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Abstract
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1 Introduction

Our knowledge of the spatial distribution of the physical properties of geo-
logic formations is often uncertain because of ubiquitous heterogeneity and
the scarcity and sparsity of information. Yet capturing the complexity of nat-
ural hydrogeological systems and quantifying the associated uncertainty is
of paramount importance for reliable groundwater flow and transport assess-
ments. While many studies combine several types of information (including hy-
draulic conductivity, electrical resistivity, hydraulic heads and/or solute travel
times) to predict the salient features of flow and transport in heterogeneous
subsurface environments, the uncertainty associated with the delineation of
lithofacies and their hydraulic properties (e.g., hydraulic conductivity and
porosity) from limited geological and geophysical data is only marginally an-
alyzed. Such data, which include grain size distribution curves, are typically
derived from core samples, and are often poorly differentiated thus further
compounding predictive uncertainty.

Geostatistics has become an invaluable tool for estimating facies distributions
and their attributes at points in a computational domain where data are not
available, as well as for quantifying the corresponding uncertainty [4]. In the
presence of poorly differentiated data, or data with low signal-to-noise ra-
tios, identification of heterogeneous aquifer structure is often performed in
two steps. First, a multivariate facies-based parameterization approach rely-
ing on multivariate cluster analysis [6] is applied to classify aquifer materials
and to describe the heterogeneity of an aquifer’s lithology [10]. Second, Krig-
ing is used to estimate hydraulic and other properties within each cluster (a
sedimentological facies).

Geostatistical frameworks treat the properties of a formation, such as hy-
draulic conductivity K, as a random process that is characterized by multi-
variate probability density functions or, equivalently, by ensemble moments.
Whereas spatial moments of K are obtained by sampling K in physical space,
its ensemble moments are defined in terms of samples collected in probability
space. In reality only a single realization of a geologic site exists. Therefore,
it is necessary to invoke the ergodicity hypothesis in order to substitute the
sample spatial statistics, which can be calculated, for the ensemble statistics,
which are actually required as input to a stochastic model of flow or con-
taminant transport. Ergodicity cannot be proved, and requires a number of
modeling assumptions. Alternatives to geostatistics include neural networks
[7], support vector machines [12,15], and nearest neighbor classifications [13].

These and other similar approaches to facies delineation rely on one’s ability to
classify available data, i.e., to establish their membership in a given geological
facies. The task of assigning the values of an indicator function to hydraulic
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and soil properties data is nontrivial if properties in question are either poorly
differentiated or characterized by low signal-to-noise ratios, a situation often
encountered in geophysical site characterization. Section 2 contains a mathe-
matical formulation of this problem. We present three alternative approaches
to classify poorly differentiated data in Section 3, and use this classification
to reconstruct the boundaries between geological facies by means of a nearest
neighbor classification in Section 4. The proposed approaches are analyzed by
considering two synthetic porous media in Section 5.

2 Facies delineation from poorly differentiated data

We consider a problem of reconstructing a boundary between two heteroge-
neous materials M1 and M2 from spatially distributed parameter data. The
latter can consist of hydraulic data (e.g., hydraulic conductivity), geophysical
data (e.g., electric resistivity), and/or sedimentological data, {Ki ≡ K(xi)}Ni=1

collected at N locations xi = (xi, yi)
T , where i ∈ {1, . . . , N} and the super-

script T denotes the transpose. (While all three methods presented below are
applicable to three-dimensional settings, we present our results in two dimen-
sions to simplify the presentation.) The first step in our facies delineation
procedure is to analyze the distributions of samples with the goal of assigning
an indicator function

I(x) =

1 x ∈M1

0 x ∈M2

(1)

to each point where data are available. This is precisely the step that is affected
most by the poor differentiation of data. Consider, for example, a subsurface
environment consisting of two heterogeneous facies that are formed by clean
sand and silty sand. A typical histogram of hydraulic conductivity data for
such an environment is shown in Fig. 1. The measurements falling in the
overlapping region between the two distributions do not render themselves
to a straightforward classification by (1). We refer to such measurements as
poorly differentiated data.

To assign values of the indicator function (1) to such data, we consider three al-
ternative statistical approaches: a k-means clustering algorithm, an expectation-
maximization algorithm, and a minimum-variance algorithm. These are de-
scribed in some detail in Section 3.
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Fig. 1. A typical sample frequency distribution of the log hydraulic conductivity
Y = ln K of a subsurface environment composed of silty sand and clean sand (ref-
erence fields). The log hydraulic conductivity of the silty-sand and clean-sand facies
ranges between −7.00 and −2.70 and −4.15 and 0.60, respectively.

3 Classification of poorly differentiated data

By their very definition, poorly differentiated data do not lend themselves to
an unambiguous classification. Instead, such a classification has to be esti-
mated. We compare the relative performance of three alternative strategies: a
k-means clustering algorithm, an expectation-maximization algorithm, and a
minimum-variance algorithm.

3.1 k-means clustering algorithm

The k-means clustering algorithm [5, pg. 412], one of the first and still most
popular classification algorithms, consists of the following steps:

(1) Identify the number of clusters – in our example, one cluster for each of
the two geologic facies.

(2) Treat the minimum and maximum value of hydraulic conductivity as
initial values for the means (centroid positions) of the respective popula-
tions.

(3) Assign each of the conductivity measurements to the cluster with the
closest centroid.

(4) Recalculate the centroids based on the current cluster assignments.
(5) Repeat steps 3 and 4 until the centroid positions stabilize.

In our experiments, we used the kmeans function from a Matlab clustering
toolbox [2].
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3.2 Expectation-maximization algorithm

The expectation-maximization (EM) algorithm [5, pg. 236] takes advantage
of the fact that material properties of individual geological units can often
be characterized by classical unimodal distributions, while their counterparts
sampled across various geological units comprising the subsurface cannot. For
example, many geological facies are routinely characterized by log-normally
distributed hydraulic conductivity [11] and grain sizes [1]. While the EM algo-
rithm is equally applicable to any number of geological facies and distributions,
our presentation below is limited to two hydrofacies whose log conductivities
are Gaussian.

The EM algorithm treats the data {Yi ≡ lnK(xi)}Ni=1 as samples from a
population Y that represents a mixture of two Gaussian populations Y1 and
Y2,

Y = (1− λ)Y1 + λY2, Yk = N(Yk, σ2
k), k ∈ {1, 2}. (2)

The random variable λ takes the value of 1 with the probability Pr[λ = 1] = p
and of 0 with the probability Pr[λ = 0] = 1 − p. The mean Yk and variance
σ2
k of the k-th population (geological facies) and the value of the probability
p are determined by maximizing the likelihood function L,

max
p,Y k,σ

2
k

L, L ≡
N∑
i=1

ln fY(Yi), fY(y) = (1− p)fY1(y) + pfY2(y), (3)

where fY is the probability density function (PDF) of the random field Y in
(2), and fYi

is the Gaussian PDF of the random variable Yi (i ∈ {1, 2}).

The EM algorithm for solving (3) consists of the following steps [5, pg. 238].

(1) Make an initial guess for p, Yk and σ2
k (k ∈ {1, 2}).

(2) Compute the so-called responsibilities γi (the expectation step)

γi =
pfY2(Yi)

fY(Yi)
, i = 1, . . . , N, Γ1 =

N∑
i=1

(1− γi), Γ2 =
N∑
i=1

γi.

(3) Modify the initial guess (the maximization step) by computing the means

Y 1 =
1

Γ1

N∑
i=1

(1− γi)Yi, Y 2 =
1

Γ2

N∑
i=1

γiYi,

variances

σ2
1 =

1

Γ1

N∑
i=1

(1− γi)(Yi − Y 1)
2, σ2

2 =
1

Γ2

N∑
i=1

γi(Yi − Y 2)
2
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and the membership probability

p =
1

N

N∑
i=1

γi.

(4) Repeat steps 2 and 3 until convergence with a prescribed tolerance is
achieved.

In our experiments, we employed the mixtureEM function from a Matlab clus-
tering toolbox [2]. The convergence of the EM depends on the choice of an
initial guess. To facilitate the convergence, we used the k-means clustering
results to provide initial mean values, instead of the default random initial-
ization.

3.3 Minimum-variance algorithm

We compare these two algorithms with an algorithm that partitions data,
i.e., assigns the values of the indicator function, in a way that minimizes
the variability within each geologic facies. To the best of our knowledge, this
approach is new, at least in the present context. We accomplish this goal with
the following algorithm.

(1) Sort the values in the data set {Ki}Ni=1 from the smallest to the largest.
(2) LetN1 be a cutoff point separating this set into two, {Ki}N1

i=1 and {Ki}Ni=N1+1.
(3) Consider the sum of the variances in both sets,

Σ =
1

N1

N1∑
i=1

(Ki − µ1)
2 +

1

N −N1

N∑
i=N1+1

(Ki − µ2)
2,

where µ1 and µ2 denote the corresponding means.
(4) The partition is defined by N?

1 that minimizes Σ.

4 Delineation of Geological Facies

A variety of conceptual frameworks and computational approaches have been
proposed to estimate boundaries between geological facies from sparse data
(see Introduction). The starting point of such approaches is to assign the
values of the indicator function (1), a task that is prone to interpretive errors
if available data are poorly differentiated and/or the signal-to-noise ratio is
small (Section 2).
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This task can be achieved with the three alternative approaches described in
Section 3. We now proceed by describing nearest neighbor classification (NNC)
as a means for reconstructing geological facies from an estimated indicator
function data set {Ii}Ni=1 where Ii ≡ I(xi). We use NNC because it outperforms
both a geostatistical approach and support vector machines when applied to
well-differentiated data [13].

Given a set of data points {xi}Ni=1 with corresponding indicator function values
Ii, NNC uses the following algorithm to assign the value of the indicator
function I for a point x where measurements are not available.

(1) Define j as the index of the training data point, from the set {xi}Ni=1,
which is closest to the point x; i.e. j = argmini ‖x− xi‖2.

(2) Assign the indicator function value Ij at the data point xj to the indicator
function value at the point x.

It is worthwhile noting that in addition to better performance, NNC makes
no operational assumptions and has no free (fitting) parameters.

5 Computational Examples

To test our approach for facies delineation from poorly differentiated data,
we consider the two synthetic porous media shown in Fig. 2. The following
two-step procedure was used to generate both examples, i.e., to assign a value
of log hydraulic conductivity to each point (pixel). First, we generated two au-
tocorrelated, weakly stationary Gaussian fields with ensemble means of −4.96
and −2.30, respectively. (The mutually uncorrelated random fields had unit
variance and Gaussian autocorrelation with unit correlation scale.) Second,
these fields were superimposed onto the facies map in Fig. 3.

The goal of our numerical experiments is to reconstruct the boundaries be-
tween the two materials in Figs. 3 from a few (randomly selected) measure-
ments of log conductivity (Figs. 2). We considered data sets consisting of 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, and 500 measurements. Figs. 4
and 5 present typical histograms of data sets used to reconstruct the two media
in Fig. 2(a).

The reconstruction quality clearly depends on the locations of the sampling
points. To minimize this effect, we averaged simulation results over 10000
randomly generated realizations of the locations of data points for each sample
size. Sample locations were selected from a uniform distribution, and each
random realization was assigned an equal weight.
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(a) (b)

Fig. 2. Synthetic porous media, whose log hydraulic conductivity takes values be-
tween −6.9 (dark blue) and 0.6 (red). These computational examples pose different
reconstruction challenges: the porous medium (a) exhibits highly irregular inter-
nal boundary, while the porous medium (b) contains a preferentially directed small
inclusion.

(a) (b)

Fig. 3. Facies maps (indicator functions) used to generate the two synthetic porous
media in Fig. 2.

Our facies delineation approach consists of an initial step to estimate the
classification of the poorly differentiated data, followed by a facies delineation
step using the estimated classifications. We provide results for the initial data
classification step in Section 5.1, and results for the full facies delineation
problem in Section 5.2.
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Fig. 4. Histograms of the log hydraulic conductivity values in the two regions of
Fig. 2(a).

Log conductivity
-2.0-3.0-4.0-5.0-6.0-7.0

50
45
40
35
30
25
20
15
10
5
0

(a)
Log conductivity

1.00.0-1.0-2.0-3.0-4.0-5.0

450
400
350
300
250
200
150
100
50
0

(b)

Fig. 5. Histograms of the log hydraulic conductivity values in the two regions of
Fig. 2(b).

5.1 Data classification

Since our facies delineation approach consists of an initial step to estimate the
classification of the poorly differentiated data, followed by a facies delineation
step using the estimated classifications, we first provide results for the initial
data classification step, and thereafter for the full facies delineation problem. I
added the previous paragraph to clarify the distinction between the

two types of results, but perhaps this still needs some work. Fig. 6
presents the classification errors (for classification of the poorly differenti-
ated data) corresponding to the three alternative classification approaches
described in Section 3. The errors are defined as the number of misclassified
data points relative to the total number of sample points. The classification
errors for the porous medium in Fig. 2(a) are larger than those for its coun-
terpart in Fig. 2(b). This is to be expected since the boundary in the for-
mer is much more extensive and irregular than in the latter. When averaged
over the two examples presented in Fig. 2, the minimum-variance approach
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Fig. 5. Histograms of the log hydraulic conductivity values in the bluish (a) and
reddish (b) regions of Fig. 2(b).

5.1 Data classification

Fig. 6 presents the classification errors (for classification of the poorly differ-
entiated data) corresponding to the three alternative classification approaches
described in Section 3. The error for each realization is defined as the number of
misclassified data points relative to the total number of sample points in that
realization, and the overall error reported for each sample size is the average
over all realizations for that sample size. The classification errors for the porous
medium in Fig. 2(a) are larger than those for its counterpart in Fig. 2(b). This
is to be expected since the boundary in the former is much more extensive and
irregular than in the latter. When averaged over the two examples presented
in Fig. 2, the minimum-variance approach performs slightly better than both
k-means and expectation-maximization algorithms. The k-means provides the
best performance on the computational example in Fig. 2(b), but the worst
performance on the computational example in Fig. 2(a).
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Table 1
Examples of threshold-based minimum classification errors

Sample 1

Measurement - 5.1 -4.5 -4.2 - 3.4 - 2.0 - 1.9

Indicator -1 -1 -1 + 1 + 1 + 1

Sample 2

Measurement -5.4 -5.2 -4.3 - 4.1 - 3.6 - 2.1

Indicator -1 -1 +1 - 1 + 1 + 1

With a notable exception of the EM algorithm’s performance in Fig. 6(b),
all three approaches to classification of poorly differentiated data exhibit uni-
formly convergent behavior in that the classification error decreases as the
number of available measurements increases (Fig. 6). After a certain limit, the
addition of more data providing little discernible gain in reducing the clas-
sification error. However, it is worthwhile recalling that in our analysis the
measurement locations are selected at random. In actual field applications,
one would expect a sampling strategy that relies on geophysical site charac-
terization, expert opinion and other soft data to guide the selection of new
sample locations.

Also shown in Fig. 6 is minimum threshold-based classification error, measured
as the fraction of points misclassified with respect to the ground truth clas-
sification (i.e. the true reference classification, determined by the facies maps
in Fig. 3, from which the synthetic fields were generated). The error increases
with sampling density, which may seem counterintuitive. To understand this
behavior, it is important to recognize that the ground-truth classification may
be such that it cannot be obtained from a threshold on the corresponding
scalar values. This can be demonstrated by the two sample sets (sorted con-
ductivity values and corresponding ground truth classification) shown in Ta-
ble 1. While the data in Sample 1 can be perfectly classified by a threshold of
(-4.2 -3.4)/2, the data in Sample 2 has a minimum threshold-based classifica-
tion error of 2/6. The lines with squares in Fig. 6 show the smallest possible
error that can be obtained by estimating the classification with thresholding
the hydraulic conductivity values. We observe the increase of the minimum
possible threshold-based estimation error as the number, N , of samples grows,
the total number of ways of classifying the points (2N) grows much faster than
the number of ways of partitioning the points based on a threshold (N + 1).
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Fig. 6. Fractional error (the number of misclassified data points relative to the total
number of sample points) for the two porous media shown in Fig. 2.
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Fig. 6. Fractional error (the number of misclassified data points relative to the total
number of sample points) for the two porous media shown in Fig. 2.
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(b)

Fig. 6. Errors (the number of misclassified data points relative to the total number
of sample points) in reconstructing the porous media in Fig. 2(a) and Fig. 2(b),
respectively. The figure compares the performance of three alternative approaches
to data classification—a k-means clustering algorithm, an expectation-maximization
algorithm (EM), and a minimum-variance algorithm (Min. var.)—and the smallest
possible threshold-based classification error (Thresh. min.).

5.2 Facies reconstruction

After identifying the membership of the data points in either of the facies,
i.e., after assigning the values of the indicator function to each data point,
we use the NNC described in Section 4 to estimate the boundaries between
the two facies in the two distinct geological settings shown in Fig. 2. Fig. 7
exhibits the boundary reconstruction errors introduced by this procedure when
applied to the indicator function data estimated with the k-means clustering,
expectation-maximization, and minimum variance algorithms. The errors are
reported as a number of misclassified pixels relative to the total number of
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pixels. Also presented in this figure are the reconstruction errors one would
obtain with NCC if none of the data points were misclassified. This “ground
truth” reconstruction relies on the true indicator values shown in Fig. 3.
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Fig. 7. Boundary reconstruction errors for the two synthetic porous media shown
in Fig. 2. The errors are defined as a fraction of misclassified pixels relative to the
total number of pixels.
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Fig. 7. Boundary reconstruction errors for the two synthetic porous media shown
in Fig. 2. The errors are defined as a fraction of misclassified pixels relative to the
total number of pixels.

As can be expected, the misclassification errors decrease with the number of
samples (data points) increases. The introduction of more data leads to the
reduction in the reconstruction error, with a rate that is much faster at low
sampling densities in the example in Fig. 2(b) than in the example in Fig. 2(a).
At higher sampling densities, adding more poorly differentiated data reduces
the reconstruction errors in the example in Fig. 2(a), while the effect on the
reconstruction errors in the example in Fig. 2(b) is minimal. This effect is a
result of the much greater complexity of the region boundary in Fig. 2(a) than
in Fig. 2(b), and is also observed for well-differentiated data. At low sampling
densities, each additional point more accurately constrains the simple bound-

12



ary in Fig. 2(b) than the complex boundary in Fig. 2(a). At higher sampling
densities, additional points are more likely to lie along the boundary, and
therefore play a more prominent role in reducing the error in Fig. 2(a) than
in Fig. 2(b). In both cases the asymptotic error rate is non-zero, as a result
of the non-zero asymptotic error rate for the underlying poorly-differentiated
data classification, on which the reconstruction is based. (In contrast, the re-
construction error rate at 100% sampling density is zero for well-differentiated
data, for which the true classification is known a priori.) Finally, while the
three alternative approaches to classification of poorly differentiated data re-
sult in considerably different outcomes in terms of classification error (Fig. 6),
their impact on the reconstruction error is less pronounced (Fig. 7).

6 Conclusions

We analyze the value (information content) of poorly differentiated data or
data with low signal-to-noise ratios for the task of facies delineation. To clas-
sify such data, we considered two existing approaches, k-means clustering and
expectation-maximization algorithms, and proposed a new one, the minimum-
variance algorithm. Once classified, the data were used in conjunction with
nearest neighbor classification to reconstruct two synthetic randomly gener-
ated porous media consisting of two heterogeneous materials. Our analysis
leads to the following major conclusions.

(1) The selection of a proper classification algorithm has a significant impact
on the data classification, with the minimum-variance algorithm being
the most robust.

(2) The impact of this selection on errors in reconstruction of geological facies
is significantly smaller.

(3) At low sampling densities, the addition of new data leads to a nearly
exponential decrease in both classification and reconstruction errors.

(4) The value of additional data at high sampling densities is limited, with
both errors reaching their asymptotic values.

It is worthwhile recalling that our results and conclusions hold on “average,”
so that the impact of a fortuitous selection of measurement locations is either
minimized or eliminated all together.
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