.

REFERENCES

[1] Brendt Wohlberg, “Inpainting with sparse linear combinations of exem-
plars,” in Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Taipei, Taiwan, Apr. 2009, pp.
689–692.

[2] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel, “Image denoising
by non-local averaging,” in Proceedings of IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia,
PA, USA, March 2005, vol. 2, pp. 25–28.

[3] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen O.
Egiazarian, “Image denoising by sparse 3-d transform-domain collab-
orative filtering.,” IEEE Transactions on Image Processing, vol. 16, no.
8, pp. 2080–2095, 2007.

[4] William T. Freeman, Thouis R. Jones, and Egon C. Pasztor, “Example-
based super-resolution,” IEEE Computer Graphics and Applications, vol.
22, no. 3, March 2002.

[5] Simon Baker and Takeo Kanade, “Limits on super-resolution and how
to break them,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 9, pp. 1167–1183, 2002.

[6] Michael Elad and Dmitry Datsenko, “Example-based regularization
deployed to super-resolution reconstruction of a single image,” The
Computer Journal, 2007, DOI: 10.1093/comjnl/bxm008.

[7] Alexei A Efros and Thomas K. Leung, “Texture synthesis by non-
parametric sampling,” in IEEE International Conference on Computer
Vision (ICCV), Kerkyra, Corfu, Greece, September 1999, pp. 1033–1038.

[8] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun, “Fragment-based
image completion,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
303–312, 2003.

[9] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama, “Region filling
and object removal by exemplar-based image inpainting,” IEEE Trans-
actions on Image Processing, vol. 13, no. 9, pp. 1200–1212, 2004.

