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ABSTRACT

Standard sparse representations, applied independently to a set of
overlapping image blocks, are a very effective approach to a wide
variety of image reconstruction problems. Convolutional sparse rep-
resentations, which provide a single-valued representation optimised
over an entire image, provide an alternative form of sparse represen-
tation that has recently started to attract interest for image recon-
struction problems. The present paper provides some insight into
the suitability of the convolutional form for this type of application
by comparing its performance as an image model with that of the
standard model in an impulse noise restoration problem.

Index Terms— Sparse Representation, Convolutional Sparse
Coding, Salt-and-Pepper Noise

1. INTRODUCTION

A standard sparse representation is a linear representation of the
formDx ≈ s, whereD is the dictionary, x is the representation, and
s is the signal to be represented. A convolutional sparse representa-
tion replaces this form with a sum of convolutions

∑
m dm ∗ xm ≈

s, where the elements of the dictionary dm are linear filters, and
the representation consists of the set of coefficient maps xm, each of
which is the same size as s. This type of representation can be traced
back to the translation-invariant sparse representations of Lewicki
and Sejnowski [1], but in recent work it is typically referred to as
“convolutional” rather than “translation-invariant”, and is largely in-
spired by the deconvolutional networks proposed by Zeiler et al. [2]
(see [3, Sec. II] for a detailed discussion of the relevant literature).

Despite the apparent advantages of this form of sparse represen-
tation, it has received little attention for image reconstruction prob-
lems: when it was first introduced, the sparse coding algorithms were
too computationally expensive for such applications to be practical,
and the recent resurgence of interest has largely been within the com-
puter vision community. There are indications, however, that the im-
age reconstruction potential of these representations is beginning to
be considered, and in particular, Gu et al. have recently proposed
a state-of-the-art super-resolution algorithm based on convolutional
sparse representations [4]. The present paper considers impulse de-
noising as an example problem, but rather than attempting to con-
struct a state-of-the-art algorithm, the focus is on exploring the dif-
ferent ways in which this problem can be addressed via the convolu-
tional form (in the process proposing a number of novel approaches
and extensions), and comparing with a corresponding method based
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on the standard form to determine whether the convolutional form
offers any inherent advantages.

2. SPARSE CODING

The basic sparse coding problem will be posed in the form of Con-
volutional Basis Pursuit DeNoising (CBPDN), defined as

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

αm ‖xm‖1 , (1)

where the αm allow distinct weighting of the `1 term for each
filter dm. At present, the most efficient approach to solving this
problem [3] is via the Alternating Direction Method of Multipliers
(ADMM) [5] framework. An outline of the method will be presented
here as a basis for extensions proposed in following sections.

Problem (1) can be written as

arg min
x

1

2

∥∥Dx− s
∥∥2
2

+ λ ‖α� x‖1 , (2)

where Dm is a linear operator such that Dmxm = dm ∗ xm, and
D, α, and x are the block matrices/vectors

D =
(
D0 D1 . . .

)
α =

 α01
α11

...

 1 =

 1
1
...

 x =

 x0

x1

...

 .

(3)
The simplest variable splitting into the ADMM standard form is

arg min
x,y

1

2

∥∥Dx− s
∥∥2
2
+λ ‖α� y‖1 s.t. x−y=0 , (4)

for which the corresponding ADMM iterations are

x(j+1) = arg min
x

1

2

∥∥Dx− s
∥∥2
2

+
ρ

2

∥∥∥x− y(j) + u(j)
∥∥∥2
2

(5)

y(j+1) = arg min
y

λ ‖α� y‖1 +
ρ

2

∥∥∥x(j+1) − y + u(j)
∥∥∥2
2

(6)

u(j+1) = u(j) + x(j+1) − y(j+1) . (7)

The solution to (6) is given by

y(j+1)
m = Sαmλ/ρ

(
x(j+1)
m + u(j)

m

)
, (8)

where
Sγ(u) = sign(u)�max(0, |u| − γ) . (9)

The only computationally expensive step is (5), which can be solved
via the equivalent DFT domain problem

arg min
x̂

1

2

∥∥D̂x̂− ŝ
∥∥2
2

+
ρ

2
‖x̂− (ŷ − û)‖22 , (10)



where D̂ =
(
D̂0 D̂1 . . .

)
and

x̂ =

 x̂0

x̂1

...

 ŷ =

 ŷ0

ŷ1

...

 û =

 û0

û1

...

 . (11)

The solution for (10) is given by the MN ×MN (for M filters and
an image s with N pixels) linear system

(D̂HD̂ + ρI)x̂ = D̂H ŝ + ρ (ŷ − û) . (12)
The key to solving this very large linear system is the observation
that it can be decomposed into N independent M ×M linear sys-
tems [6], each of which has a system matrix consisting of the sum
of rank-one and diagonal terms so they they can be solved very effi-
ciently by exploiting the Sherman-Morrison formula [7].

3. LOWPASS COMPONENT REPRESENTATION

Since convolutional sparse representations do not provide a good
representation of the low-frequency components of an image, it is
common practice to compute the representation from a contrast-
normalized [8] or highpass filtered [3] version of the image to be
decomposed. Pre-processing by linear filtering in the presence of
impulse noise does not provide a good estimate of the image lowpass
component, so an alternative is necessary. The natural solution is to
explicitly include a lowpass component in the representation, which
can be achieved in a few different ways.

The simplest, not requiring any modification to the form of (1),
is to append a Gaussian filter of large support to the dictionary, set-
ting the corresponding weight αm to zero to ensure that the `1 reg-
ularization does not introduce artifacts into the low-frequency rep-
resentation. This approach is quite workable, but the large filter
support requires more computational resources to be expended on
boundary handling, and care has to be taken to ensure that the Gaus-
sian has decayed sufficiently at the filter boundaries to avoid poten-
tially severe artifacts in the lowpass component.

An alternative is to introduce an impulse filter, again setting the
corresponding αm to zero, together with an additional regularization
term that can impose smoothness on the corresponding coefficient
map. We will see in the following section that it is possible to intro-
duce such a regularization term while retaining the efficient solution
method outlined in Sec. 2.

4. GRADIENT REGULARIZATION

An extension of (1) to include regularization on the gradients of the
coefficient maps can be defined as

arg min
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2

+ λ
∑
m

αm ‖xm‖1 +

µ

2

∑
m

βm

∥∥∥√(g0 ∗ xm)2 + (g1 ∗ xm)2
∥∥∥2
2
, (13)

where g0 and g1 are filters that compute the gradients along im-
age rows and columns respectively. The final term can be written as
µ
2

∑
m βm ‖G0xm‖22 + µ

2

∑
m βm ‖G1xm‖22, where linear opera-

tors G0 and G1 are defined such that Glxm = gl ∗xm. Introducing
block matrix notation as before, (13) can be expressed as

arg min
x

1

2
‖Dx− s‖22 + λ ‖α� x‖1 +

µ

2
‖Γ0x‖22 +

µ

2
‖Γ1x‖22 , (14)

where

Γl =


√
β0Gl 0 . . .
0

√
β1Gl . . .

...
...

. . .

 . (15)

Since the gradient terms consist of squared `2 norms, the same
splitting into standard ADMM form as in (4) can be applied, sub-
stituting y into the `1 term, and grouping together the remaining
squared `2 terms in x. The resulting x subproblem corresponding
to (5) has the form

arg min
x

1

2
‖Dx− s‖22 +

µ

2
‖Γ0x‖22 +

µ

2
‖Γ1x‖22 +

ρ

2
‖x− y + u‖22 . (16)

The solution of the equivalent DFT domain problem is given by

(D̂HD̂ + µΓ̂H0 Γ̂0 + µΓ̂H1 Γ̂1 + ρI)x̂ = D̂H ŝ + ρ(ŷ − û) . (17)

Since Γ̂H0 Γ̂0 and Γ̂H1 Γ̂1 are diagonal they can be grouped to-
gether with the ρI term; the independent linear systems described
in Sec. 2 are again composed from rank-one and diagonal terms and
the Sherman-Morrison solution can be directly applied without any
substantial increase in computational cost.

5. IMPULSE NOISE RESTORATION

Denoising of salt-and-pepper noise – a type of impulse noise that
corresponds to a randomly distributed set of pixels being set to either
the minimum or maximum pixel value – is a convenient example
restoration problem for an exploration of the restoration performance
of convolutional sparse representations. A hybrid of adaptive median
filtering and `1-Total Variation has shown very good performance in
this problem [9]. More recently, a number of authors have proposed
solutions based on standard sparse representations [10, 11, 12, 13].
Most of the differences between these methods can be decomposed
into a few independent features:

Dictionary A fixed DCT dictionary is used in [10], while the other
three methods learn a data-adaptive dictionary as part of the
restoration algorithm [11, 12, 13].

Noise Detection The methods in [10, 12, 13] include an explicit im-
pulse noise detection stage, while [12] does not.

Sparse Coding The methods in [10, 13] use an `2 data fidelity term,
while [11, 12] use an `1 data fidelity term.

(The method of [13] is somewhat more complex than the others, and
is not adequately summarised by these primary features.) A feature
shared by all of these methods is the use of weighted averaging to
aggregate the independent pixel estimates from overlapping patches.

Since the primary purpose of this work is to compare standard
and convolutional sparse representations, a very simple restoration
framework is considered here. In particular, there is no explicit noise
detection phase, and fixed dictionaries learned on a separate data set
are used, with no adaptation to the image being restored. Instead
of using an `1 data fidelity term to avoid the need for explicit noise
detection, an augmented dictionary is used to allow use of the more
common Basis Pursuit DeNoising (BPDN) problem

arg min
x

1

2
‖Dx− s‖22 + λ ‖α� x‖1 , (18)

which is applied independently to a set of overlapping image blocks
extracted from the image using a fixed step size between each con-
secutive block. The actual dictionary D used in each decomposition



consists of the concatenation of a learned dictionary D0, a constant
column vector to represent the block mean (assigned a zero weight α
in the regularization term), and an identity matrix I , the columns of
which are able to implicitly detect and represent the impulse noise.
The weighting vector α enables a different weight to be given to this
impulse dictionary, to be varied according to the amount of impulse
noise. The denoised estimate for each block is obtained by exclud-
ing this dictionary component and the corresponding coefficients in
x when reconstructing the representation. If the step between blocks
is a single pixel then the representation is shift-invariant like the con-
volutional form, but without joint optimization over all the blocks so
that there are multiple estimates for each pixel. How to aggregate
these estimates is a critical issue. Although previous methods based
on sparse representations of overlapping blocks [11, 12, 13] have ag-
gregated by averaging, a more robust estimator such as the median
is an obvious alternative given the non-Gaussian nature of the noise.

The corresponding convolutional form is conceptually the same,
the major differences being that there is no need for an aggregation
stage, and the dictionary is simply augmented with a single impulse
filter to represent the impulse noise.

6. CBPDN WITH `1 DATA FIDELITY TERM

Since most standard sparse representation methods for impulse
noise restoration without an explicit noise detection stage employ an
`1 data fidelity term, it is worth exploring a convolutional variant,
which can be written (using the notation defined in Sec. 2) as

arg min
x

∥∥Dx− s
∥∥
1

+ λ ‖α� x‖1 . (19)

This problem can again be expressed in standard ADMM form

arg min
x,y0,y1

∥∥y1

∥∥
1
+λ ‖α� y0‖1

s.t.
(

x
Dx

)
−
(
y0

y1

)
=

(
0
s

)
.

(20)

by employing a different variable splitting from that used in (4).
Defining

A =

(
I
D

)
y =

(
y0

y1

)
u =

(
u0

u1

)
c =

(
0
s

)
, (21)

the corresponding ADMM iterations are

x(j+1) = arg min
x

ρ

2

∥∥∥Ax− y(j) − c + u(j)
∥∥∥2
2

(22)

y(j+1) = arg min
y

‖y1‖1 + λ ‖α� y0‖1 +

ρ

2

∥∥∥Ax(j+1) − y − c + u(j)
∥∥∥2
2

(23)

u(j+1) = u(j) +Ax(j+1) − y(j+1) − c . (24)

The functional minimised in (22) can be expanded as
ρ

2
‖Ax−y−c+u‖22 =

ρ

2
‖Dx− (y1 + s− u1)‖22 +

ρ

2
‖x− (y0 − u0)‖22 , (25)

which is of the same form as (5), and can be solved via the same
frequency domain method. The functional minimised in (23) can be
expanded as

‖y1‖1 + λ ‖α� y0‖1 +
ρ

2
‖y1 − (Dx− s + u1)‖22

+
ρ

2
‖y0 − (x + u0)‖22 . (26)

Since the y0 and y1 components of y are decoupled, minimisation
with respect to y can be achieved by the independent minimisations

y
(j+1)
0 = arg min

y0

λ ‖α� y0‖1 +
ρ

2
‖y0 − (x + u0)‖22 (27)

y
(j+1)
1 = arg min

y1

‖y1‖1 +
ρ

2
‖y1−(Dx− s + u1)‖22 . (28)

The solution to both of these problems is given by soft thresholding
as in (8),(9).

The additional gradient regularisation term described in Sec. 4
is also easily incorporated, leading to the problem

arg min
x

∥∥Dx−s
∥∥
1
+λ ‖α� x‖1+

µ

2
‖Γ0x‖22+

µ

2
‖Γ1x‖22 . (29)

The only modification necessary to the ADMM algorithm above is
in the x update, which has the form

ρ

2
‖Dx− (y1 + s− u1)‖22 +

ρ

2
‖x− (y0 − u0)‖22

+
µ

2
‖Γ0x‖22 +

µ

2
‖Γ1x‖22 . (30)

It is also worth noting that it is trivial to introduce a spatial
weighting matrix into this `1 data fidelity term, as in the mask de-
coupling form of CBPDN [14, 15].

7. RESULTS

(a) Reference (b) Corrupted

Fig. 1. Ground truth and corrupted test images.

A 360×360 pixel crop from the “kodim23” standard image [16]
was used as a ground truth image (see Fig. 1(a)). The corresponding
test image (see Fig. 1(b)) was generated by corrupting it with 30%
salt-and-pepper noise (i.e. 30% of the pixels, at randomly selected
locations were set at random to either 0 or 255). The test image
was restored using the methods based on standard and convolutional
sparse representations described in Sec. 5. For a fair comparison,
each method made use of its own dictionary, both learned from the
same set of seven 512 × 512 pixel training images, but with the
appropriate dictionary learning algorithms1.

The results for the standard sparse coding method with blocks
overlapped with steps of 4, 2, and 1 pixels and median aggregation

1In order to ensure that this did not inadvertently confer an advantage on
one method – for example, one might suppose that the shift-invariant con-
volutional dictionary could be inherently superior – each method was cross-
tested with the dictionary learned for the other method. In both cases this led
to inferior performance than obtained using the “correct” dictionary.



St. 4 St. 2 St. 1 Cn. A Cn. B Cn. C
PSNR 31.13 31.66 31.75 32.08 32.51 32.41
SSIM 0.937 0.942 0.943 0.941 0.941 0.940

Table 1. Restoration performance of different sparse coding meth-
ods. St. <n> represent standard sparse coding with blocks over-
lapped with an n pixel step and with median aggregation. Cn. A, B,
and C represent convolutional methods as described in the main text.

(a) Standard, 2 pixel step (b) Standard, 1 pixel step

(c) Cn. A (d) Cn. B

(e) Cn. C (f) Reference

Fig. 2. A crop of a detailed region in the reference and reconstructed
images. Cn. A, B, and C represent convolutional methods as de-
scribed in the main text.

are displayed in the first three columns of Table 1. The correspond-
ing results for aggregation by weighted averaging were substantially
inferior, with PSNR values of 30.51dB, 30.86dB, and 30.92dB for
4, 2, and 1 pixel steps respectively. The results for the convolutional
sparse coding methods are displayed in the last three columns of Ta-
ble 1. For the first of these, Cn. A in Table 1, all βm in (13) except
for that corresponding to the impulse filter for representing the im-
age lowpass component were set to zero, so that the only role of
the gradient regularization was in representing that component. For
Cn. B in Table 1 all of the βm that were zero for Cn. A were set

to the same non-zero value, so that the gradient regularization had
an effect on the main part of the sparse representation as well. The
method Cn. C in Table 1 used full gradient regularization as in Cn.
B, but with the `2 data fidelity and dedicated impulse filter for rep-
resenting the impulse noise replaced with an `1 data fidelity. (As in
the case of the `2 data fidelity, setting most of the βm to zero results
in an inferior reconstruction PSNR.) In all cases the parameters were
manually selected to optimise PSNR results.

The convolutional methods provide better performance than the
standard methods in terms of PSNR, but the SSIM values differ by
negligible amounts. A plausible explanation for this phenomenon
is that the only advantage of the convolutional methods is in pro-
viding a superior reconstruction of the lowpass image component,
which is consistent with the observation that estimation of the block
mean can be problematic for standard sparse coding methods [12,
Sec. 4.2]. However, examination of the examples in Fig. 2 reveals
that the convolutional methods are superior in terms of subjective
image quality, with fewer visually objectionable artifacts and with-
out any corresponding reduction in edge sharpness. It is also worth
noting that the convolutional methods with additional gradient regu-
larization (Cn. B and Cn. C) provide a higher PSNR than that with
only the usual `1 regularization; although the subjective quality dif-
ferences are very small, there are some contexts, such as the recon-
struction of scientific data, in which the PSNR is more relevant than
subjective quality. The differences between the convolutional meth-
ods using an `2 data fidelity with augmented dictionary and using an
`1 data fidelity are negligible, both in terms of objective metrics and
subjective quality.

8. CONCLUSIONS

One should not assume that the optimisation of the representation
over the entire image automatically confers a major advantage on
convolutional sparse representations. If the independent estimates
arising from each overlapping block in a standard sparse represen-
tations approach are simply averaged, then the convolutional form
enjoys a substantial advantage, but if the aggregation method is cho-
sen more carefully, the standard approach is much more competitive.
Nevertheless, at least in the application considered here, the convo-
lutional form does appear to enjoy a small but significant advantage
in terms of both reconstruction PSNR and subjective image quality.

With respect to the specific ways of addressing the problem via
the convolutional form, it is notable that (i) the basic CBPDN prob-
lem can be augmented with a gradient regularization term while re-
taining the computationally efficient DFT domain solution, and this
additional regularization provides a convenient method for repre-
senting the image lowpass component, and also confers at least some
additional advantage in terms of reconstruction quality, (ii) it is also
possible to retain the efficient DFT domain solution in solving a vari-
ant of this problem with an `1 data fidelity term, but performance
comparisons indicate that the `1 data fidelity term approach has no
inherent advantage over an `2 data fidelity term with an augmented
dictionary to represent impulses.

Implementations of the algorithms proposed here will be in-
cluded in a future release of the SPORCO library [17].
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