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ABSTRACT

We introduce a simple approach to compensate for the effects
of residual misregistration on the performance of anomalous
change detection algorithms. Using real data, both within a
simulation framework for anomalous changes, and with a real
anomalous change, we illustrate the approach and investigate
its effectiveness.

Index Terms— Anomalous change detection, Registra-
tion, Multispectral imagery, Hyperspectral imagery

1. INTRODUCTION

Given two images of the same scene, taken at different times
and under different conditions, the aim ofanomalous change
detection(ACD) is to identify those changes that are unusual,
compared to the “ordinary” changes that occur throughout the
image [1]. We leave it to a human analyst whether a given
change is interesting or meaningful, but what ACD offers is
a way to cull through the mass of imagery, and to narrow
down the changes that the analyst might want to examine.
One of the most confounding sources of “ordinary” change
is due to misregistration of the images. While it is important
to co-register the images as precisely as possible in the first
place, one has to assume that some residual misregistration
will inevitably remain, so researchers have concentrated on
characterizing the sensitivity of ACD algorithms to misreg-
istration [2, 3, 4]. In this paper, we introduce a more active
approach to misregistration compensation, and investigate its
utility in reducing the sensitivity of ACD algorithms to the
inevitable residual misregistration between pairs of images.

Algorithms that have been proposed for ACD include
the chronochrome [5], neural net prediction [6], covariance
equalization [7], multivariate alteration detection [8], and
a machine learning framework [9]. Our approach for mis-
registration compensation can be applied to any of these
ACD algorithms, but we will concentrate on the hyperbolic
anomalous change detector introduced in Ref. [9].

Let x ∈ Rdx be a pixel value in the first image,χ, and
y ∈ Rdy correspond to the associated a pixel value in the
second image,γ. Let P (x,y) represent the underlying prob-
ability distribution for valuesx andy associated with corre-
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sponding pixels in an image. WritePx(x) =
∫

P (x,y) dy as
the projection ofP (x,y) onto thex subspace; this is the dis-
tribution of pixel values inχ alone. One can similarly write
Py(y) =

∫
P (x,y) dx. Following the framework in Ref. [9],

we can characterize the anomalous changes as those with high
values of mutual information. That is,

A′(x,y) = log Px(x) + log Py(y)− log P (x,y). (1)

When the data distribution is Gaussian, these probabil-
ity densities can be described in terms of the covariance and
cross-covariance matrices of the data. Subtract the mean from
both images, so that〈x〉 = 0 and〈y〉 = 0; then write

X =
〈
xxT

〉
Y =

〈
yyT

〉
C =

〈
yxT

〉
.

Specifically, following Ref. [10], we can write

A(x,y) =
[

xT yT
]

Q

[
x
y

]
, (2)

where

Q =
[

X CT

C Y

]−1

−
[

X 0
0 Y

]−1

. (3)

It bears remarking that the matrixQ is not positive def-
inite; there are negative as well as positive eigenvalues, and
the boundaries of constantA(x,y) are hyperbolas in(x,y)
space. For this reason, we refer to this as hyperbolic anoma-
lous change detection (HACD). Another consequence of
these negative eigenvalues is that, in contrast to difference-
based change detectors, the anomalousnessA(x,y) measure
is signed: it can be positive or negative.

2. MINIMUM ANOMALOUSNESS REGISTRATION

In an image pair, consider a pixelx, in the first image, and a
small window, containing pixelsym, about the correspond-
ing pixel, y0, in the second image. Ifx is a true anoma-
lous change consisting of an object not present in the corre-
sponding position in the second image, then all joint vectors
[xT yT

m]T are likely to have a large anomalousness measure.
Conversely, ifx does not represent a true anomalous change,
but [xT yT

0 ]T has a large anomalousness measure due to mis-
registration, we can expect that some joint vectors[xT yT

m]T

will have a low anomalousness measure if the window is large
enough to encompass the misregistration.



2.1. Algorithm

Motivated by this argument, we propose the following mis-
registration compensation scheme: For each pixel inχ, con-
sider a window about the corresponding pixel inγ, and find
the pixel within this window that gives the lowest anomalous-
ness when paired with the pixel inχ. Take that pixel as the
misregistration compensated pixel value.

We define the window by offset vectorswh andwv, the
simplest example being a3×3 window about the central pixel[

wh

wv

]
=

[
0 0 0 −1 −1 −1 1 1 1
0 −1 1 −1 0 1 −1 0 1

]
.

The procedure (see Fig. 1) is described by the local co-
registration adjustment (LCRA) algorithm:

ComputeQ for the image pairχ andγ
for all pixel indicesk, l do

for all window vector indicesm do
Setk′ = k + wh,m andl′ = l + wv,m

SetAk,l,m =
[

χT
k,l γT

k′,l′
]

Q

[
χk,l

γk′,l′

]
end for
SetAk,l = minmAk,l,m

end for

χ

γ

Fig. 1. Construction of a set of joint vectors from a single
pixel in imageχ and all pixels within a window about the
corresponding pixel in imageγ.

An equivalent but more efficient implementation is to ap-
ply a shift toγ for each relative position in the chosen window
and then to compute an anomalousness map for this image
pair (see Fig. 2), as described below:

ComputeQ for the image pairχ andγ
for all window vector indicesm do

Constructγm by applying shift(wh,m,wv,m) to γ
for all pixel indicesk, l do

Am,k,l =
[

χT
k,l γT

m,k,l

]
Q

[
χk,l

γm,k,l

]
end for

end for
SetAk,l = minmAm,k,l for all pixel indicesk, l
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Fig. 2. Minimization over the stack of anomalousness maps
for each pair ofχ and shiftedγ images.

The offsetwm that minimizesAk,l,m is naturally inter-
preted as the misregistration at the pointk, l in the image. We
do not, however, treat it as an accurate estimator of misregis-
trationper se; instead we interpret more loosely as a way to
compensate for the misregistration.

Note that covarianceQ is computed once and then applied
for every shifted image. A plausible alternative is to recom-
puteQ for everyχ and shiftedγ image pair, but this turns out
to be a bad idea: (i) it effectively (and incorrectly) assumes
that the same fixed shift is applied over the entire image, (ii)
it results in differences of normalization between the resulting
anomalousness maps, and (iii) it works poorly in practice.

We also remark that this algorithm, despite employing a
symmetric underlying ACD algorithm, is itself asymmetric
due to the asymmetry of the pixel-to-window matching. One
of the consequences is that an anomalous change consisting
of an object inγ that is not in approximately the same po-
sition in χ will not be detected, or will be assigned a lower
anomalousness than desirable. In circumstances in which this
is problematic, the algorithm is easily symmetrized by, for
example, performing the computation twice with the assign-
ments ofχ andγ reversed, taking the final result to be the
maximum over the two anomalousness maps.

2.2. Simulation Framework

Because anomalies are by definition rare, evaluating the util-
ity of anomaly detection algorithms can be problematic; anec-
dotal evidence is always valuable, but for more quantitative
comparisons, a large number of anomalies is needed. In the
simulation framework proposed in Ref. [10], one starts with
a baseimage, and generates two other images. Applying the
same pervasive difference to every pixel in the base image
produces an image ofnormal changes; applying an anoma-
lous change to a single pixel in the base image produces the
changeimage. When purely spectral ACD algorithms are em-
ployed, one can take a shortcut and produce achangeimage
in which every pixel constitutes an anomalous change. (By
contrast, when spatial pre-processing is built into the ACD al-



Fig. 3. False color rendition of the AVIRIS hyperspectral data

gorithm, there is significant additional complexity [11].) For
a given algorithm, the false alarm rate can be estimated from
thebase-normalpair, and the detection rate from thechange-
normalpair. The simulation framework applies the LCRA al-
gorithm independently to these two pairs, observing the con-
straint that thechangeimage be assigned as imageχ and not
as imageγ, which contains the registration window.

3. RESULTS

We present ACD results for both simulated and real anoma-
lous changes. In each case we evaluate the performance of
the LCRA algorithm in correcting (i) a simple shift of the en-
tire image by two pixels in the x direction, and (ii) a misreg-
istration consisting of a random (non-integer) offset at each
pixel, in both the x and y directions, with the offset vector field
smoothed to reduce abrupt changes between adjacent pixels.
The maximum offset in this second case is two pixels.

3.1. Hyperspectral data with simulated anomalous changes

A false color rendition of the hyperspectral test data is dis-
played in Fig. 3; this is an AVIRIS [12] image of the Florida
coastline, obtained from dataset1 f960323t01p02r04 sc01.
The simulation framework was initialized by using this im-
age as thebaseimage, applying a misregistration to the base
image to obtain thenormal changes image, and scrambling
thebaseimage to obtain the anomalouschangeimage. Fig. 4
shows detection results for both a simple image offset and a
smooth random misregistration. In these figures, the LCRA
window radius is indicated byr, with a radius ofr = 1
corresponding to a3 × 3 window, for example. In Fig. 4(a),
performance is indistinguishable from perfect forr ≥ 2, and
in Fig. 4(b) performance improves with increasingr.

3.2. Multispectral data with real anomalous changes

A pair of images of desktop clutter is used to compute perfor-
mance results for real data. One of these images is displayed
in Fig. 5 with a circle surrounding the anomalous change,
consisting of a sunflower seed which is rotated in the sec-
ond image. The pervasive changes consist of different light-

1AVIRIS data is available from the Jet Propulsion Laboratory (JPL) and
National Aeronautics and Space Administration (NASA) website:http:
//aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 4. Results using AVIRIS data with simulated anomalous
changes: misregistration is (a) uniform and (b) random.

ing conditions, and a misregistration. In Fig. 6, the “HACD
(aligned)” curve provides reference performance for HACD
with no misregistration. In both cases, LCRA (computed us-
ing r = 2) provides a significant performance improvement.
Note that the adjusted registration is often not observed to be
very accurate, despite the significant improvement in detec-
tion performance based on the resulting anomalousness map.

4. CONCLUSIONS

The LCRA algorithm introduced here appears to significantly
improve detection performance in the low false-alarm regime
(sometimes at the expense of performance in the high false-
alarm regime) for misregistered data. These performance
improvements have been observed for both the simulation
framework and real data.

Future research will address a number of promising ex-
tensions to this approach, including: (i) iteratively applying
the estimated registration adjustment, re-computing covari-
ances, and re-computing the local co-registration adjustment;



Fig. 5. Desktop clutter test image. Location of anomalous
change indicated by (blue) circle.

(ii) generalization of the registration window to allow explicit
adjustment for sub-pixel misregistrations; and (iii) incorpora-
tion of appropriate prior knowledge, such as smoothness, on
the form of misregistration.
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Fig. 6. Desktop clutter detection results for misregistration
that is (a) uniform and (b) random. The “HACD (aligned)”
curve corresponds to no misregistration, and provides an up-
per bound on misregistration compensation performance.
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