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ABSTRACT

Subspace models for image data sets, constructed by comput-
ing sparse representations of each image with respect to other
images in the set, have been found to perform very well in
a variety of applications, including clustering and classifica-
tion problems. One of the limitations of these methods, how-
ever, is that the subspace representation is unable to directly
model the effects of non-linear transformations such as trans-
lation, rotation, and dilation that frequently occur in practice.
In this paper it is shown that the properties of convolutional
sparse representations can be exploited to make these meth-
ods translation invariant, thereby simplifying or eliminating
the alignment pre-processing task. The potential of the pro-
posed approach is demonstrated in two diverse applications:
image clustering and video background modeling.

Index Terms— Subspace Models, Translation Invari-
ance, Convolutional Sparse Representation

1. INTRODUCTION

Subspace models, associated with Principal Component
Analysis (PCA) or the Karhunen-Loève Transform (KLT),
have a long history in signal and image processing. More
recently, models based on a union of subspaces have found
application in a wide variety of problems, examples including

• the Sparse Representation-based Classification (SRC)
method for face recognition [1],

• the Sparse Subspace Clustering (SSC) method for mo-
tion segmentation and face clustering [2], and

• subspace estimation for video background modeling [3,
4, 5].

A common approach of many of these methods is the use
of endogenous sparse representations [6]. A sparse repre-
sentation of a signal s as a sparse linear combination x on
a dictionary matrix D, computed via an optimization such
as argminx

1
2 ‖Dx− s‖22 + λ ‖x‖1 or, in the Multiple Mea-

surement Vector (MMV) case in which the representations
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are jointly computed for multiple signals sn concatenated as
columns of matrix S,

argmin
X

1

2
‖DX − S‖22 + λ ‖X‖1 . (1)

The dictionaryD is usually analytically defined (e.g. an over-
complete wavelet basis) or learned offline from a training data
set; an endogenous sparse representation, in contrast, repre-
sents a member of a data set using the remaining members
of the set as a dictionary. In the MMV case, it is essential
to constrain the representation X so that a signal is not triv-
ially represented in terms of its occurrence as an element of
the dictionary. Defining En = {m | dm = sn} as the set of
indices m for signal sn such that a dictionary element dm is
the same datum as that signal, Eq. (1) must be solved subject
to the constraint Xm,n = 0∀m ∈ En.

One of the limitations of subspace models is that they are,
in general1, not able to represent the non-linear image trans-
formations such as translation, rotation, and dilation that are
commonly encountered in practical applications. As a result,
these methods usually assume that the image data have been
aligned in a pre-processing stage that is often difficult, and
usually suboptimal with respect to the subspace model that
follows. It is possible to perform automatic alignment by
wrapping the subspace modeling within an iterative estimate
of the non-linear transforms required for alignment [8], but
this requires a complex and expensive optimization.

The contribution of the present paper is the observation
that translation invariance, at least, can be directly integrated
into these techniques by replacing the sparse representations
with convolutional sparse representations [9]. Such a repre-
sentation replaces the usual sparse representation of a signal
s as a sparse linear combination x on a dictionary matrix D
by the sum of convolutions of a set of dictionary filters {dm}
with a set of sparse coefficient maps {xm}, computed via a
problem such as

argmin
{xm}

1

2

∥∥∥∥∥∑
m

dm ∗ xm − s

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1 . (2)

1Small transformations can sometimes be handled via tangent meth-
ods [7].



Convolutional sparse representations usually use dictionary
filters consisting of small image patches constructed via a dic-
tionary learning process, but in the proposed endogenous ap-
plication the filters are themselves images extracted from the
same image set as the target signal s. The convolutional na-
ture of the representation allows the position of non-zeros in
the coefficient maps to determine the translational alignment
between the selected dictionary images {dm} and the target
image s – in the ideal case, each map {xm} has at most one
non-zero entry – with dm ∗ xm representing the contribution
of the aligned dm to the representation of s.

Convolutional sparse representations have not previously
been proposed for such applications, presumably due to the
computational expense of standard spatial-domain algorithms
for solving Eq. (2), making use of filters with large support as
required here completely infeasible. The recent emergence
of Discrete Fourier Transform (DFT) domain algorithms [10,
11] for solving Eq. (2) enable the proposed applications since
convolution implemented via the DFT has a computational
cost that depends only on the size of the images. A further
essential development is the modification of the original DFT
domain algorithm [10] withO(M3) computational cost in the
number of filters M to one withO(M) cost [11]. It should be
emphasized, however, that computing these representations
remains very computationally expensive relative to standard
sparse representations; while the O(M) algorithm makes use
of these techniques feasible for research use, further compu-
tational improvements, e.g. via the use of multi-resolution
techniques, are necessary for many practical applications.

2. CONVOLUTIONAL SPARSE REPRESENTATIONS

A common approach in methods based on endogenous sparse
representations is to include an additive sparse component
to represent outliers that are not well represented within the
union of subspaces (e.g. [1, 2, 3]). Extending Eq. (2) in this
way leads to the optimization

argmin
{xm},u

1

2

∥∥∥∥∥∑
m

dm ∗ xm + u− s

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1 + µ ‖u‖1 , (3)

where {dm}, {xm}, and s are as before, and u represents
outliers that cannot be efficiently represented via the convo-
lutional sparse representation. In the MMV context this prob-
lem becomes

argmin
{xm,n},{un}

1

2

∑
n

∥∥∥∥∥∑
m

dm ∗ xm,n + un − sn

∥∥∥∥∥
2

2

+

λ
∑
n

∑
m

‖xm,n‖1 + µ
∑
n

‖un‖1 , (4)

where, as before, in endogenous application, the constraint
xm,n = 0∀m ∈ En is necessary to avoid trivial solutions.
Since this problem is separable in index n, further mathemat-
ical development will address the Single Measurement Vector
(SMV) case for notational simplicity, but it is emphasized that
these results are trivial to extend to the MMV case.

The necessary constraints can be included in Eq. (3) via
the use of indicator functions [12], leading to

argmin
{xm},u

1

2

∥∥∥∥∥∑
m

dm ∗ xm + u− s

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1 +

µ ‖u‖1 +
∑
m∈E

ι(xm) , (5)

where ι(·) is zero if its argument is a zero vector and infi-
nite otherwise. Rewriting in the appropriate form for solv-
ing within the Alternating Direction Method of Multipliers
(ADMM) [13, 14] framework gives

argmin
{xm},{ym},u

1

2

∥∥∥∥∥∑
m

dm ∗ xm + u− s

∥∥∥∥∥
2

2

+ λ
∑
m

‖ym‖1 +

µ ‖u‖1 +
∑
m∈E

ι(ym) s.t. xm − ym = 0 , (6)

for which the ADMM iterations are

{xm}(k+1) =argmin
{xm}

1

2

∥∥∥∥∥∑
m

dm ∗ xm − (s− u(k))

∥∥∥∥∥
2

2

+

ρ

2

∑
m

∥∥∥xm − (y(k)
m − z(k)m )

∥∥∥2
2

(7)

{ym}(k+1) =argmin
{ym}

λ
∑
m

‖ym‖1 +
∑
m∈E

ι(ym)+

ρ

2

∑
m

∥∥∥ym − (x(k+1)
m + z(k)m )

∥∥∥2
2

(8)

u(k+1) =argmin
u

1

2

∥∥∥∥∥u−
(
s−

∑
m

dm ∗ x(k+1)
m

)∥∥∥∥∥
2

2

+

µ ‖u‖1 (9)

z(k+1)
m = z(k)m + x(k+1)

m − y(k+1)
m . (10)

Subproblems Eq. (8) and Eq. (9) can be solved via shrink-
age/soft thresholding

Sγ(u) = sign(u)�max(0, |u| − γ) (11)

as

y(k+1)
m =

{
Sλ/ρ

(
x
(k+1)
m + z

(k)
m

)
if m /∈ E

0 if m ∈ E ,
(12)

u(k+1) =Sµ

(
s−

∑
m

dm ∗ x(k+1)
m

)
. (13)

The only computationally expensive step is subproblem Eq. (7),
which can be solved effectively in the DFT domain by apply-
ing the Sherman-Morrison formula [11].

3. CONSTRAINTS

When the problem is solved together with constraints (i.e.
when E 6= ∅), convergence can be very slow since the con-
straint on xm demands a major perturbation in the solution



that is only enforced via the ym update. This issue can be
addressed by the introduction of a weighted `2 term in Eq. (5)

argmin
{xm},u

1

2

∥∥∥∥∥∑
m

dm ∗ xm + u− s

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1 +∑
m

wm
2
‖xm‖22 + µ ‖u‖1 +

∑
m∈E

ι(xm) , (14)

where wm is zero for m /∈ E and very large for m ∈ E . The
only corresponding modification to the ADMM algorithm is
in the xm subproblem, which becomes

argmin
{xm}

1

2

∥∥∥∥∥∑
m

dm ∗ xm − (s− u(k))

∥∥∥∥∥
2

2

+
∑
m

wm
2
‖xm‖22 +

ρ

2

∑
m

∥∥∥xm − (y(k)
m − z(k)m )

∥∥∥2
2
. (15)

This modified problem can also be solved in the DFT domain
in O(M) time (with a small increase in the constant factor)
via a minor modification of the Sherman-Morrison formula-
based solution for Eq. (7) [11].

4. BOUNDARY ISSUES

We expect the convolutional representation to be able to align
overlapping sets of images, but a good approximation of the
target image will usually only be achievable in the central re-
gion common to all images. The boundary region exterior to
this common central region cannot be well represented as ei-
ther a convolutional sparse representation or a sparse additive
component, and will therefore substantially perturb the solu-
tion if not explicitly considered in the model. The obvious
approach is to modify the data fidelity term of Eq. (3) to in-
clude an operator P projecting out only the common central
region

1

2

∥∥∥∥∥P
(∑

m

dm ∗ xm + u− s

)∥∥∥∥∥
2

2

, (16)

but such a projection does not have a simple representation
in the DFT domain, so that such a modification would pre-
clude the use of the efficient DFT domain method [11] for
solving Eq. (7). A simple and effective alternative is to in-
troduce a spatially-varying weighting in the `1 norm of u so
that there is no penalty on u in the boundary region; the re-
sult is that the central region of u behaves as before, and the
boundary region of u adapts without penalty to represent any
error between the signal and its convolutional sparse repre-
sentation. If b is a mask vector that is zero on the boundary
region and unity on the central region, the modified u update
can be expressed as

u(k+1) = Sµ,b

(
s−

∑
m

dm ∗ x(k+1)
m

)
, (17)

where
Sγ,b(u) = sign(u)�max(0, |u| − γb) . (18)

5. RESULTS

The utility of the proposed method is demonstrated in two
distinct applications. In all cases algorithm parameters were
manually selected for best performance.

The first of these is a face clustering problem using im-
ages from the Extended Yale B dataset [15, 16]. A set of
manually aligned and cropped images derived from this set
was used for a demonstration of SSC performance [2]. For
the experiments reported here, five aligned test sets of 45 im-
ages each were constructed by randomly selecting (after re-
moval of unsuitable examples) a set of 15 aligned face im-
ages each for three distinct subjects. A set of five correspond-
ing misaligned dataset was constructed by first selecting the
corresponding images from the original unaligned image set
(from which the aligned set was also derived) and then crop-
ping 336 × 384 subimages with alignment to the centers of
the faces randomly varied by 20 pixels in each direction.

The performance of SSC and Convolutional SSC was
compared on both aligned and misaligned data sets. For stan-
dard SSC spectral clustering was performed, as advocated
in [2], on the the coefficient matrix X obtained by solving

argmin
X,U

1

2
‖DX + U − S‖22 + λ ‖X‖1 + µ ‖U‖1 (19)

with S = D and En = {n}, with λ = 1 and µ = 0.1 for both
data sets. In the Convolutional SSC case, a set of coefficient
maps xm,n was obtained by solving Eq. (4) with sn = dn
and En = {n} with λ = 50 and µ = 0.1 for the aligned
data set and λ = 50 and µ = 0.05 for the unaligned data set.
A coefficient matrix X independent of the spatial location of
non-zero coefficient was constructed from these maps by set-
ting each entryXm,n as the spatial sum of the absolute values
of the corresponding xm,n, i.e. Xm,n = 1

T |xm,n| where 1
denotes a vector with unit entries, and |·| is applied element-
wise. Spectral clustering based onX was performed as for the
SSC case. Clustering errors are compared in Table 1; note that
Convolutional SSC performs well in both cases, but standard
SSC performs very poorly when the images are misaligned.

SSC CSSC
Test Set 1 2 3 4 5 1 2 3 4 5
Aligned 0 0 1 2 0 3 0 0 5 2
Misaligned 12 17 14 8 5 2 0 0 2 0

Table 1. Clustering errors (number of faces out of a total of
45 assigned to the wrong cluster) for SSC and Convolutional
SSC applied to the aligned and misaligned datasets for the
same faces. The expected value for uniform random cluster
assignment is 25.65 errors, and the maximum possible is 30.

The second demonstration applies the proposed method
to align a set of frames for video background modeling in
a simulated moving-camera video sequence. This represents



(a) Ground truth (b) ESR (c) ECSR-Median

(d) Ground truth (e) ESR (f) ECSR-Median

Fig. 1. Background (first row) and foreground (second row) estimates for frame 15 from the fast-panning test video sequence,
computed via the endogenous sparse representation method of [3] (ESR) and the proposed method with median filtering post-
processing (ECSR-Median).

RPCA ESR ECSR ECSR-R ECSR-M
Back 4.6dB 7.6dB 10.9dB 14.7dB 19.3dB
Fore -0.5dB 1.9dB 3.6dB 9.6dB 14.2dB

Table 2. Comparison of background/foreground separa-
tion performance, measured as SNR against ground truth,
of RPCA, the endogenous sparse representation method
of [3] (ESR), the proposed method without post-processing
(ECSR), and the proposed method with RPCA and median fil-
tering post-processing (ECSR-R and ECSR-M respectively).

a difficult background modeling problem that cannot be di-
rectly addressed using Robust Principal Component Analysis
(RPCA) [17, 18] methods. The test sequence was constructed
from the Lankershim Boulevard Dataset [19, camera 4, 8:45–
9:00 AM] by moving a 240 × 320 pixel cropping window
within the original sequence at a rate of 3 pixels/frame, se-
lecting a total of 30 consecutive frames. Since the panning
view is simulated, the RPCA background/foreground sepa-
ration result in the original stationary view sequence can be
used to construct an approximate ground truth.

Problem Eq. (4) was solved with both {dm} and {sn} set
to the test video sequence (with λ = 50 and µ = 0.06), the
resulting

∑
m dm ∗ xm,n representing the background esti-

mate for frame n, and un representing the foreground esti-
mate. Examination of the set of dm ∗ xm,n contributing to
the background estimate for frame n reveals that the convo-
lutional sparse representation achieves good performance in

aligning these estimates from different frames, but their sum
contains artifacts from the vehicles that are in different rela-
tive locations in each {dm}. Two post-processing strategies
were applied in order to exploit the robust frame alignment
to obtain improved results. Both of these operate on the set
dm ∗xm,n, which can be considered as a set of distinct back-
ground estimates of frame n based on the filters m for which
xm,n contains a coefficient of significant absolute value. The
first strategy simply normalizes each member of the set and
applies median filtering in the temporal direction, and the sec-
ond applies RPCA independently to the set of estimates for
each frame n. Once the background is re-estimated, a fore-
ground re-estimate is obtained by subtracting from the orig-
inal sequence. The performance of these methods with the
respect to the approximate ground truth is compared in Ta-
ble 2, and selected examples are displayed in Fig. 1.

6. CONCLUSION

A variety of recent algorithms for subspace modeling, clus-
tering, and classification of images can be made invariant to
image translation by replacing the sparse representations in
these methods with their convolutional equivalents. A novel
ADMM-based algorithm has been developed for solving the
endogenous convolutional sparse representation problem.
The experimental results in two simple problems presented
here provide initial evidence of the potential of the proposed
method for translation invariant subspace modeling.
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Addendum
The algorithm outlined in Sec. 2 for solving the convolutional
sparse coding problem with an additive term, Eq. (3), can take
a large number of iterations to converge, and is rather sensi-
tive to suitable choice of parameters λ, µ, and ρ. Subsequent
to submission of the final version of this manuscript for in-
clusion in the official proceedings, it was found that a more
effective solution to Eq. (3) is to map it to the standard con-
volutional sparse coding problem of Eq. (2) (which can be
solved as described in [11]), by absorbing the additive term
into the sum of convolutions with an impulse filter as the cor-
responding dictionary entry.


