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Summary. Heterogeneous aquifers typically consist of multiple lithofacies, whose spatial
arrangement significantly affects flow and transport. The estimation of these lithofacies
is complicated by the scarcity of data and by the lack of a clear correlation between
identifiable geologic indicators and attributes. We introduce a new inverse-modeling ap-
proach to estimate both the spatial extent of hydrofacies and their properties from sparse
measurements of hydraulic conductivity and hydraulic head. Our approach is to mini-
mize a functional defined on the vectors of values of hydraulic conductivity and hydraulic
head fields defined on regular grids at a user-determined resolution. This functional is
constructed to (i) enforce the relationship between conductivity and heads provided by
the groundwater flow equation, (ii) penalize deviations of the reconstructed fields from
measurements where they are available, and (iii) penalize reconstructed fields that are
not piece-wise smooth. We develop an iterative solver for this functional that exploits
a local linearization of the mapping from conductivity to head. This approach provides
a computationally efficient algorithm that rapidly converges to a solution. A series of
numerical experiments demonstrates the robustness of our approach.

1 Introduction

Heterogeneous aquifers typically consist of multiple lithofacies, whose spatial arrange-
ment significantly affects flow and transport in the subsurface. The identification of
lithofacies and their hydraulic properties from hydrologic measurements is complicated
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by the sparsity of data and by the lack of clear correlation between identifiable geologic
indicators and attributes. Recent advances in subsurface applications of inverse modeling
explicitly dealt either with heterogeneous environments consisting of one lithofacies1 or
with homogeneous constitutive lithofacies.2

The difficulty in accounting for these two scales of heterogeneity (large-scale heterogene-
ity stemming from uncertain spatial arrangements of multiple lithofacies and small-scale
heterogeneity in hydraulic/transport properties of an individual lithofacies) stems from
the fact that most modern inverse modeling techniques are optimized to deal with the one
scale or the other. For example, level set methods2 and support vector machines (SVMs)3

work best for facies delineation, since they are designed to deal with the identification of
sharp boundaries. The performance of regression SVMs to infer parameter values (i.e.,
to deal with small-scale heterogeneity) is less spectacular.3

In this study, we explore the use of total variation regularizations as a tool for dealing
with both scales heterogeneity simultaneously in a computationally efficient manner. Our
goal is to reconstruct conductivity fields—in the presence of multiple geologic facies—from
both system-parameter data Ki = K(xi) and system-state data hi = h(xi, t). Without
loss of generality, we assume that both data sets are collected at the same N locations
xi = (xi, yi)

T , where i ∈ {1, . . . , N}. Such problems are ubiquitous in subsurface hydrol-
ogy since the geologic structure of the subsurface plays a crucial role in fluid flow and
contaminant transport.

2 Inverse Modeling as a Nonlinear Optimization Problem

We consider inverse modeling in the context of steady-state saturated flow, subject to

∇ · (K∇h) = 0 (1)

with the parameter K representing hydraulic conductivity and the system state h repre-
senting hydraulic head. When represented by samples on discrete grids, K and h will be
denoted by vectors k and h respectively. The linear operators representing measurement
by selecting a subset of k and h grid points will be denoted Mk and Mh respectively, and
the corresponding measurements will be denoted by k̂ and ĥ respectively (i.e. Mkk = k̂
and Mhh = ĥ). We estimate k and h from measurements k̂ and ĥ by minimizing a func-
tional that penalizes the mismatch with the model connecting k and h, the error in the
estimates with respect to the measurements, and suitable regularization terms express-
ing our prior knowledge or expectation of the properties of the solution fields. Defining
F as the function implicitly defined by the diffusion equation (together with boundary
conditions) connecting k and h, so that h = F (k), this problem can be expressed as

arg min
k,h

1

2
‖F (k)− h‖22 +

γ1
2
‖Mkk− k̂‖22 +

γ2
2
‖Mhh− ĥ‖22 + γ3Rk(k) + γ4Rh(h), (2)
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or, replacing the penalty ‖F (k)− h‖22 by the constraint h = F (k),

arg min
k

γ1
2
‖Mkk− k̂‖22 +

γ2
2
‖MhF (k)− ĥ‖22 + γ3Rk(k) + γ4Rh(F (k)). (3)

Since we expect that the estimated k fields may contain discontinuities, the Total
Variation (TV)4 (i.e. the `1 norm of the gradient) is a reasonable choice of regulariza-
tion terms. (We note that similar choices of regularization term have previously been
applied to nonlinear problems in different application areas, but these did not address
the inverse problem involving the diffusion equation, and proposed very different algo-
rithms.5,6) While a reasonable choice for the regularization for h would be the `2 norm of
the gradient (since it is smoother than k), we have found in practice that regularization of
h does not have a significant effect, and slightly improved results are obtained when using
TV regularization for k together with an additional term, with smaller parameter, penal-
izing the `2 norm of the gradient. While we do not claim that it is inherently superior,
the work reported here utilizes the constrained form Eq. (3) above.

If the relationship between h and k were linear, this problem could be solved using
minor variations on standard algorithms for TV regularization.7,8 However, F in Eq. (3) is
highly nonlinear, representing a functional relationship between k and h provided by the
diffusion equation (1) and corresponding boundary conditions. We address this problem
by utilizing a local linearization9 of the function that h = F (k). Given some vector kj,

F (k) ≈ F (kj) + JF (kj)(k− kj), (4)

where JF (kj) is the Jacobian of function F evaluated at kj. This linearization allows the
nonlinear problem to be solved by iterative solution of a linear subproblem, described in
detail in the following section.

3 Iterative Local Linearization

Since our algorithm can be applied to any inverse problem of this type, we switch to a
notation that is not domain specific, and pose the problem in terms of vectors u and v,
subject to v = F (u), and with measurement operators P and Q such that Pu = s, and
Qv = t. The problem formulated in the previous section corresponds to u = k, v = h,
P = Mk, Q = Mh, s = k̂, and t = ĥ. Eq. (3) can be rewritten as

arg min
u

α

2
‖Pu− s‖22 +

β

2
‖QF (u)− t‖22 + γ

∥∥∥√D(u)
∥∥∥
1

+
δ

2

∥∥∥√D(u)
∥∥∥2
2
, (5)

where D(u) = (Dxu)2 + (Dyu)2, Dx and Dy are discrete derivative operators in the
horizontal and vertical directions respectively, and scalar operations, e.g. ·2 and

√
·,

applied to a vector denote element-wise operation.
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3.1 Linear Subproblem

Consider some initial values uj and vj = F (uj), define u = uj +w and, for small ‖w‖22,
linearize about uj so that v ≈ vj +Aw. To ensure that w is small, i.e. that the penalties
on u and v are satisfied, we add an additional term penalizing the magnitude of w. (This
term plays essentially the same role as the damping term in the Levenberg-Marquardt
method.10) This gives

arg min
w

1

2
‖w‖22 +

α

2
‖P (uj + w)− s‖22 +

β

2
‖Q(vj + Aw)− t‖22 + (6)

γ

∥∥∥∥√D(uj + w)

∥∥∥∥
1

+
δ

2

∥∥∥∥√D(uj + w)

∥∥∥∥2
2

.

We minimize this functional using the Alternating Direction Method of Multipliers
(ADMM) approach.11 Introducing auxiliary variables x ≈ Dx(uj + w) and y ≈ Dy(uj +
w), and scaled dual variables bx and by, and splitting the resulting optimization problem
into two subproblems, we obtain

arg min
w

1

2
‖w‖22 +

α

2
‖Pw − (s− Puj)‖22 +

β

2
‖QAw − (t−Qvj))‖22 +

λ

2
‖Dxw − (x−Dxuj − bx)‖22 +

λ

2
‖Dyw − (y −Dyuj − by)‖22 , (7)

arg min
x,y

γ
∥∥∥√x2 + y2

∥∥∥
1

+
δ

2

∥∥∥√x2 + y2

∥∥∥2
2

+

λ

2
‖x− (Dx(uj + w) + bx)‖22 +

λ

2
‖y − (Dy(uj + w) + by)‖22 . (8)

The w subproblem is solved by setting the gradient of the w functional to zero, giving
the linear system(

I + αP TP + βATQTQA+ λDT
xDx + λDT

yDy

)
w = αP T (s− Puj)

+ βATQT (t−Qvj) + λDT
x (x−Dxuj − bx) + λDT

y (y −Dyuj − by) . (9)

The x,y subproblem is solved by generalizing the shrinkage function used in a Split
Bregman (equivalent to ADMM) solution for TV regularization.8 Defining the function

σ(s, t, α, β) =
max

(
0,
√
s2 + t2 − α

)
(1 + β)

√
s2 + t2

, (10)

we can write solution of this subproblem in closed-form as

x = (Dx(uj + w) + bx)σ (Dx(uj + w) + bx, Dy(uj + w) + by, γ/λ, δ/λ) (11)

y = (Dy(uj + w) + by)σ (Dx(uj + w) + bx, Dy(uj + w) + by, γ/λ, δ/λ) , (12)
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where the function σ(s, t, α, β) with vector arguments s and t denotes element-wise op-
eration on corresponding elements of s and t.

The full algorithm for solving the linear subproblem consists of iteratively solving both
subproblems (i.e. at iteration k, first solving the linear system to obtain wk+1, and then
using wk+1 within the shrinkage function to obtain xk+1 and yk+1), followed by scaled
dual variable updates11

b(k+1)
x = b(k)

x +Dx

(
uj + w(k+1)

)
− x(k+1) (13)

b(k+1)
y = b(k)

y +Dy

(
uj + w(k+1)

)
− y(k+1) . (14)

3.2 Outer Iterations

Each solution of the linear subproblem provides a descent direction w for the outer
nonlinear problem. Since the function f is highly nonlinear, the linearization A may only
provide a good approximation to the function behavior within a very small region, so a
line search is necessary. If uj + w does not reduce the functional value, parameters α, β,
γ, and δ are reduced by a factor of 2, and the linear subproblem is repeated. When the
update w is acceptable, the update ui+1 = uj + w is made together with computation of
the linearization at ui+1, and the process is repeated. If the initial update w is found to be
acceptable, parameters α, β, γ, and δ are increased by a factor of 2, so that the effective
step size is not permanently reduced by a line search from a previous outer iteration.

4 Computational Example

The simulations reported below relied on a Galerkin finite-element solution of Eq. (1)
on a rectangular domain, subject to no-flow boundary conditions on the two horizon-
tal boundaries and constant heads on the two vertical boundaries (20 on the left and
0 on the right, with the heads expressed in consistent model units). Our numerical
experiments revealed that TV is not an appropriate regularization term for conductiv-
ity fields, which often have values spanning many orders of magnitude. The lnK field,
however, has properties appropriate to this regularization. We therefore define function
g(x) = F (exp(x)), and solve the problem in terms of lnK and h instead of K and h. The
Jacobian for this modified function is calculated by application of the chain rule, giving
Jg(x) = JF (exp(x)) diag(exp(x)), where diag(·) denotes construction of a diagonal matrix
with the diagonal consisting of its vector argument.

We test our algorithm on a synthetic problem constructed from the lnK field shown
in Fig. 1(a). The corresponding reference heads field is presented in Fig. 1(b). We use
25 samples from each field (sampled on a regular grid, at the same position in each field)
to reconstruct the fields using our method. We use algorithm parameters α = 5, β =
5, γ = 1× 10−6, δ = 2× 10−7, and λ = 5, and choose the initial value for k as the mean
of the conductivity sample values, and the initial value of h = F (k). We allow 60 outer
iterations (corresponding to 79 evaluations of the nonlinear function F , including the line-
search), taking approximately 610s on a multiprocessor Intel Xeon X5570 workstation,
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to compute the results displayed in Fig. 2. Root Mean Squared (RMS) errors on the
log conductivity and heads fields are 1.76 and 0.41 respectively (the variances of the
corresponding reference fields are 7.09 and 18.60 respectively).
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Figure 1: Reference log conductivity (a) and hydraulic head (b) fields. The + signs represent measurement
locations used to reconstruct these fields.

Although the estimated lnK field captures the key features of the reference field (i.e.
the presence of distinct hydrofacies), the RMS error is relatively large. We examine
the sensitivity of solutions of Eq. (1) to this error by solving the flow problem with the
estimated lnK fields for two different types of change in driving forces: varying head at
the left boundary, and a pumping well with varying rate. Fig. 3 exhibits the RMS error of
the difference between the heads corresponding to the reference and estimated lnK fields
as a function of the RMS error of the change in heads solution for the reference field with
respect to the original (i.e. unmodified boundary conditions) heads field.

5 Summary and Conclusions

We have proposed a regularization approach to inverse modeling of subsurface pro-
cesses. Our approach yields the conductivity field estimates that capture the salient fea-
tures of the field, even when only two samples are available within the low-conductivity
inclusion. While the RMS error in the conductivity reconstruction is relatively large,
the estimated conductivity field provides robust head predictions for flow regimes with
moderate size perturbations from those used in the inverse procedure.

Future work includes a systematic comparison of our approach with its state-of-the-art
counterparts, and the use of our approach in the hydraulic tomography context.
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Figure 2: Inverse modeling results using the functional minimization approach. The lnK and h fields were
reconstructed from 25 measurements of each. The estimated lnK field captures the salient properties of
the reference, despite only two of the samples having fallen within the low-conductivity inclusion.
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