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Inpainting by Joint Optimization of Linear
Combinations of Exemplars
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Abstract—Exemplar-based methods, in which actual image
blocks are used to fill in missing content, have achieved state
of the art performance in image inpainting. The majority of
these adopt a progressive approach, filling in the missing region
inwards from the boundary. The final result is highly dependent
on fill order, and while significant progress has been made on
the choice of this order, the greedy nature of such a process
leads to artifacts in some cases. The alternative exemplar-based
approach proposed here is defined via joint optimization of a
single functional, simultaneously assigning an estimated value to
the entire inpainting region. The results are found to be highly
competitive with other recent inpainting methods.

Index Terms—image inpainting, image completion, exemplar,
patch, block, sparse representation

I. INTRODUCTION

Image inpainting [1] is an image restoration problem with
the goal of replacing a specified contiguous image region
with visually “reasonable” or “plausible” content so that
the inpainted region is not clearly noticeable to a human
viewer. Exemplar-based methods, which have been successful
in problems such as denoising [2], [3] and superresolution
[4], [5], have also been found to give very good results for
texture synthesis [6] and inpainting [7], [8], [9], [10], [11].
The common theme of these methods is the use of a set of
actual image blocks, extracted either from the image being
restored, or from a separate training set, as an image model.

The usual approach to exemplar-based inpainting is to
progressively fill in blocks on the boundary of the inpainting
region using matching blocks in the known region of the same
image [7], [9], [10], [11]. The fill order is chosen to minimize
artifacts by giving priority to blocks containing significant
edges leading into the inpainting region. This progressive
approach constitutes a greedy optimization, and while recent
fill order criteria [11] give significantly improved results over
the original proposal [7], any greedy approach will be unable
to avoid suboptimal choices in certain configurations. The
approach proposed here, in contrast, is a global optimization,
constructing the inpainting solution as the minimum of a single
functional defined in terms of linear combinations of image
blocks. While the method of Wexler et al. [8] may also be
considered as a global optimization, it is defined and computed
in an entirely different way, and it gives significantly different
behavior in difficult inpainting examples.
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II. JOINT OPTIMIZATION OF EXEMPLAR DICTIONARIES

The image model of the proposed approach is that each
block of the inpainted region should be a sparse linear com-
bination of other image blocks, agreeing with known image
content (i.e. external to the inpainting region) where the block
intersects the known region of the image, and agreeing with
all other image blocks with which it overlaps. The blocks
used to construct the dictionaries for these linear combinations
are extracted from the known region of the image being
restored (but could also be extracted from a separate training
image set), and are chosen depending on the fraction of
known content in each block to be inpainted. When this
fraction exceeds a predetermined threshold, the entire image
is searched for blocks that match on the known part of the
target block. Source blocks for blocks with insufficient known
content, in contrast, are collected from the part of the image
spatially adjoining the inpainting region. This model is applied
to multi-band (e.g. RGB color) images by taking the vector
representation of an image block as the concatenation of all
image bands on the block support.

This model may be expressed as the minimizer of a global
functional that

1) penalizes the mismatch between solution blocks and
known pixels,

2) penalizes the mismatch between overlapping parts of
different solution blocks, and

3) penalizes the `1 norm of the linear combination coeffi-
cients to encourage a sparse, low complexity, solution.

The overlapping of image blocks is critical, as it enables
propagation of information from the exterior of the inpainting
region to blocks entirely within the interior, as illustrated in
Fig. 1, and also reduces blocking artifacts.
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Fig. 1. A penalty on the mismatch with known image pixels can be applied
to image blocks that cross the boundary of the inpainting region, but not to
blocks interior to the inpainting region. In an overlapping block structure, an
additional penalty on the mismatch between overlapping blocks allows the
mismatch penalty on the known pixels to propagate to interior blocks.
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To reduce the complexity of computing the mismatch
between overlapping parts of different blocks, the blocks
are arranged in NG indexed grids, with the overlap being
produced by an offset of the entire grid, as indicated in Fig. 2.
This structure allows the total block overlap mismatch to be
computed as the mismatch between the grids, without having
to track overlapping parts of individual blocks. Each block is
indexed by a grid and block number, block k, l being the lth

block in the kth grid, and Φk,l and αk,l are the dictionary
and coefficients respectively for block k, l. The image to be
inpainted is denoted by vector s.

s0,m

s0,0 s0,1 s0,2

s1,0 s1,1 s1,2

Fig. 2. Structure of overlapping block grids.

The following linear operators are defined:

Bk,l “Extract” block k, l from an image.
BTk,l “Insert” block k, l into a zero-valued image.
Rk,l “Extract” the known part of block k, l. The results

is a vector with length corresponding to the number
of known pixels in the block.

RTk,l “Insert” the known part of block k, l into a zero-
valued block.

Qk,l “Extract” block k, l from a vector representing the
unknown region of image, inserting zeros where
the block does not intersect inpainting region. The
result is a zero-valued vector if block k, l has no
intersection with the inpainting region.

QTk,l “Insert” block k, l into zero-valued vector repre-
senting the inpainting region. The result is a zero-
valued vector if block k, l has no intersection with
the inpainting region.

Gk Apply a mask to the inpainting region vector,
zeroing out any pixels that are not in grid k.
Gk = diag

(∑
lQ

T
k,lQk,l (1 1 . . .)

T
)

.

Note that in this formulation, operator Rk,l maps block
k, l to a vector that excludes any unknown (to be inpainted)
pixels in the block. This is computationally more efficient,
and also leads to a more well-conditioned linear system, than
the original approach to this inpainting method [12] in which
the corresponding operator zeroed these unknown pixels but
retained the original block dimensionality.

Individual block coefficients vectors αk,l may be concate-
nated to give a vector αk of all coefficients for grid k, with
corresponding block-diagonal dictionary Φk:

αk =

 αk,0
αk,1

...

 Φk =

 Φk,0 0 · · ·
0 Φk,1 · · ·
...

...
. . .

 .

Operators Rk and Bk are defined in the same way as Φk,
i.e. as block diagonal matrices with components Rk,l and
Bk,l respectively, and QTk =

(
QTk,0 Q

T
k,1 . . .

)
. Using these

definitions, penalty (1) for grid k may be expressed as

1

2
‖RkΦkαk −RkBks‖22

and penalty (2) for grids k and m may be expressed as

1

2

∥∥∥∥∥Gm∑
l

QTk,lΦk,lαk,l −Gk
∑
n

QTm,nΦm,nαm,n

∥∥∥∥∥
2

2

=

1

2

∥∥GmQTk Φkαk −GkQTmΦmαm
∥∥2
2

Concatenating the coefficient vectors αk for each grid gives
a single combined coefficient vector α, with corresponding
block-diagonal dictionary Φ:

α =

 α0

α1

...

 Φ =

 Φ0 0 · · ·
0 Φ1 · · ·
...

...
. . .

 .

Making corresponding definitions of R,B, and QT (i.e.
R = diag(R0, R1, . . .), B = diag(B0, B1, . . .), and QT =
diag(QT0 , Q

T
1 , . . .)), and defining

G =


−G0 G1 0 · · · 0

0 −G1 G2 · · · 0
...

...
. . . . . .

...
0 0 · · · −GNG−2 GNG−1

G0 0 · · · 0 −GNG−1

 ,

one can express penalty (1) over all grids as 1
2‖RΦα −

RBs‖22, and penalty (2) for all grid pairs 0-1, 1-2, etc. as
1
2

∥∥GQTΦα
∥∥2
2
. Penalty (3) is expressed as ‖α‖1, the `1 norm

of the combined coefficient vector α.
The resulting functional optimization, combining all of these

penalties, may be expressed as

arg min
α

γ0
2N0
‖RΦα−RBs‖22 +

γ1
2N1

∥∥GQTΦα
∥∥2
2

+λ‖α‖1 ,

where N0 and N1 are the lengths of vectors RΦα and
GQTΦα respectively, and are included so that the effect of
weights γ0 and γ1 does not depend on these lengths. Defining

A =

 √
γ0
N0
RΦ√

γ1
N1
GQTΦ

 b =

( √
γ0
N0
RBs

0

)
,

this minimization may be written as the standard `1 problem

arg min
α

1

2
‖Aα− b‖22 + λ‖α‖1 .

While a number of very good solvers are available for prob-
lems of this structure, many of them do not perform well on
this specific problem, and the best results have been obtained
using an Iteratively Weighted Least Squares type solver [13].

The final restored image is obtained by averaging all block
grid reconstructions Φkαk to obtain a single value for each
image pixel in the inpainting region. The most significant free
parameters (typical values in parentheses) of the algorithm are
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λ (0.2 to 0.02), γ0 and γ1 (both set to 1), block size (between
7×7 and 9×9), number of block grids and offset between them
(between 2 and 4 grids, with offset depending on the block
size), the size of the dictionary to be associated with each
block (the size of a single block vector multiplied by a factor
of 4), and the fraction of known block content threshold used
to determine how to construct the dictionary (0.75). While
the typical values generally give good performance, manual
setting of the parameters is required to obtain the best possible
results. (Automated parameter optimization is a subject of
future research, but it may be argued that some user tunable
parameters are desirable given the subjective nature of the
inpainting problem.) Performance is moderately insensitive to
most of the parameters, but the choice of block size and grid
offsets can have a significant effect when there is complex
image structure on the inpainting region boundary.

III. RESULTS

The assignment of objective quality measures to inpainted
images is a difficult problem [14], but when inpainting is
applied in the context of image restoration as opposed to
image editing, and the inpainting region is relatively small,
it is not unreasonable to compare with a known reference
image using distance measures such as SNR and SSIM [15],
with the expectation that large differences in these values
should indicate perceptible quality differences. For the results
presented here, these distance measures were computed only
on the inpainting region, so that the variation across different
methods is not reduced by averaging over the entire test image.
Note also that SSIM values for color images were computed
on the image intensities only.

Results for a small subimage cropped from the greyscale
version of the “Barbara” image are displayed in Fig. 3.
This figure compares the proposed approach (computed using
publicly released code [16]) with the methods of Criminisi et
al. [7] (computed using a publicly available implementation
[17]), Wexler et al. [8] (computed using a publicly available
implementation [18]), and Xu and Sun (reference and result
images from [11] kindly provided by J. Sun). In this example,
the proposed method is clearly visually superior, and also
exhibits the best objective quality measures.

Results for the color version of the “Barbara” image, with
two different inpainting regions, are displayed in Fig. 4 and 5,
and results for one of the Kodak test images (see Fig. 6) are
displayed in Fig. 7. In these comparisons the proposed method
and that of Wexler et al. [8] are clearly superior to that of
Criminisi et al. [7], and while the quality difference between
the two former methods is smaller, the proposed method leads
in terms of objective quality measures, and arguably also has a
slight perceptual advantage. (Results for the Xu and Sun [11]
method are unfortunately not available for these examples.)

IV. CONCLUSIONS

The proposed method is motivated by a conceptually simple
exemplar-based image model, and is implemented via global
optimization, thereby avoiding some of the problems asso-
ciated with the greedy approach of progressively filling in

(a) Reference (b) Test Image

Fig. 6. The “kodim23” image and a derived inpainting test image.

the inpainting region from the region boundary. Results are
comparable with, and in some cases better than, other recent
inpainting algorithms with which it has been compared. It is
computationally expensive, however, and has a large number
of free parameters that are difficult to set automatically. It has
also been observed that the quality of the results is reduced
when dealing with image regions containing irregular texture
rather than edges and regular textures (but it should be noted
that a similar effect can been observed for other methods that
employ sparse linear combinations of exemplars [10], [11]).
These issues will be addressed in future research.
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(a) Reference (b) Criminisi et al. [7] (c) Wexler et al. [8] (d) Xu and Sun [11] (e) Proposed

SNR: 4.50dB 5.75dB 8.73dB 12.89dB
SSIM: 0.66 0.76 0.86 0.93

Fig. 3. Inpainting comparison on a subimage cropped from the “Barbara” image (see [11, 3rd row of Fig. 12]). The inpainting region is indicated by a box
in the reference image.

(a) Reference (b) Criminisi et al. [7] (c) Wexler et al. [8] (d) Proposed

SNR: 0.70dB 5.26dB 7.16dB
SSIM: 0.47 0.74 0.81

Fig. 4. Comparison of inpainting results for a region of the “Barbara” image. The inpainting region is indicated by a box in the reference image.

(a) Reference (b) Criminisi et al. [7] (c) Wexler et al. [8] (d) Proposed

SNR: 0.28dB 2.55dB 5.98dB
SSIM: 0.36 0.54 0.71

Fig. 5. Comparison of inpainting results for a region of the “Barbara” image. The inpainting region is indicated by a box in the reference image.

(a) Criminisi et al. [7] (b) Wexler et al. [8] (c) Proposed

SNR: 11.12dB 13.39dB 16.28dB
SSIM: 0.76 0.84 0.87

Fig. 7. Comparison of inpainting results for the test image in Fig. 6. (Subtle effects can be observed by zooming in the electronic version of this document,
or by viewing the image files included in the supplementary downloadable material available from http://ieeexplore.ieee.org .)


