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ABSTRACT

A robust version of Principal Component Analysis (PCA) can
be constructed via a decomposition of a data matrix into low
rank and sparse components, the former representing a low-
dimensional linear model of the data, and the latter repre-
senting sparse deviations from the low-dimensional subspace.
This decomposition has been shown to be highly effective, but
the underlying model is not appropriate when the data are not
modeled well by a single low-dimensional subspace. We con-
struct a new decomposition corresponding to a more general
underlying model consisting of a union of low-dimensional
subspaces, and demonstrate the performance on a video back-
ground removal problem.

Index Terms— Compressive Sensing, Robust Princi-
pal Component Analysis, Low Rank, Sparse Representation,
Group Sparse

1. INTRODUCTION

Matrix completion, which attempts to reconstruct a matrix
with only a small fraction of its entries known [1], is a recent
branch of the field of compressive sensing. (The assumption
that the matrix has a low rank plays a role analogous to that of
sparsity in compressive sensing.) An extension of this prob-
lem seeks to decompose a matrix D of high-dimensional data
into a sum of two components, one having low rank, the other
being sparse. This can be expressed as the optimization

min
L,S

rank(L) + λ‖S‖0 such that L+ S = D , (1)

where ‖ · ‖0 counts the number of nonzero entries, and λ > 0
is a tuning parameter. We can regard L as a low-dimensional
description of the data, while S consists of deviations from
that model, which can be interesting in their own right.

We can compare (1) to Principal Component Analysis
(PCA), which would compute the matrix L of desired rank
that minimizes ‖D − L‖2, the entry-wise Euclidean norm
of the residual. Because the second term of (1) penalizes
only the number of deviations and not their size, the low-
dimensional model L will not be perturbed by outliers among
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the entries of D, and hence will provide a more robust de-
scription of most of the dataset. This connection between
sparse optimization and “robust PCA” was made by Candès
et al. [2], who also provided a tractable, convex approxima-
tion, which they called Principal Component Pursuit, of the
NP-hard problem (1)

min
L,S
‖σ(L)‖1 + λ‖S‖1 such that L+ S = D , (2)

where D is m × n and λ = 1/
√
max{m,n}. The first term

is the `1 norm of the vector σ(L) of singular values of L, and
is known as the nuclear norm of L. Applications considered
thus far include automated background removal in video [3],
text analysis [4], and image alignment [5].

This decomposition approach assumes that there is a sin-
gle, low-dimensional model that describes most components
of the elements of the dataset. In this work, we develop a
more general method that is suitable, for instance, for data de-
scribed by a manifold [6], except for a sparse set of possibly-
large deviations. We will thus allow our low-dimensional de-
scription to vary across the dataset, while retaining the robust-
ness given by having a second, sparse component. In the con-
text of video background removal, this will allow us to handle
the case of a moving camera, making the method suitable for
a much larger class of surveillance problems.

2. LOCAL PRINCIPAL COMPONENT PURSUIT

The geometric intuition motivating our approach is that if the
data lie within a nonlinear manifold, then every sample in the
manifold may be represented (assuming adequate sampling
density) as a sparse linear combination of neighboring sam-
ples spanning an approximation to the local tangent plane.
This idea can be implemented as the problem

min
U,S

α‖U‖1+β‖U‖2,1+‖S‖1 such that DU+S = D , (3)

in which the explicit notion of low rank, and its nuclear-
norm proxy, is replaced by representability of a matrix as
a sparse representation on itself. (The subspace segmen-
tation algorithm of Liu et al. [7] also employs the concept
of self-representability, but combines it with a nuclear-
norm proxy for rank, as in (2).) The 2, 1-norm, defined as



‖U‖2,1 =
∑

i

√∑
j u

2
ij , encourages rows of U to be zero,

but does not discourage nonzero values among the entries of
a nonzero row [8]. This takes advantage of the group-sparsity
structure that can arise when points of the dataset are near
to each other. It also plays the vital role of penalizing away
degenerate solutions in which U is approximately the identity
matrix, which could arise if there were only a 1-norm penalty
on U . The ‖U‖1 term is included, however, since we usu-
ally (an exception would be when the data lie within a single
low-rank subspace) also wish to encourage zero values within
each nonzero row of U .

To better handle noisy data, we replace (3) with a pe-
nalized form, and add a Total Variation (TV) penalty on the
sparse deviations (for cases when we expect these deviations
to form contiguous regions), giving the problem

min
U,S

1

2
‖AU + S −D‖22 + α‖U‖1

+ β‖U‖2,1 + γ‖S‖1 + δ‖∇S‖1 , (4)

where the dictionary A is derived from the data D (e.g. by
mean-subtraction and scaling), and∇S is a vector-valued dis-
cretization of the 3-D gradient of S, interpreted as a data cube.

Eq. (4) can be solved efficiently using the Split Bregman
method [9]. We introduce variables P , Q, and R, which are
auxiliary versions of U , S, and ∇S, respectively. We add
terms relaxing the equality constraints of each quantity and its
auxiliary variable, and in order to enforce equality at conver-
gence, we introduce Bregman variables Bp, Bq , and Br [9]:

min
U,S,P,Q,R

1

2
‖AU + S −D‖22 + α‖P‖1 + β‖P‖2,1

+ γ‖Q‖1 + δ‖R‖1 +
λ

2
‖P − U −Bp‖22

+
µ

2
‖Q− S −Bq‖22 +

ν

2
‖R−∇S −Br‖22 . (5)

This allows the problem to be split into an alternating mini-
mization of the following subproblems:

min
U

1

2
‖AU − (D − S)‖22 +

λ

2
‖U − (P −Bp)‖22 , (6)

min
S

1

2
‖S − (D −AU)‖22 +

µ

2
‖S − (Q−Bq)‖22

+
ν

2
‖∇S − (R−Br)‖22 , (7)

min
P

λ

2
‖P − (U +Bp)‖22 + α‖P‖1 + β‖P‖2,1 , (8)

min
Q

µ

2
‖Q− (S +Bq)‖22 + γ‖Q‖1 , and (9)

min
R

ν

2
‖R− (∇S +Br)‖22 + δ‖R‖1 . (10)

Subproblems (6) and (7) are simple `2 problems, and can
be solved by standard techniques for solving linear systems

(e.g., conjugate gradient). The other three subproblems can
be solved very cheaply using shrinkage. Subproblems (9)
and (10) use standard shrinkage, also known as soft thresh-
olding:

shrink(T, ζ) = sign(T )max{0, |T | − ζ} , (11)

where the operations are to be understood entrywise. Sub-
problem (8), which contains both the 1- and 2, 1-norm, uses a
generalized shrinkage, defined row-wise by

shrink2,1(T, ζ, η)
i =

shrink(T i, ζ)

1 + η/ shrink(‖ shrink(T i, ζ)‖2, η)
,

(12)
with the convention that 1/(1 + η/0) = 0. The algorithm
consists of iteratively solving the main variables and updating
the Bregman variables as follows:

U (k+1) =(ATA+ λI)−1
(
AT (D − S(k)) + λ(P (k) −B(k)

p )
)
,

S(k+1) =
(
(1 + µ)I + ν∇T∇

)−1(
(D −AU (k+1))

+ µ(Q(k) −B(k)
q ) + ν∇T (R(k) −B(k)

r )
)
,

P (k+1) =shrink2,1(U
(k+1) +B(k)

p , α/λ, β/λ) ,

Q(k+1) =shrink(S(k+1) +B(k)
q , γ/µ) ,

R(k+1) =shrink(∇S(k+1) +B(k)
r , δ/ν) ,

B(k+1)
p =B(k)

p + U (k+1) − P (k+1) ,

B(k+1)
q =B(k)

q + S(k+1) −Q(k+1) , and

B(k+1)
r =B(k)

r +∇S(k+1) −R(k+1) .

We initialize all of these variables with zero vectors, but con-
vergence is not expected to be dependent on this choice.

3. ADAPTIVE, OUTLIER-REMOVED DICTIONARY

In (4), an appropriate sparse U can be viewed as generating a
locally low-dimensional approximation AU of D− S. When
the dictionary is simply the data (i.e., A = D), the sparse
deviations (or outliers) S are also the deviations of the dictio-
nary A, so constructing the locally low-dimensional approxi-
mation as (A− S)U , implying an adaptive dictionary A− S,
should allow U to be even sparser. This gives the modified
problem

min
U,S

1

2
‖(A− S)U + S −D‖22 + α‖U‖1

+ β‖U‖2,1 + γ‖S‖1 + δ‖∇S‖1 . (13)

This problem can be minimized as before, the only changes
being to the subproblems for U and S:

min
U

1

2
‖(A− S)U − (D − S)‖22 +

λ

2
‖U − (P −Bp)‖22 ,

min
S

1

2
‖S(I − U)− (D −AU)‖22 +

µ

2
‖V − (Q−Bq)‖22

+
ν

2
‖∇S − (R−Br)‖22 ,



with solutions given by the linear systems

((A− S)T (A− S)+λI)U
= (A− S)T (D − S) + λ(P −Bp) ,

S(I − U)(I − U)T + (µI + ν∇T∇)S
= (D −AU)(I − U)T + µ(Q−Bq) + ν∇T (R−Br) .

This adaptive-dictionary approach is still possible when
A 6= D, depending on how A is derived from D, but the
resulting equations for U and S are a little more complicated.

4. RESULTS

We test our algorithm on the video background removal prob-
lem addressed by Wright et al. [3], using a 288-frame traffic
video sequence from the Lankershim Boulevard Dataset [10,
camera 4, 8:45–9:00 AM]. (This problem provides a conve-
nient comparison between these two general data decomposi-
tion techniques, but while the performance of our method is
subjectively quite good, we do not claim that it is competi-
tive when compared with application-specific algorithms for
this problem.) We use the modified-dictionary form (13) of
the algorithm since it gives better results. A and D were both
constructed from the data by subtracting the mean from each
column and scaling so that the maximum value was 1.

The first test sequence is a reduced-resolution (240× 320
pixel frames) version of the data, with each frame of the video
being a column of D, giving a 76800× 288 matrix. Because
the traffic camera is stationary, this dataset is well-modeled by
a single low-dimensional subspace. Our algorithm gives a de-
composition (see Fig. 1) that is visually almost indistinguish-
able from the result (omitted here due to space constraints)
obtained by solving (2), using the algorithm of [11].

Our second test sequence simulates a panning camera by
taking a moving 240× 320 pixel cropping window within the
original sequence. This window moves slowly to the left, and
then back to the original position, at a rate of 1/4 pixel/frame.
In this case the background is poorly approximated by any
single low-dimensional subspace, but since the background
motion is slow with respect to the foreground motion, a lo-
cally low-dimensional model provides a much better approx-
imation. A comparison of a single frame of the sparse com-
ponents of different methods applied to this data is provided
in Fig. 2. The “local” sparse components computed using our
algorithm clearly have far less residual background than the
“global” sparse component resulting from (2).

5. CONCLUSION

We have proposed a new decomposition, together with a Split
Bregman type algorithm, for high-dimensional data, general-
izing the Robust PCA of Candès et al. [2] to certain nonlinear
data. The ability of this generalization to model data that does

not conform to the globally low-dimensional restriction has
been demonstrated on the video background removal prob-
lem. Future work will include development of automatic pa-
rameter selection methods, and application of the decompo-
sition to additional problems in which the relaxed constraints
on the data can be expected to provide an advantage.
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(a) Original data (b) Local low rank (c) Local sparse

Fig. 1. Results for frame 166 from the stationary test video sequence. The decomposition was computed using our algorithm
with parameters α = 1.0× 10−5, β = 1.0× 10−2, γ = 3.0× 10−5, and δ = 1.0× 10−4.

(a) Original data (b) Global sparse

(c) Local sparse (d) No-TV local sparse

Fig. 2. Results for frame 166 from the slowly-panning test video sequence. The global sparse component (b) is obtained
using decomposition (2) (as in [3]), and the local sparse component (c) is generated by our algorithm with parameters α =
4.0× 10−3, β = 8.0× 10−2, γ = 5.0× 10−4, and δ = 3.0× 10−4. Component (d) is generated in the same was as (c), except
that δ = 0, so that there is no TV regularization. This example demonstrates that the performance advantage of our algorithm
is primarily due to the local-linear model, and not the TV regularization.


