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Abstract—When applying sparse representation techniques to
images, the standard approach is to independently compute the
representations for a set of overlapping image patches. This
method performs very well in a variety of applications, but
results in a representation that is multi-valued and not optimised
with respect to the entire image. An alternative representation
structure is provided by a convolutional sparse representation, in
which a sparse representation of an entire image is computed by
replacing the linear combination of a set of dictionary vectors
by the sum of a set of convolutions with dictionary filters.
The resulting representation is both single-valued and jointly
optimised over the entire image. While this form of sparse
representation has been applied to a variety of problems in signal
and image processing and computer vision, the computational ex-
pense of the corresponding optimisation problems has restricted
application to relatively small signals and images. This paper
presents new, efficient algorithms that substantially improve on
the performance of other recent methods, contributing to the
development of this type of representation as a practical tool for
a wider range of problems.

Index Terms—Sparse Representation, Sparse Coding, Dictio-
nary Learning, Convolutional Sparse Representation, ADMM

I. INTRODUCTION

Sparse representation [1], [2] is a widely used technique
for a very broad range of signal and image processing
applications. Given a signal s and a dictionary matrix D,
sparse coding is the inverse problem of finding the sparse
representation x with only a few non-zero entries such that
Dx ≈ s. Most sparse coding algorithms optimize a functional
consisting of a data fidelity term and a sparsity inducing
penalty

argmin
x

1

2
‖Dx− s‖22 + λR(x) , (1)

or constrained forms such as

argmin
x

R(x) such that ‖Dx− s‖2 ≤ ε , (2)

or
argmin

x
‖Dx− s‖22 such that R(x) ≤ τ , (3)

where R(·) denotes a sparsity inducing function such as the
`1 norm or the `0 “norm”1. The two leading families of sparse
coding methods are a wide variety of convex optimization
algorithms (e.g. Alternating Direction Method of Multipliers
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1The quotes represent a reminder that this is not a true norm.

(ADMM) [3]) solving Eq. (1) when R(x) = ‖x‖1 and a
family of greedy algorithms (e.g. Matching Pursuit (MP) [4]
and Orthogonal Matching Pursuit (OMP) [5]) for approximate
solution of Eq. (2) or Eq. (3) when R(x) = ‖x‖0.

If the dictionary D is analytically defined and corresponds
to a linear operator with a fast transform (e.g. the Discrete
Wavelet Transform), a representation for an entire signal or
image can easily be computed. More recently, however, it has
been realised that improved performance can be obtained by
learning the dictionary from a set of training data relevant to a
specific problem [6]; this inverse problem is known as dictio-
nary learning. In this case computing a sparse representation
for an entire signal is not feasible, the usual approach being to
apply the decomposition independently to a set of overlapping
blocks covering the signal.

An alternative representation structure is provided by a
convolutional sparse representation, which models an entire
signal or image as a sum over a set of convolutions of
coefficient maps, of the same size as the signal or image,
with their corresponding dictionary filters. While convolutional
forms can be constructed for each of Eq. (1)–(3), the focus
here will be on Eq. (1) with R(x) = ‖x‖1, i.e. the Basis
Pursuit DeNoising (BPDN) [7] problem, the corresponding
convolutional form being Convolutional BPDN (CBPDN),
defined as

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1 , (4)

where {dm} is a set of M dictionary filters, ∗ denotes
convolution, and {xm} is a set of coefficient maps. (For
notational simplicity s and each of the {xm} are considered to
be N dimensional vectors, where N is the number of pixels
in an image.) This type of representation has already been
considered for a variety of signal and image processing and
computer vision applications, but its use is constrained by the
considerable computational expense of the associated sparse
coding and dictionary learning problems, which has restricted
its application to relatively small signals and images.

The present paper addresses the development of a more
efficient algorithm for minimising Eq. (4), and extends the
approach to the corresponding dictionary learning problem.
The main contributions are:
• A thorough literature survey that reveals the existence of

two equivalent but almost entirely independent streams
of research related to these representations (Sec. II).

• An efficient ADMM algorithm for minimising Eq. (4)
(Sec. III). The main component of this algorithm, initially
proposed in an earlier work [8], is an efficient method
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for solving a large linear system with a specific structure
(Sec. III-B) in a way that reduces the computational cost
from the O(M3) of the previous approach to O(M).
Extensions to [8] include the use of over-relaxation to
improve the rate of convergence, and a more thorough
comparison of the options for solving the main linear
system and for selecting the ADMM penalty parameter.

• A performance comparison with leading alternative algo-
rithms for the CBPDN problem, including the develop-
ment of a new, substantially faster variant of one of these
methods (Sec. IV).

• Extension of the efficient linear system solution method
for CBPDN to the more difficult linear system encoun-
tered in dictionary learning based on CBPDN (Sec. V).

• Proposing the learning and use of multi-scale dictionaries,
both of which are far simpler in the context of convolu-
tional sparse representations than in the standard patch-
based context (Sec. V-D).

While these techniques are also applicable to 1-d signals
(see e.g. [9], [10]), discussion here focuses on greyscale
images. In all computational experiments the 8 bit images are
divided by 255 so that pixel values are within the interval [0,1],
and, following common practice (see e.g. [11], [12]), convolu-
tional sparse coding/dictionary learning algorithms are applied
to test/training images after a highpass filtering preprocessing
step2.

II. LITERATURE SURVEY

There are two independent streams of research, with almost
no cross-citation, related to the convolutional form of sparse
representations.

A. Convolutional Sparse Representations

The more recent of these streams is a product of the
deep learning community; the convolutional form of the
representation is primary, inspired by the desire to modify
convolutional neural networks [13] to provide a generative
model. The idea appears to have been proposed independently
and almost simultaneously by Zeiler et al. [14] and Yang
et al. [15], although the latter, while also originating within
the machine learning community, does not seem to have
influenced any later work in this direction. Subsequent work
within this stream has also tended to consider the convolutional
form of the representation as an integral part of a multi-
layer neural network with application to image classification
tasks [11], [12], [16], [17], although some more recent work
has specifically addressed the concept from a more traditional
sparse representations perspective [18]–[21].

Most of these works [11], [12], [14], [16], [20], [21]
have posed the sparse coding and dictionary learning prob-
lems in the form of CBPDN, the exceptions being proba-
bilistic/Bayesian models [17], [19] and convolutional exten-
sions [18] of MP and K-SVD [22].

2The sparse representation is therefore a representation of the highpass
component, and a complete image representation includes both the lowpass
component and the sparse representation.

The most frequent application area within this stream has
been image classification [11], [12], [14], [15], [17] and
detection [11], [16] tasks, but segmentation in biological
imagery has also been considered [19], and image denoising
has received very brief attention [14].

B. Translation-Invariant Sparse Representations

The other stream of research has origins in the neuroscience
and signal processing communities, the unifying concept being
the construction of translation-invariant representations. The
resulting representation is equivalent to the convolutional rep-
resentation, but the motivation is translation-invariance and the
convolutional form is derived rather than given. The earliest
work to construct representations directly equivalent to Eq. (4)
is that of Lewicki and Sejnowski [23]. Work within this
stream [23]–[44] has concentrated primarily on properties of
the representation and signal processing applications. A related
idea that is not equivalent to convolutional representations
is the construction of representations that are invariant to
continuous translations via Taylor series or other interpolation
methods [45], [46]. Some of these works have considered con-
structing representations that are invariant to a more general
set of transformations [25], [40]–[42], most commonly being
image translations and rotations.

A range of sparse coding and dictionary learning forms
have been considered within this stream, including penalized
form Eq. (1) with a log function based sparsity inducing
regularization terms [24] or with `1 regularization [25], [35],
[39]–[41]; probabilistic/Bayesian models [23], [26]–[30], [37],
which generally correspond to various forms of Eq. (1) with
either log [26], [29] or `1 [37] regularization; and constrained
forms Eq. (2) [38], [42] or Eq. (3) [32], [34], [36], [43], [44].

Many of these works focus on properties of the represen-
tation rather than considering any specific application. The
majority of applications that have been addressed within this
stream have been to signal decomposition [27], [29], [30],
[47], classification [35], and blind source separation [28], [30],
[37] problems in audio [27]–[30], [35], [37], [47] or medical
diagnostic signals [28], [32], [44]. Image denoising [38],
image inpainting [39], [43], and video decomposition [26]
have received some attention.

C. Sparse Coding Algorithms

Solutions for the convolutional constrained forms of sparse
coding have employed convolutional extensions of MP [18],
[19], [31], [36], [38] or variants of OMP [32], [34], [42]–[44].
In most of these cases the primary focus of the work is not
on sparse coding algorithm development, and only [18], [19],
[36], [38], [42] discuss efficient convolutional extensions of
these methods in any detail.

A wide variety of algorithms have been proposed for
CBPDN and related unconstrained forms. A few different
approaches combine heuristic dictionary subset selection and
optimization within that subset; these include a greedy subset
search via fast convolution followed by a conjugate gradient
method to compute the optimal coefficients on the selected
subset [23], a similar greedy subset selection followed by an
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IRLS algorithm to solve the BPDN problem on the subset [29],
[30], [47], and the feature-sign search algorithm [35]. Other
methods include block coordinate relaxation [39], [40] (for
a restricted variant of CBPDN in which at most one filter
is permitted to be active at each spatial location), coordi-
nate descent [11], an alternating minimization method (not
ADMM) [14], ISTA [12] or equivalent to ISTA but not iden-
tified as such [37], [41], FISTA [16], [20], and ADMM [21].

Most of these methods solve the problem in the spatial
domain, but [21], [35], [37], [38], [43], [44] exploit the
convolution theorem to solve at least part of the problem in
the Discrete Fourier Transform (DFT) domain.

D. Dictionary Learning Algorithms

A number of different authors have considered the devel-
opment of convolutional extensions of the K-SVD dictionary
update [18], [19], [33], [36], [38], [43]. A block coordi-
nate relaxation approach [44] shares the property of the K-
SVD of updating a single dictionary element at a time. The
MoTIF algorithm [31] is rather unusual in its strategy of
iteratively growing the dictionary with a procedure reminiscent
of Gram-Schmidt. These methods tend to be paired with
greedy MP/OMP sparse coding algorithms for the coefficient
update step.

The most widely used dictionary updates are convolu-
tional forms of gradient descent [14], [26]–[29], [37], [39]–
[41], [47] and Method of Optimal Directions (MOD) [12],
[32], [34] or variants thereof [21], [35]. Other methods that
have been considered include a quasi-Newton method [20],
stochastic gradient descent [11], [16], stochastic Levenberg-
Marquardt [42], and block coordinate relaxation [44].

Most dictionary learning methods are composed of alterna-
tion at the outer level between a sparse coding stage and a dic-
tionary update stage, each of which may consist of iterations
over a set of inner update steps. An alternative approach is
a more tightly coupled algorithm directly alternating between
the inner sparse coding and dictionary update steps [21], [37],
the more recent of which [21] is derived with an Augmented
Lagrangian framework.

As in the case of sparse coding, most methods operate in
the spatial domain, but [21], [35], [37], [43], [44] perform the
dictionary update in the DFT domain.

III. ADMM ALGORITHM FOR CBPDN

Given the very good performance of ADMM for the stan-
dard BPDN problem, it is a natural choice to consider for
CBPDN. The general outline of the method derived here is
very similar to the sparse coding component of the Augmented
Lagrangian dictionary learning algorithm proposed by Bristow
et al. [21] and described in more detail, with some errors cor-
rected, in an independent technical report [48]. At a superficial
level, the only difference is that here the ADMM algorithm is
derived in the spatial domain, with one of the sub-problems
being solved in the frequency domain, whereas they directly
derive the algorithm using a mixture of spatial and frequency
domain variables. A much more important difference, however,
is the use of a far more efficient method (first introduced in [8])

for solving the linear system that represents the bulk of the
computational cost of the algorithm.

The ADMM iterations for solving the optimization

argmin
x,y

f(x) + g(y) such that Ax+By = c (5)

are, in scaled form [3, Sec. 3.1.1]

x(j+1) = argmin
x

f(x) +
ρ

2

∥∥∥Ax+By(j) − c+ u(j)
∥∥∥2
2

(6)

y(j+1) = argmin
y

g(y) +
ρ

2

∥∥∥Ax(j+1) +By − c+ u(j)
∥∥∥2
2

(7)

u(j+1) = u(j) +Ax(j+1) +By(j+1) − c . (8)

Rewriting Eq. (4) in a suitable form by introducing an auxiliary
variable with a constraint, we have

argmin
{xm},{ym}

1

2

∥∥∥∑
m

dm ∗ xm− s
∥∥∥2
2
+λ

∑
m

‖ym‖1 s.t. xm−ym=0 , (9)

so the ADMM iterations for our problem are

{xm}(j+1) = argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+

ρ

2

∑
m

∥∥∥xm − y(j)
m + u(j)

m

∥∥∥2
2

(10)

{ym}(j+1) = argmin
{ym}

λ
∑
m

‖ym‖1 +

ρ

2

∑
m

∥∥∥x(j+1)
m − ym + u(j)

m

∥∥∥2
2

(11)

u(j+1)
m = u(j)

m + x(j+1)
m − y(j+1)

m . (12)

The stopping criteria discussed in [3, Sec. 3.3] provide a
more effective means of ensuring convergence to suitable
accuracy than simply specifying a maximum allowed number
of iterations3.

Sub-problem Eq. (11) is solved via shrinkage/soft thresh-
olding as

y(j+1)
m = Sλ/ρ

(
x(j+1)
m + u(j)

m

)
, (13)

where
Sγ(u) = sign(u)�max(0, |u| − γ) , (14)

with sign(·) and |·| of a vector considered to be applied
element-wise, and � denoting element-wise multiplication.
The computational cost of this sub-problem is O(MN). The
only computationally expensive step is solving Eq. (10), which
is of the form

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+
ρ

2

∑
m

‖xm − zm‖22 . (15)

A. DFT Domain Formulation
An obvious approach is to attempt to exploit the Fast

Fourier Transform (FFT) for efficient implementation of the
convolution via the DFT convolution theorem. Define linear
operators Dm such that Dmxm = dm ∗ xm, and denote the
variables Dm, xm, s, and zm in the DFT domain by D̂m,
x̂m, ŝ, and ẑm respectively. It is easy to show via the DFT
convolution theorem that Eq. (15) is equivalent to

argmin
{x̂m}

1

2

∥∥∥∑
m

D̂mx̂m − ŝ
∥∥∥2
2
+
ρ

2

∑
m

‖x̂m − ẑm‖22 , (16)

3See Alg. 1 in the Supplementary Material.
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with the {xm} minimizing Eq. (15) being given by the inverse
DFT of the {x̂m} minimizing Eq. (16). Defining

D̂ =
(
D̂0 D̂1 . . .

)
x̂ =

 x̂0

x̂1

...

 ẑ =

 ẑ0
ẑ1
...

 , (17)

this problem can be expressed as

argmin
x̂

1

2

∥∥D̂x̂− ŝ
∥∥2
2
+
ρ

2
‖x̂− ẑ‖22 , (18)

the solution being given by the linear system

(D̂HD̂ + ρI)x̂ = D̂H ŝ+ ρẑ . (19)

B. Independent Linear Systems

Matrix D̂ has a block structure consisting of M concate-
nated N × N diagonal matrices, where M is the number
of filters and N is the number of samples in s. D̂HD̂ is
an MN × MN matrix, but due to the diagonal block (not
block diagonal) structure of D̂, a row of D̂H with its non-
zero element at column n will only have a non-zero product
with a column of D̂ that has its non-zero element at row
n. As a result, there are no products between elements of
D̂ corresponding to different frequency indices n, so that,
as pointed out in [21], one need only solve N independent
M×M linear systems to solve Eq. (19). The cost of the FFTs
and these linear solves dominate the computational cost of the
algorithm. Bristow et al. [21] do not specify how they solve
these linear systems, but since they rate the computational
cost of solving them as O(M3), one must conclude that they
apply a direct method such as Gaussian elimination. This can
be a very effective solution when it is possible to precompute
and cache an LU or Cholesky decomposition of the system
matrix, but in this case that is, in general, impossible due to
the O(M2N) storage requirements for these decompositions.

A careful analysis of the unique structure of this problem,
however, reveals that there is an alternative, and vastly more
effective solution. The independent systems, each of which
has the sum of a diagonal and a rank-one matrix on the left
hand side, can be solved very efficiently by re-arranging the
independent systems in Eq. (19) into the form of Eq. (47), as
described in Appendix A, and then solving using Eq. (51),
derived by applying the Sherman-Morrison formula as de-
scribed in Appendix B. The only vector operations in Eq. (51)
are scalar multiplication, subtraction, and inner products, so
that this method is O(M), instead of O(M3) as in [21].
The cost of solving such a system at all M spatial indices
is O(MN), and the cost of the FFTs is O(MN logN); it
is the cost of the FFTs that dominates the computational
complexity, whereas in [21] the cost of the solutions of the
linear systems in the DFT domain dominate the cost of the
FFTs. Further computational improvement is possible, at the
cost of additional memory requirements, by precomputing
components of Eq. (51), e.g. aHn /(ρ+ aHn an).

C. Performance Comparison: Linear Solvers for ADMM

The execution times and solution accuracies of four different
methods of solving the linear system in single precision4 are
compared in Fig. 1. Computations were performed in both
single and double precision arithmetic to allow evaluation
of the corresponding execution time and solution accuracy
trade-off. Dictionaries of different sizes were constructed by
selecting subsets of a 12× 12× 512 dictionary5 learned using
standard (non-convolutional) methods, and s was the 512×512
greyscale Lena image. After an initial 20 iterations of the
ADMM algorithm (to avoid any unique characteristics of the
linear system directly after initialisation of the iterations),
the four different methods were used to solve Eq. (19) for
the following iteration, recording the time required by each.
Reconstruction error was computed as the relative residual
error6 with which solution x̂ satisfied the linear equation
Eq. (19).

The following observations can be made from these results:
• Gaussian elimination (GE) gives solutions accurate to

floating point precision, but is the slowest of all the
methods, being vastly slower than SM, and having much
worse scaling with M .

• Conjugate Gradient (CG) provides a better accuracy/time
trade-off than GE, being substantially faster, while still
providing solutions of acceptable accuracy.

• Sherman-Morrison (SM) is by far the fastest method, giv-
ing acceptable solution accuracy in single precision, and
very high accuracy in double precision. The negligible
variation in run time with precision suggests that use
of a double precision solution might be preferred, but
empirical evidence (see below) indicates that, in practice,
the single precision solution accuracy is sufficient, and
gives approximately the same rate of convergence for the
ADMM algorithm as double precision solution.

Since these methods all exhibit a different trade-off between
accuracy and speed, it is reasonable to ask what the effect
is on algorithm performance. It is not worth expending a
large amount of time to compute a very accurate solution
since ADMM algorithms only require approximate solutions
of each step [3, Sec. 3.4.4], but convergence will be slow
or unreliable if the solutions are too inaccurate. The results
presented in Fig. 2 show that SM gives a faster reduction
in functional value7 with time than CG with any choice of
tolerance8, even for the smallest M considered in Fig. 1. In this
case CG with a relative residual tolerance of 10−1 is not much

4A corresponding comparison for double precision is presented in Fig. 1
in the Supplementary Material.

5Included in the demonstration software distributed by the authors of [49].
6The relative residual error of x in the linear equation Ax = b is
‖Ax− b‖2 / ‖b‖2.

7When evaluating the functional in an ADMM algorithm such as this, dif-
ferent values will be obtained for computations using the primary ({xm}) and
auxiliary ({ym}) variables. The auxiliary {ym} is used for the experiments
reported here since (i) {xm} is merely an intermediate result and not part of
the algorithm state [3, pg. 14], and (ii) it has been found empirically to give
a curve that decays faster and is less subject to oscillations. Corresponding
plots for primal and dual residuals for the ADMM algorithm are provided
in Fig. 2–3 in the Supplementary Material.

8Smaller CG tolerances than in Fig. 1 are used in Fig. 2 since it is already
clear from Fig. 1 that tolerances smaller than 10−3 are not competitive.
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Fig. 1. A comparison of execution times and solution errors for single-precision solution of a linear system for the 512 × 512 greyscale Lena image with
dictionaries consisting of 12 × 12 filters, with λ = 0.01. Solution methods are Gaussian elimination (GE), Conjugate Gradient (CG) with relative residual
tolerances of 10−3 and 10−5, and Sherman-Morrison (SM). The combined run time for a forward and inverse FFT is provided as a reference.
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Fig. 2. A comparison of functional value evolution with time for the ADMM
algorithm with Eq. (19) solved in single precision using Sherman-Morrison
and CG with three different relative residual tolerances. The test image was
the 512 × 512 greyscale Lena image with a learned 8 × 8 × 64 dictionary
and λ = 0.01.

slower than SM, but the algorithm does not converge; larger
tolerance values give more reliable decrease in functional value
with each iteration (note, though, that on a longer timescale
than displayed in Fig. 2, CG with tolerances 10−2 and 10−3

also begin to exhibit some oscillations), but are very much
slower. If plotted on the same graph, the SM result for double
precision is indistinguishable from the single precision SM
result shown.

D. ADMM Parameter Selection

The selection of a suitable penalty parameter ρ is critical
to obtaining a good convergence rate. Two different strategies
for selecting ρ are compared in this section. The first of these
is the increasing parameter scheme, advocated in [21]

ρj+1 =

{
τρj if ρj < ρmax

ρj otherwise ,
(20)

where ρj is the value of ρ at iteration j, and τ and ρmax

are fixed parameters, with typical values τ ∈ [1.01, 1.50]
and ρmax = 105. The other strategy is the adaptive method
proposed in [50] and described in [3, Sec. 3.4.1]

ρj+1 =


τρj if

∥∥r(j)∥∥
2
> µ

∥∥s(j)∥∥
2

τ−1ρj if
∥∥s(j)∥∥

2
> µ

∥∥r(j)∥∥
2

ρj otherwise ,

(21)

where τ and µ are constants, typical values being τ = 2
and µ = 10 [3], [50], and r(k) = x(k) − y(j) and s(j) =
ρk(y

(j−1) − y(j)) are the primal and dual residuals [3, Sec.
3.3] respectively An additional variation for both methods is
comparing the results with and without the relaxation method
described in [3, Sec. 3.4.3], which involves replacing x

(j+1)
m

in Eq. (11)–(12) with

x
(j+1)
relax,m = αx(j+1)

m + (1− α)y(j)
m . (22)

Relaxation parameter α = 1.8 was found to give the best
results, and is used whenever this method is applied, except
where otherwise specified. All parameter selection experi-
ments described in this section used the 512× 512 greyscale
Lena test image with a learned 8× 8× 64 dictionary.

The first set of experiments, reported in Fig. 3, compare the
different methods across different values of λ using relative
functional values, computed by dividing functional values for
each λ by the smallest functional value attained for that λ,
by any method, at the maximum number of iterations (500).
These results show that:
• The multiplicative update scheme without over-relaxation

is not at all competitive with other methods.
• Including over-relaxation with the multiplicative update

scheme substantially improves performance, but it re-
mains inferior to the automatic scheme for all but the
smallest values of λ when performance is compared at
50 iterations, and is uniformly inferior when comparisons
are made at larger iteration counts.
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Fig. 3. Relative functional values for different ρ update strategies with ρ0 selected to minimize the functional value at 50 and 100 iterations. The update
strategies are denoted by “Adp” (adaptive) and “Mlt” (fixed multiplicative update), with “Rlx” indicating the use of over-relaxation with the parameter α = 1.8.
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Fig. 4. Functional value behaviour for λ = 0.05 and different ρ update strategies with ρ0 selected to minimize the functional value at 50 iterations. Both
“Adp” (adaptive) and “Mlt” (fixed multiplicative update) strategies use over-relaxation parameter α = 1.8. The evolution of the functional value for each
method is shown for the optimum choice of ρ0 for that method at 50 iterations, denoted by ρ∗0 as well as for ρ0 set to 0.1 and 10 times ρ∗0 .

• Over-relaxation substantially improves performance for
the adaptive scheme.

The second set of experiments, reported in Fig. 4, evaluate
the sensitivities of the different methods to the correct choice
of ρ0 by comparing the decrease in functional value with
iteration number for the optimum choice of ρ0, as well as the
optimum value multiplied by 0.1 and 10. These experiments
show that:
• The multiplicative update scheme with ρ0 chosen for

the smallest functional value at 50 iterations converges
substantially slower than the adaptive scheme. Initial
convergence is much faster if ρ0 is chosen to be 10 times
larger, but then the functional value stagnates at a level
substantially above the minimum. (If ρ0 is instead chosen
for best performance at 100 iterations then the stagnation
effect is reduced, but at the expense of even slower
decrease in the functional value, i.e. the initial plateau

becomes larger.) The performance of the multiplicative
update scheme with respect to the adaptive method, both
in terms of decay rate and stagnation effect, appears to
improve slightly for smaller values of λ.

By inspection of 2D arrays of relative functional values for
different λ and ρ0 values9, it was determined that ρ0 = 100λ+
0.5 is a simple heuristic that provides good performance for
the experimental conditions – type of data, data scaling, and
preprocessing, etc. – considered here.

IV. CBPDN ALGORITHM COMPARISON

Sec. II-C includes a brief summary of the different ap-
proaches that have been proposed for CBPDN. The earliest
algorithms [23], [29], [30], [47], based on a heuristic subset
selection stage, have been shown to be substantially slower

9See Fig. 4–6 in the Supplementary Material.
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than a convolutional variant of the feature-sign search algo-
rithm [35]. Of the more recent methods, the block coordi-
nate relaxation algorithms [39], [40] do not solve the full
CBPDN problem, and even the earlier variant of the frequency
domain ADMM algorithm [21] is shown to be substantially
faster, in most circumstances, than the coordinate descent
algorithm [11]. Since FISTA is known to be substantially more
effective than ISTA, it is reasonable to conclude that the FISTA
algorithm for convolutional BPDN [16], [20] outperforms
those based on ISTA [12], [37], [41], and FISTA has also
been shown [20] to be faster than the coordinate descent
algorithm [11].

Given these previous performance comparison results in the
literature, as well as the demonstration in the preceding section
of the performance of the ADMM variant proposed here with
respect to the earlier variant [21], it remains only to compare
the performance of this proposed algorithm with that of the
feature-sign search algorithm [35] and of FISTA [16], [20].

A. Feature-Sign Search

Since the feature-sign search (FSS) algorithm [35] operates
by iteratively estimating the set of non-zero coefficients, and
is able to compute the solution on that set to floating point
precision, it is not straightforward to compare its performance
with a method such as ADMM in terms of functional value
decay with time. Instead, the total computation time for the
FSS algorithm is compared with that of ADMM with three
different relative error stopping tolerances [3, Sec. 3.3], the
smallest of which, εrel = 10−4, is more than adequate for most
image processing applications. All FSS results were computed
using a publicly available implementation [51] by the authors
of [35].

ADMM 10−2
ADMM 10−3
ADMM 10−4

FSS
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Fig. 5. A comparison of computation times for the feature-sign search
(FSS) algorithm and the ADMM algorithm with three different relative error
tolerances. The sparse coding was applied to the greyscale Lena image
downsampled to a size of 256×256 pixels, and the dictionary was 8×8×64.

It can be seen10 from Fig. 5 that the performance of the
feature-sign search algorithm is strongly dependent on λ. The

10A corresponding comparison for varying number of pixels N in the image
is presented in Fig. 7 in the Supplementary Material.

method substantially outperforms ADMM for large values
of λ and small N , but performance falls off very rapidly
as λ is decreased and as the image size is increased. It
is therefore a good choice for the type of computer vision
problem in which large reconstruction error is acceptable, and
applied to relatively small images, but for image processing
problems requiring a low reconstruction error, and therefore
much smaller λ (even the smallest value of λ = 0.1 in Fig. 5 is
usually far too large for image restoration problems), ADMM
is faster by a few orders of magnitude.

B. FISTA

While there is evidence that ADMM is significantly faster
than FISTA for at least some problems [52], an empirical
comparison with the recently proposed FISTA algorithm for
CBPDN [20] is warranted. The main computational cost of
this algorithm is in the computation of the gradient of the
data fidelity term, which is performed in the spatial domain.
This gradient can, however, easily be computed in the fre-
quency domain as D̂H(D̂x̂− ŝ), i.e. the gradient of the term
1
2

∥∥D̂x̂−ŝ
∥∥2
2

in Eq. (18). A new variant of the FISTA algorithm
that exploits the frequency domain gradient computation is
also included in the performance comparisons reported here.
These comparisons were performed for a set of different
dictionaries (learned on a separate set of images) and λ values,
using the 512 × 512 greyscale Lena test image. The ADMM
results were generated using over-relaxation with α = 1.8,
with ρ0 = 100λ+0.5, and with adaptive ρ. FISTA parameters
were selected by a grid search over a range of values around
the fixed L0 = 1 and η = 5 values of [20]; the best values of
L0 were 0.05, 0.5, or 1, and the best values of η were 2 or
5. (Note that ADMM parameters were all automatically set,
or set via an effective heuristic, whereas it is not clear how
to select the best FISTA parameters without a search over the
parameter space.)

The results reported in Fig. 6 indicate that FISTA with
spatial domain computation of the gradient is substantially
slower than ADMM. FISTA with frequency domain compu-
tation of the gradient is competitive with ADMM for larger
values of λ and smaller dictionaries (i.e. smaller M ), but is
also substantially slower than ADMM for smaller λ and larger
M values11.

V. DICTIONARY LEARNING

The natural dictionary learning extension of CBPDN is

argmin
{dm},{xk,m}

1

2

∑
k

∥∥∥∑
m

dm ∗ xk,m − sk

∥∥∥2
2
+ λ

∑
k

∑
m

‖xk,m‖1

such that ‖dm‖2 = 1 ∀m , (23)

where the constraint on the norms of filters dm is required to
avoid the scaling ambiguity between filters and coefficients.
The standard approach is to solve this problem via alternating
minimization with respect to coefficients and dictionary. The

11Additional experiments reported in Sec. III-B in the Supplementary Ma-
terial indicate that similar relative performance is observed when comparing
these two algorithms in the context of some image reconstruction applications.
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Fig. 6. Comparison of time evolution of relative functional values for ADMM, and FISTA with the gradient computed in the spatial domain “(S)” and
frequency domain “(F)”. (a) provides a comparison for different values of λ with a dictionary consisting of 64 filters of size 8 × 8, and (b) provides a
comparison for different dictionary sizes (“method n m” indicates a dictionary of m filters of size n× n) and λ = 0.05.

minimization with respect to {xk,m} involves solving the
Multiple Measurement Vector (MMV) extension of CBPDN,
which is trivial since the problems for each k are decoupled
from one another, but {dm} is more challenging since the
problems for different k are coupled.

Ignoring the constraint on the norm of dm, which is
usually applied as a post-processing normalization step after
the update, the minimization with respect to {dm} can be
expressed as

argmin
{dm}

1

2

∑
k

∥∥∥∑
m

dm ∗ xk,m − sk

∥∥∥2
2
, (24)

which is a convolutional form of MOD [53]. When computing
the convolutions dm ∗ xk,m in the DFT domain, there is an
implicit zero-padding of the filters dm to the size of the co-
efficient maps xk,m; this can be overlooked when minimizing
with respect to the coefficient maps, but must be explicitly
represented when minimizing with respect to the filters to
ensure that the filters resulting from the optimization have
an appropriately constrained support in the spatial domain.
Defining zero-padding operator P , Eq. (24) can be expressed
in the DFT domain as

argmin
{dm}

1

2

∑
k

∥∥∥∑
m

(P̂dm)� x̂k,m − ŝk

∥∥∥2
2
. (25)

Unfortunately, the spatial-domain operator P does not have
a compact representation in the DFT domain, making an
efficient direct DFT domain solution impossible. A variable
splitting approach, however, makes it possible to solve this
problem, including dictionary norm constraints, via an ADMM
algorithm.

A. Constrained MOD Update

The desired filters can be obtained as PTdm after solving
the constrained problem

argmin
{dm}

1

2

∑
k

∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥2
2

s. t. dm ∈ CP ∀m , (26)

where the dm have the same spatial support as the xk,m, and

CP = {x ∈ RN : (I − PPT )x = 0} . (27)

Since we are setting up a constrained problem requiring
an iterative solution, however, it is reasonable to also include
the normalisation ‖dm‖2 = 1 (or ‖dm‖2 ≤ 1) of the
dictionary elements that is often, and suboptimally, performed
as a postprocessing step after the dictionary update. Including
the normalisation requirement ‖dm‖2 = 1, the constraint set
becomes

CPN = {x ∈ RN : (I − PPT )x = 0, ‖x‖2 = 1} . (28)

Employing the indicator function12 ιCPN of the constraint set
CPN, the constrained problem can be written in unconstrained
form [54]

argmin
{dm}

1

2

∑
k

∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥2
2
+
∑
m

ιCPN(dm) , (29)

12The indicator function of a set S is defined as

ιS(X) =

{
0 if X ∈ S
∞ if X /∈ S .
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and rewriting with an auxiliary variable in a form suitable for
ADMM gives

argmin
{dm},{gm}

1

2

∑
k

∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥2
2
+
∑
m

ιCPN(gm)

such that dm − gm = 0 ∀m . (30)

This problem can be solved via an ADMM algorithm

{dm}(j+1) = argmin
{dm}

1

2

∑
k

∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥2
2
+

σ

2

∑
m

∥∥∥dm − g(j)
m + h(j)

m

∥∥∥2
2

(31)

{gm}(j+1) = argmin
{gm}

∑
m

ιCPN(gm)+

σ

2

∑
m

∥∥∥d(j+1)
m − gm + h(j)

m

∥∥∥2
2

(32)

h(j+1)
m = h(j)

m + d(j+1)
m − g(j+1)

m . (33)

The {gm} update is of the form

argmin
x

1

2
‖x− y‖22 + ιCPN(x) = proxιCPN

(y) . (34)

It is immediately clear from the geometry of the problem that

proxιCPN
(y) =

PPTy

‖PPTy‖2
, (35)

or, if the normalisation ‖dm‖2 ≤ 1 is desired instead,

proxιCPN
(y) =

{
PPTy if

∥∥PPTy∥∥
2
≤ 1

PPTy
‖PPTy‖2

if
∥∥PPTy∥∥

2
> 1

. (36)

The problem for the {dm} update is of form

argmin
{dm}

1

2

∑
k

∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥2
2
+
σ

2

∑
m

‖dm − zm‖22 . (37)

In the DFT domain, where X̂k,m = diag(x̂k,m), this becomes

argmin
{d̂m}

1

2

∑
k

∥∥∥∑
m

X̂k,md̂m − ŝk

∥∥∥2
2
+
σ

2

∑
m

∥∥∥d̂m − ẑm

∥∥∥2
2
. (38)

Defining

X̂k =
(
X̂k,0 X̂k,1 . . .

)
d̂ =

 d̂0

d̂1

...

 ẑ =

 ẑ0
ẑ1
...

 (39)

this problem can be expressed as

argmin
d̂

1

2

∑
k

∥∥X̂kd̂− ŝk
∥∥2
2
+
σ

2

∥∥d̂− ẑ
∥∥2
2

(40)

with solution(∑
k

X̂H
k X̂k + σI

)
d̂ =

∑
k

X̂H
k ŝk + σẑ . (41)

This linear system can be solved by iterated application of
the Sherman-Morrison formula, as described in Appendices C
and D.

B. Interleaved xk,m and dm Updates

Given iterative algorithms for the xk,m and dm updates
(i.e. the ADMM algorithms for CBPDN and Constrained
MOD respectively), the immediate question is how these
should be combined into a full dictionary learning algorithm.
The standard approach is to alternate between sparse coding
and dictionary update, solving the sparse coding problem
with reasonable accuracy before moving on to the dictionary
update. Since each sub-problem is an iterative algorithm,
this would entail performing multiple iterations of each sub-
problem before switching to the other. A reasonable strategy is
to maintain the auxiliary variables for each sub-problem across
the top-level iterations since performing a cold start at each
switch of sub-problems would entail substantially reduced
efficiency. The necessity of retaining these variables, in turn,
suggests interleaving the ADMM iterations for each sub-
problem into a single set of iterations, rather than combining
the xk,m and dm updates in a way that treats each as a single
functional unit13. A single iteration of the resulting algorithm
consists of updates Eq. (10), (11), (12), (31), (32), and (33)
in sequence.

The most obvious way of combining these updates is to
transfer the primary variables across to the other update steps,
i.e. dm represent the dictionary in the sparse coding steps,
and xk,m represent the sparse code in the dictionary update
steps. Such a combination turns out to be quite unstable in
practice, with convergence being very sensitive to suitable
choices of the ρ and σ parameters for each update. A far
more stable algorithm is obtained if the updates are interleaved
on their auxiliary variables, i.e. gm represent the dictionary
in the sparse coding steps, and yk,m represent the sparse
code in the dictionary update steps14. It is worth noting that
such a combination is not derivable from single Augmented
Lagrangian functional, as is the otherwise-similar dictionary
learning approach of Bristow et al. [21]. Additional differences
in derivation and algorithm are:

• they construct the Augmented Lagrangian using a mixture
of spatial and frequency domain variables, while the
derivation presented here poses the problem in the spatial
domain, switching into the frequency domain where ap-
propriate for efficient solution of relevant sub-problems,

• they derive the ADMM algorithm in unscaled rather than
scaled form [3, Sec. 3.1.1], and

• most significantly, they propose the use of a direct method
for solving Eq. (41).

The first two of these choices appears to lead to a slightly more
complicated path to deriving solutions to at least one of the
sub-problems (see section “Subproblem s” in [21], describing
the sub-problem corresponding to the {gm} update here), but
do not have a significant effect on the resulting algorithm.
The final choice is compared with alternatives in the following
section.

13This general strategy, of interleaving the algorithms for sparse code
and dictionary updates, has previously been proposed, but with substantially
different algorithms for each update [55].

14See Alg. 2 in the Supplementary Material.



10

C. Performance Comparison: Linear Solvers for ADMM

The execution times and solution accuracies of three dif-
ferent methods of solving the linear system are compared15

for fixed M = 64 and varying K in Fig. 7. Dictionaries
of different sizes, M , were constructed by initialising with
Gaussian random dictionaries of the appropriate sizes, and the
different training image sets of size, K, were selected from a
set of 256× 256 training images derived from the MIRFlickr
dataset [56]. After an initial 20 iterations of the ADMM
algorithm, the different methods were used to solve Eq. (41)
for the following iteration, recording the time required by each.
Reconstruction error was computed as the relative residual
error with which solution d̂ satisfies the linear equation
Eq. (41).

The following observations can be made from these results:
• The CG 10−1 method is by far the fastest, but the solution

accuracy is inadequate (see below).
• The CG 10−5 method has very similar solution accuracy

to SM, but is substantially slower for small K values.
• In the sparse coding problem, the SM solution greatly

outperforms the alternatives, but that is not always the
case here, with other methods, including GE, becoming
competitive for larger K values. This should not be
surprising since GE has O(KM3N) cost, while SM has
O(K2MN) cost (see Alg. 1 in Appendix D).
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Fig. 8. A comparison of functional value evolution with time for the ADMM
algorithm with Eq. (41) solved in single precision using Sherman-Morrison
and CG with three different relative residual tolerances as well as an automatic
tolerance selection method. The dictionary was 8× 8× 64 and λ = 0.1.

The effects of the different trade-offs between time and
accuracy represented by the different solution methods can
only be evaluated by comparing performance within a number
of iterations of the full dictionary learning algorithm. Such a
comparison was performed using the same dictionary size, λ
value, and training data (with K = 32) as for the experiments
above, the results being presented in Fig. 8.

The double precision SM result is not shown since it
would be indistinguishable from the single precision version
on this graph; for this experiment the maximum fractional
difference between the two (occurring within the first few

15A corresponding comparison for fixed K = 32 and varying M is
presented in Fig. 14 in the Supplementary Material.

iterations) is 3.3 × 10−5, and the median is 3.8 × 10−6.
Thus double precision SM gives effectively the same solution,
but at the cost of doubling the memory requirements (and
is approximately 30% slower than single precision). Since
CG with a sufficiently large tolerance gives approximately the
same solution accuracy independent of precision, at an even
greater computation time penalty, double precision CG is also
not a useful option.

In addition to three different CG tolerances, these exper-
iments also include an automatic CG tolerance method that
starts with a tolerance of 10−1, at each iteration setting
it to 1/20 times the `2 norm of the primal residual for
the dm update if that quantity is smaller than the current
tolerance. In this experiment that auto-tolerance method is
quite competitive, giving the overall best performance in terms
of functional value reduction with time16.

D. Multi-scale Dictionaries

The vast majority of dictionary learning research has fo-
cused on the learning of single-scale dictionaries (i.e. all
dictionary elements are of the same size) within a patch-
based context. Given the obvious benefits of a multi-scale
representation (see e.g. [57, Sec. 3] for a discussion), it
is not surprising, however, that the construction of multi-
scale dictionaries has received at least some attention. The
approaches that have been considered follow a few basic
schemes:
Analytically defined The simplest approach is to analytically

define a multi-scale family of basis functions, without any
learning or adaptation of the dictionary from data. The
design of a fast sparse coding algorithm using a multi-
scale Gaussian chirp dictionary was described in [58].

Learned wavelet filters A wavelet basis can be optimised for
sparse representation of images by a learning procedure
applied to the associated filter bank [59], [60].

Transform domain dictionaries Standard dictionary learn-
ing applied in the wavelet transform domain [61], [62]
or in a Laplacian pyramid [63] provides the dictionary
with a multi-scale structure in the spatial domain.

Quadtree spatial decomposition A set of dictionaries can
be learned to give an image representation at the mul-
tiple patch sizes occurring within a quadtree decomposi-
tion [57], [64].

These methods all have structural constraints (either being
imposed by the properties of the transform domain within
which the sparse representation is computed, or from the
quadtree spatial structure imposed on the dictionary), ulti-
mately resulting from the difficulty of applying a multi-scale
dictionary in a natural way within a patch-based framework.

In the convolutional sparse representation framework, in
contrast, there is absolutely no reason why the dictionary
filters should be of the same size, and multi-scale dictionaries
can be defined in a very natural way, without any structural
constraints on their form. Learning of such dictionaries is no
more difficult than learning a single-scale dictionary, simply

16In contrast, the best reduction with respect to number of iterations is
provided by SM and CG 10−3 (see Fig. 15 in the Supplementary Material).
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Fig. 7. A comparison of execution times and solution errors for single-precision solution of a linear system corresponding to an 8× 8× 64 dictionary with
λ = 0.1. Solution methods are Gaussian elimination (GE), Conjugate Gradient (CG), and Sherman-Morrison (SM).

by replacing P by Pm in Eq. (25), (27), (28), (35), and (36). It
is surprising, therefore, that the learning and use of multi-scale
convolutional dictionaries has not previously been considered
in imaging applications, and has only received very limited
attention in a signal processing context (the possibility of
using filters of different lengths is pointed out in [42], but
not discussed in any detail).

The utility of this type of multi-scale dictionary ultimately
depends on the performance in actual applications, a proper
evaluation of which is beyond the scope of the present paper,
and will be addressed in future work. An initial demonstration
of the potential advantages is, however, provided by some
simple experiments comparing the minimal CBPDN functional
values for different dictionaries, and the trade-off of repre-
sentation accuracy and number of non-zero coefficients for
different dictionaries.

A set of five different dictionaries, all with 72 filters, was
learned using the same set of 16 images, and then used to solve
a CBPDN problem using a separate set of 16 image as a test
set. A corresponding experiment was also performed using a
set of four dictionaries, all with 96 filters, trained on the same
set of 32 images and tested on the same set of 16 images. The
results in Table I show that a multi-scale dictionary can provide
a lower cost representation than a single-scale dictionary with
the same number of filters of the same size as one of the filter
sizes in the multi-scale dictionary.

A further experiment compares the variation of reconstruc-
tion error with number of non-zero components in the sparse
representations for each of the dictionaries in the lower half
of Table I. The reconstruction error curves were computed by
sorting coefficients by their absolute value and successively
zeroing them from smallest to largest, computing the new
reconstruction error at each stage. The curves in Fig. 9
represent the reconstructions SNR difference between the
reconstructions for the specified dictionary and the 8× 8× 96
dictionary. It can be seen that the 12 × 12 × 96 dictionary
gives a higher SNR reconstruction for a small number of non-
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Fig. 9. Reconstruction SNR difference with that of the 8×8×96 dictionary.

zero coefficients, but is inferior to the 8 × 8 × 96 for many
non-zero coefficients. The 16× 16× 96 dictionary is initially
superior to the 12 × 12 × 96 dictionary, but its performance
more quickly drops below that of the 8 × 8 × 96 dictionary,
and the maximum performance deficit is much greater. The
multi-scale dictionary provides a good compromise between
the three other dictionaries, giving the best reconstruction SNR
at low numbers of non-zero coefficients, and remains at least
slightly superior to the 8 × 8 × 96 dictionary even at the
maximum number of non-zero coefficients.

VI. CONCLUSION

At a high level, the derivation of ADMM algorithms for
convolutional sparse coding and the dictionary update for
dictionary learning is straightforward, but correct choice of
methods for solving the sub-problems is critical to the design
of efficient algorithms, with vastly inferior computational
performance being possible if these methods are not properly
chosen. The results presented here show that the proposed
Sherman-Morrison solution of the main linear system is clearly
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Dict. 8× 8× 72 12× 12× 72 8×8×24,12×12×48 16× 16× 72 8×8×24,16×16×48
Func. 70.60 68.73 68.00 68.71 67.60

Dict. 8× 8× 96 12× 12× 96 16× 16× 96 8×8×16,12×12×32,16×16×48
Func. 66.78 64.71 64.92 63.87

TABLE I
A COMPARISON OF SOLUTION FUNCTIONAL VALUES FOR THE CBPDN PROBLEM COMPUTED WITH λ = 0.001 FOR THE SAME SET OF IMAGES AND WITH

DIFFERENT DICTIONARIES. ALL SPARSE DECOMPOSITIONS WERE COMPUTED ON THE SAME SET OF 16 IMAGES.

the best choice for the CBPDN sparse coding problem, giv-
ing much better asymptotic performance, O(M) instead of
O(M3), than the previously proposed direct method [21],
and is also much faster in practical application. Furthermore,
over-relaxation methods are shown to improve performance,
and effective heuristic techniques for selection of the penalty
parameter ρ are presented.

The resulting ADMM algorithm is compared with alterna-
tives, both via computational comparisons in the literature,
and new computational experiments. The leading alternatives
are FSS [35] and FISTA [20]. FSS is the fastest algorithm for
very large values of regularization parameter λ, but is not at all
competitive in the λ value regime necessary for reconstruction
problems. The proposed ADMM algorithm is much faster than
the previously proposed FISTA approach [20], and faster to
varying degrees depending on λ when the gradient required
by FISTA is computed in the DFT domain.

In the case of CBPDN dictionary learning, an iterated
Sherman-Morrison solution of the main linear system in the
dictionary update stage is the best choice for a small number of
training images K, but other methods become competitive for
larger K. Overall, a CG solution with a moderate accuracy
tolerance, or with an adaptive tolerance, appears to be the
best choice when K is large. It is also demonstrated that
the proposed dictionary learning algorithm can be used to
construct convolutional multi-scale dictionaries that do not
have any of the structural constraints or complications inherent
in previous approaches to constructing multi-scale dictionaries
within the standard patch-based framework.

In the interests of reproducible research, software imple-
mentations of the main algorithms proposed here are made
publicly available [65].

ACKNOWLEDGMENT

The author is grateful to R. Chalasani for kindly providing
a copy of his implementation of the method described in [20],
and to A. Kucukelbir and J. Theiler for their helpful comments
on draft versions of this manuscript.

APPENDIX A
DIAGONAL BLOCK LINEAR SYSTEMS

Given sets of vectors am ∈ CN , bm ∈ CN , and cm ∈ CN ,
and unknown vectors xm ∈ CN , define Am = diag(am),
Bm = diag(bm), A =

(
A0 A1 . . . AM−1

)
, and

B =


B0 0 . . . 0
0 B1 . . . 0
...

...
. . .

...
0 0 . . . BM−1

 x =


x0

x1

...
xM−1

 c =


c0
c1
...

cM−1

 . (42)

The Am are N × N matrices and A contains M blocks so
that A is N ×MN . In the following, a∗ denotes the complex
conjugate of a, and AH denotes the Hermitian transpose
(conjugate transpose) of A. The goal is to solve the linear
system (AHA+B)x = c, which can be expanded as
AH0 A0+B0 A

H
0 A1 AH0 A2 . . .

AH1 A0 AH1 A1+B1 A
H
1 A2 . . .

AH2 A0 AH2 A1 AH2 A2+B2 . . .
...

...
...

. . .




x0

x1

x2

...

=


c0
c1
c2
...

 . (43)

Since the Am are diagonal, so are the blocks AHmAm′ , and
it is not difficult to confirm that each row of AHA has non-
zero entries corresponding to a single index in each of the xm.
Denoting entry n of vector xm by xm(n), the rows of Eq. (43)
can be written as a set of equations∑

m

(
am′(n)∗am(n) + bm′(n)

)
xm(n) = cm′(n) , (44)

which can be simplified by swapping the vector and entry
indexing by defining

ãn(m) = am(n)∗ b̃n(m) = bm(n)

x̃n(m) = xm(n) c̃n(m) = cm(n) , (45)

and re-ordering the equations to give∑
m

(
ãn(m

′)ãn(m)∗ + b̃n(m
′)
)
x̃n(m) = c̃n(m

′) , (46)

which can now be written using vector products as(
ãnã

H
n + diag(b̃n)

)
x̃n = c̃n . (47)

The MN ×MN system (AHA+B)x = c has been replaced
by N independent linear systems of size M × M , each of
which consists of a rank one component plus a diagonal
component. Systems of this form can be efficiently solved
by application of the Sherman-Morrison formula, as shown in
Appendix B.

APPENDIX B
SHERMAN-MORRISON SOLUTION

Consider the solution of linear systems of the form(
J + aaH

)
x = b (48)

where J is a diagonal matrix. Applying the Sherman-Morrison
formula [66]

(A+ uvH)−1 = A−1 − A−1uvHA−1

1 + uHA−1v
(49)

to derive
(
J + aaH

)−1
, and re-arranging to avoid matrix-

vector products and vector outer products (noting that
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aHJ−1b is a scalar so that aaHJ−1b = (aHJ−1b)a), gives

x = J−1
(
b− aHJ−1b

1 + aHJ−1a
a

)
. (50)

If J = ρI , i.e. a scaled identity matrix, then

x = ρ−1
(
b− aHb

ρ+ aHa
a

)
. (51)

APPENDIX C
MULTIPLE DIAGONAL BLOCK LINEAR SYSTEMS

Consider a generalization of the situation in Ap-
pendix A such that vectors ak,m ∈ CN take an ad-
ditional index, with Ak,m = diag(ak,m) and Ak =(
Ak,0 Ak,1 . . . Ak,M−1

)
, with other variables as be-

fore, and the goal now being to solve the linear system
(
∑
k A

H
k Ak +B)x = c, which can be expanded as

AH0,0A0,0+A
H
1,0A1,0+. . .+B0 A

H
0,0A0,1+A

H
1,0A1,1+. . . . . .

AH0,1A0,0+A
H
1,1A1,0+. . . AH0,1A0,1+A

H
1,1A1,1+. . .+B1 . . .

AH0,2A0,0+A
H
1,2A1,0+. . . AH0,2A0,1+A

H
1,2A1,1+. . . . . .

...
...

. . .




x0

x1

x2

...

=


c0
c1
c2
...

 .

(52)
By the same re-indexing and reordering as in Appendix A, but
now with ãk,n(m) = ak,m(n)∗, this system can be represented
by the equations∑
m

(∑
k

ãk,n(m
′)ãk,n(m)∗ + b̃n(m

′)
)
x̃n(m) = c̃n(m

′) , (53)

which can be written using vector products as(∑
k

ãk,nã
H
k,n + diag(b̃n)

)
x̃n = c̃n . (54)

Systems of this form can be efficiently solved by iterated
application of the Sherman-Morrison formula, as shown in
Appendix D.

APPENDIX D
ITERATED SHERMAN-MORRISON SOLUTION

Consider the solution of problems of the form(
J + a0a

H
0 + a1a

H
1 + . . .+ aK−1a

H
K−1

)
x = b . (55)

Define A0 = J and Ak+1 = Ak + aka
H
k . From the Sherman-

Morrison formula we have

A−1k+1 =
(
Ak + aka

H
k

)−1
= A−1k −

A−1k aka
H
k A
−1
k

1 + aHk A
−1
k ak

. (56)

Now define αl,k = A−1l ak and βk = A−1k b so that α0,k =
J−1ak and β0 = J−1b, so that

βk+1 = A−1k+1b (57)

= A−1k b−
A−1k aka

H
k A
−1
k b

1 + aHk A
−1
k ak

(58)

= βk −
αk,ka

H
k βk

1 + aHk αk,k
, (59)

and

αl+1,k = A−1l+1ak (60)

= A−1l ak −
A−1l ala

H
l A
−1
l ak

1 + aHl A
−1
l al

(61)

= αl,k −
αl,la

H
l αl,k

1 + aHl αl,l
. (62)

An iterative algorithm to compute the solution for the sys-
tem Eq. (55), given by βK , is easily derived from these equa-
tions. (This algorithm is equivalent to one previously proposed
by Egidi and Maponi [67].) An algorithm for solving Eq. (55)
when J = ρI is presented in Alg. 1.

Input: vectors {ak}, parameter ρ
Initialize: α = ρ−1a0, β = ρ−1b
for k ∈ {1, . . . ,K} do

γk−1 =
α

1 + aHk−1α

β = β − γk−1a
H
k−1β

if k ≤ K − 1 then
α = ρ−1ak
for l ∈ {1, . . . , k} do

α = α− γl−1a
H
l−1α

end
end

end
Output: linear equation solution β

Algorithm 1: Iterated Sherman-Morrison
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Supplementary Material for “Efficient Algorithms

for Convolutional Sparse Representations”
Brendt Wohlberg

I. INTRODUCTION

This document provides additional detail and results that

were omitted from the main document due to space restric-

tions. Sections are named corresponding to relevant section

titles in the main document.

II. ADMM ALGORITHM FOR CONVOLUTIONAL BPDN

A. Algorithm Summary

The proposed ADMM algorithm for Convolutional BPDN

is summarised in Alg. 1. Typical values for the penalty auto-

update parameters are Jp = 1, µ = 10, and τ = 2.

B. Performance Comparison: Linear Solvers for ADMM

The execution times and solution accuracies of four different

methods of solving the linear system in single precision are

compared in Fig. 1 in the main document. A corresponding

comparison for double-precision solution of these systems is

presented here in Fig. 1. It is clear from a comparison of these

two figures that the variation in execution times between single

and double precision is far smaller than the variation between

the different solution methods. SM run time has very small

variation with precision, while CG can be almost twice as slow

in double precision as in single, and GE run time dependence

on precision increases with M .

In the main document, Fig. 2 presents a comparison of

functional value evolution with time for the proposed sparse

coding ADMM algorithm with different solution methods for

the main linear system to be solved. The corresponding primal

and dual residual evolution is provided here in Figs. 2 and 3.

As in the case of functional value evolution, the Sherman-

Morrison solution gives by far the best performance.

C. ADMM Parameter Selection

The heuristic choice of ρ0 = 100λ + 0.5 proposed

in Sec. III-D of the main document is motivated in Figs. 4–

6, this choice representing a compromise between selecting

for good performance at 50, 100, and 500 iterations. The

relative functional values, which are required to allow compar-

isons across different values of λ, are computed by dividing

functional values for each λ by the smallest functional value

attained for that λ at the specified number of iterations.

General experimental parameters and test data are the same

as for Figs. 3 and 4 in the main document.

The author is with Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA (e-mail: brendt@lanl.gov).

Input: image s (N pixels), dictionary dm (M filters),

regularization parameter λ, initial penalty

parameter ρ0, penalty auto-update parameters Jp,

µ, τ , relaxation parameter α, maximum iterations

Jmax, absolute and relative stopping tolerances

ǫabs, ǫrel
Precompute: ŝ = FFT(s), D̂m = FFT(dm) ∀m
Initialize: ym = yprev

m = um = 0 ∀m, ρ = ρ0, j = 1
repeat

ẑm = FFT(ym − um) ∀m
Compute x̂m ∀m as in Eq. (16)–(19) and Sec. III-B

of main document

xm = IFFT(x̂m)
xrelax,m = αxm + (1− α)ym ∀m
ym = Sλ/ρ (xrelax,m + um) ∀m
um = um + xrelax,m − ym ∀m
r = ‖x− y‖2
s = ρ ‖yprev − y‖2
ǫpri = ǫabs

√
MN + ǫrel max{‖x‖2 , ‖y‖2}

ǫdua = ǫabs
√
MN + ǫrelρ ‖u‖2

yprev
m = ym ∀m

if j 6= 1 and j mod Jp = 0 then

if r > µs then

ρ = τρ
um = um/τ ∀m

else if s > µr then

ρ = ρ/τ
um = τum ∀m

end

end

j = j + 1

until j > Jmax or (r ≤ ǫpri and s ≤ ǫdua)

Output: Coefficient maps ym

Algorithm 1: Summary of proposed ADMM algorithm for

Convolutional BPDN. A subscript indexed variable writ-

ten without the subscript denotes the entire set of vectors

concatenated as a single vector, e.g. x denotes the vector

constructed by concatenating all vectors xm.

III. CBPDN ALGORITHM COMPARISON

A. Feature-Sign Search

In the main document, Fig. 5 compares the performance of

the feature-sign search algorithm and ADMM for varying λ. A

corresponding comparison for varying image sizes is presented

in Fig. 7 here.
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tolerances of 10−3 and 10−5, and Sherman-Morrison (SM). The combined run time for a forward and inverse FFT is provided as a reference.
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Fig. 2. A comparison of primal residual evolution with time for the ADMM
algorithm with Eq. (19) solved in single precision using Sherman-Morrison
and CG with three different relative residual tolerances. The primal residual is
r = ‖x− y‖2. The test image was the 512×512 greyscale Lena image with
a learned 8× 8× 64 dictionary and λ = 0.01. The corresponding functional
value evolution is displayed in Fig. 2 in the main document.

B. FISTA

It is clear from the summary of the literature and the exper-

iments reported in Sec. IV in the main document that FISTA

with frequency domain computation of the gradient is the most

viable alternative to ADMM when not operating in the narrow

range of problem sizes and representation sparsity levels in

which the FSS algorithm is competitive. The experiments

reported in Fig. 6 in that section compare the performance

of ADMM and FISTA in sparse coding of a test image that

has not been subjected to any additional degradation, so that it

could be argued that those results may not be representative of

the relative performance that would be observed when sparse

coding in the context of an image reconstruction problem,

where the image to be sparse coded or the dictionary could
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Fig. 3. A comparison of dual residual evolution with time for the ADMM
algorithm with Eq. (19) solved in single precision using Sherman-Morrison
and CG with three different relative residual tolerances. The dual residual is
s = ρ ‖yprev − y‖2 where y

prev and y are from the previous and current
iterations respectively. The test image was the 512 × 512 greyscale Lena
image with a learned 8×8×64 dictionary and λ = 0.01. The corresponding
functional value evolution is displayed in Fig. 2 in the main document.

have substantially different properties. The results reported

in Fig. 8 here show that a similar advantage to ADMM persists

in two distinct reconstruction problems. As in Sec. IV in the

main document, FISTA parameters were selected by a grid

search over a range of values around the standard values

L0 = 1 and η = 5. The same 16 × 16 × 128 dictionary was

used for all of these experiments.

The first of these problems is denoising of Gaussian white

noise. Four different test cases were constructed by adding

noise of progressively high variance to the same test image,

giving noisy images with SNRs with respect to the original

image of 25.5dB, 19.4dB, 13.4dB, and 7.4dB. The corre-

sponding λ values of 2.63×10−2, 6.05×10−2, 1.46×10−1,

and 6.05×10−2 respectively were selected according to the
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well-known discrepancy principle, which has the advantage of

simplicity, and is more than adequate for this demonstration.

As usual (see Sec. I in the main document), a highpass filtering

preprocessing step was applied before sparse coding. The

FISTA parameter search found different parameters for each of

these problems that provided very slightly faster convergence

than the standard values L0 = 1 and η = 5. The relative

performance presented in Fig. 8(a) mirrors that of Fig. 6(a) in
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Fig. 7. A comparison of computation times for the feature-sign search
(FSS) algorithm and the ADMM algorithm with three different relative error
tolerances. The sparse coding was applied with λ = 0.22 to the greyscale
Lena image downsampled to the different sizes, and the dictionary was
8× 8× 64.

the main document, with FISTA providing competitive (albeit

somewhat slower) convergence than ADMM for larger values

of λ, and exhibiting an increasing lag in convergence rate with

decreasing λ.

The second problem type is a form of image inpainting in

which a randomly distributed set of pixels, of known location,

have values set to zero. This problem can be addressed using

CBPDN with a dictionary that has an additional impulse filter

added to represent that unknown values, and with a weighted

ℓ1 norm where the weighting is derived from a mask indicating

the locations of pixels of unknown values. In this problem

the highpass preprocessing step was performed using Total

Variation denoising with a weighted data fidelity term since

the usual highpass filtering is problematic in the presence of

unknown pixels. Four different test cases were constructed

with 20%, 40%, 60%, and 80% of the pixels set to zero. A

fixed λ value of 1.0×10−2 was used for all four cases since

it was found empirically to provide good results, and so that

the performance comparison would only exhibit differences

resulting from differences between the problems. The FISTA

parameter search revealed that choosing L0 = 5 and η = 10
gave a relatively small but significant improvement in the

convergence rate for all four of the test cases. The relative

performance presented in Fig. 8(b) shows that FISTA is not

at all competitive with ADMM in this type of problem, with

much slower convergence and a performance gap that grows

with the difficulty of the problem (i.e. the fraction of unknown

pixels).

IV. DICTIONARY LEARNING

A. Algorithm Summary

The proposed algorithm for Convolutional BPDN dictionary

learning is summarised in Alg. 2. Typical values for the penalty

auto-update parameters are Jx,p = Jd,p = 10, µx = µd = 10,

and τx = τd = 2.
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Input: images sk (K images of N pixels each), initial dictionary d0
m (M filters), regularization parameter λ, initial

penalty parameters ρ0, σ0, penalty auto-update parameters Jx,p, µx, τx, Jd,p, µd, τd, relaxation parameters αx,

αd, maximum iterations Jmax, absolute and relative stopping tolerances ǫabs, ǫrel
Precompute: ŝk = FFT(sk) ∀k
Initialize: yk,m = y

prev

k,m = uk,m = 0 ∀k,m hm = 0 gm = gprev
m = d0

m ∀m, ρ = ρ0, σ = σ0, j = 1

repeat

ĝm = FFT(gm) ∀m
ẑk,m = FFT(yk,m − uk,m) ∀k,m
Compute x̂k,m ∀k,m as in Eq. (16)–(19) and Sec. III-B of main document, using ĝk,m as the dictionary

xk,m = IFFT(x̂k,m)
xrelax,k,m = αxxk,m + (1− αx)yk,m ∀k,m
yk,m = Sλ/ρ (xrelax,k,m + uk,m) ∀k,m
uk,m = uk,m + xrelax,k,m − yk,m ∀k,m
ŷk,m = FFT(yk,m) ∀k,m
ẑm = FFT(gm − hm) ∀m
Compute d̂m ∀m as in Eq. (38)–(41) and Sec. V-A of main document, using ŷk,m as the coefficient maps

dm = IFFT(d̂m)
drelax,m = αddm + (1− αd)gm ∀m
gm = proxιCPN

(drelax,m + hm) ∀m
hm = hm + drelax,m − xm ∀m
rx = ‖x− y‖2
sx = ρ ‖yprev − y‖2
rd = ‖d− g‖2
sd = σ ‖gprev − g‖2
ǫx,pri = ǫabs

√
KMN + ǫrel max{‖x‖2 , ‖y‖2}

ǫx,dua = ǫabs
√
KMN + ǫrelρ ‖u‖2

ǫd,pri = ǫabs
√
MN + ǫrel max{‖d‖2 , ‖g‖2}

ǫd,dua = ǫabs
√
MN + ǫrelσ ‖h‖2

yprev
m = ym ∀m

gprev
m = gm ∀m

if j 6= 1 and j mod Jx,p = 0 then

if rx > µxsx then

ρ = τxρ
um = um/τx ∀m

else if sx > µxrx then

ρ = ρ/τx
um = τxum ∀m

end

end

if j 6= 1 and j mod Jd,p = 0 then

if rd > µdsd then

σ = τdσ
hm = hm/τd ∀m

else if sd > µdrd then

σ = σ/τd
hm = τdhm ∀m

end

end

until j > Jmax or (rx ≤ ǫx,pri and sx ≤ ǫx,dua and rd ≤ ǫd,pri and sd ≤ ǫd,dua)

Output: Dictionary {gm}, coefficient maps {ym}
Algorithm 2: Summary of proposed ADMM algorithm for Convolutional BPDN dictionary learning. A subscript indexed

variable written without the subscript denotes the entire set of vectors concatenated as a single vector, e.g. x denotes the

vector constructed by concatenating all vectors xk,m.
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Fig. 8. Comparison of time evolution of relative functional values for ADMM, and FISTA with the gradient computed in the frequency domain. (a) provides
a comparison for four Gaussian white noise denoising problems with varying noise variance and correspondingly selected λ values, and (b) provides a
comparison for four inpainting-type problems with different fractions of randomly distributed corrupted pixels and fixed λ = 1.0×10−2.

The effects of different algorithm parameters are explored

in the experiments reported in Figs. 9–11.

σ0 = 5× 10
3 auto

σ0 = 5× 10
3 fixed

σ0 = 5× 10
2 auto

σ0 = 5× 10
2 fixed

σ0 = 5× 10
1 auto

σ0 = 5× 10
1 fixed

σ0 = 5× 10
0 auto

σ0 = 5× 10
0 fixed

Iteration number

F
u

n
ct

io
n

al
v
al

u
e

300025002000150010005000

395

390

385

380

375

Fig. 9. Dictionary learning functional value evolution for different choices
of σ0, with and without the automatic parameter adaptation scheme. The
dictionary was 8×8×64 with Gaussian random initialisation, the training data
was a set of five 256×256 images from the MIRFlickr dataset, and λ = 0.1,
ρ0 = 10.5. Penalty auto-update parameters (for the curves for which the
automatic adaptation was active) were Jx,p = Jd,p = 10, µx = µd = 10,
and τx = τd = 2, and relaxation parameters were αx = αd = 1.8. Note that
the apparent relative differences between these curves is exaggerated by the
scaling of the vertical axis; if the vertical axis were expanded to include the
entire range of functional values, most of these differences would be observed
to be relatively small, with no perceptible difference between any of the curves
beyond 2000 iterations except for “σ = 5 × 102 fixed” and “σ = 5 × 103

fixed”.

In Fig. 9, σ0 = 5 with automatic adaptation gives the best

overall performance. Performance varies widely for different

values of σ0 when σ is fixed, but the effect of σ0 is small

when automatic adaptation is enabled. Note that the effect of

parameter σ scales linearly with the number of training images

K so that σ0 ≈ K is a reasonable choice when applying the

same parameters to a training set of a different size than the

K = 5 in this experiment.
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Fig. 10. Dictionary learning functional value evolution for different penalty
auto-update parameters (x and d subscripts are omitted since values are the
same for both updates). The dictionary was 8×8×64 with Gaussian random
initialisation, the training data was a set of five 256× 256 images from the
MIRFlickr dataset, and λ = 0.1, ρ0 = 10.5, σ0 = 5. Relaxation parameters
were αx = αd = 1.8. Note that the apparent relative differences between
these curves is exaggerated by the scaling of the vertical axis; if the vertical
axis were expanded to include the entire range of functional values, these
differences would be almost imperceptible.

In Fig. 10, the best performance is obtained for Jx,p =
Jd,p = 10, µx = µd = 5, and τx = τd = 2, but the relative

performance difference between the different choices in this

graph is very small, with the specific choice of automatic

parameter adaptation parameters making a smaller difference

than the choice of whether to use fixed or automatically

adapted parameters (see Fig. 9).
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Fig. 11. Dictionary learning functional value evolution for different relaxation
parameters. The dictionary was 8×8×64 with Gaussian random initialisation,
the training data was a set of five 256 × 256 images from the MIRFlickr
dataset, and λ = 0.1, ρ0 = 10, σ0 = 5. Penalty auto-update parameters
were Jx,p = Jd,p = 10, µx = µd = 10, and τx = τd = 2. Note that
the apparent relative differences between these curves is exaggerated by the
scaling of the vertical axis; if the vertical axis were expanded to include the
entire range of functional values, these differences would be observed to be
relatively small beyond 200 iterations, and barely perceptible beyond 2000.

Fig. 11 shows that there is a small but clear advantage to the

use of over-relaxation in both x and d updates in the proposed

dictionary learning algorithm.

B. Performance Comparison: Linear Solvers for ADMM
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Fig. 12. A comparison of execution times for double-precision solution of
a linear system corresponding to an 8 × 8 × 64 dictionary with λ = 0.1.
Solution methods are Gaussian elimination (GE), Conjugate Gradient (CG),
and Sherman-Morrison (SM). The corresponding single-precision comparison
is displayed in Fig. 7 in the main document.

A comparison of single-precision solution methods for the

main linear system in the ADMM dictionary update algorithm

is presented in Fig. 7 in the main document. The corresponding

double-precision comparison is presented here in Figs. 12

and 13.

The execution times and solution accuracies of three differ-

ent methods of solving the main linear system in the dictionary
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Fig. 13. A comparison of solution errors for double-precision solution of
a linear system corresponding to an 8 × 8 × 64 dictionary with λ = 0.1.
Solution methods are Gaussian elimination (GE), Conjugate Gradient (CG),
and Sherman-Morrison (SM). The corresponding single-precision comparison
is displayed in Fig. 7 in the main document.

update are compared for fixed K = 32 and varying M
in Fig. 14.

In the main document, Fig. 8 presents a comparison of func-

tional value evolution with time for the proposed dictionary

learning ADMM algorithm with different solution methods for

the main linear system to be solved in the dictionary update.

The corresponding comparison against iteration number in-

stead of time is provided here in Fig. 15.

C. Multi-scale Dictionaries

An example multi-scale dictionary is depicted in Fig. 16.
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(a) Run time
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(b) Solution error

Fig. 14. A comparison of execution times for single precision solution of linear system corresponding to an 8×8×M dictionary with K = 32 and λ = 0.1.
Solution methods are Gaussian elimination (GE), Conjugate Gradient (CG), and Sherman-Morrison (SM).
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Fig. 15. A comparison of functional value evolution with iteration number
the ADMM algorithm with Eq. (41) solved in single precision using Sherman-
Morrison and CG with three different relative residual tolerances as well as
an automatic tolerance selection method. The dictionary was 8× 8× 64 and
λ = 0.1. A corresponding comparison against time is displayed in Fig. 8 in
the main document.

Fig. 16. Example multi-scale dictionary with 8× 8, 12× 12, and 16× 16

filters learned with λ = 0.1 from a set of 32 512 × 512 training images
derived from a selection of FlickR Creative Commons images.


