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Abstract— A typical subsurface environment is heterogeneous, to lithofacies delineation employs discontinuous geostatistical
consists of multiple materials (geologic facies), and is often models, such as the Indicator Kriging (IK) [2], [3], [4]. IK has
insufficiently characterized by data. The ability to delineate also found its way into image processing [5].

geologic facies and to estimate their properties from sparse . . . h .
data is essential for modeling physical and biochemical processes Maphme learning prowdgs .an allternatlve to geostat|st|p§ by
occurring in the subsurface. We demonstrate that the Support allowing one to make predictions in the absence of sufficient
Vector Machine is a viable and efficient tool for lithofacies delin- data parameterization, without treating geologic parameters
eation, and compare it with a geostatistical approach. To illustrate as random and, hence, without the need for the ergodicity
our approach, and to demonstrate its advantages, we construct 5q5mptions. Closely related to the field of pattern recogni-
a synthetic porous medium consisting of two heterogeneous .. . . . -
materials and then estimate boundaries between these materialst'on' _machlne learning re_fers to a fam_lly of computaﬂo_nal
from a few selected data points. Our analysis shows that the @lgorithms for data analysis that are designed to automatically
error in facies delineation by means of Support Vector Machines tune themselves in response to data. Neural networks are an
decreases logarithmically with increasing sampling density. We example of such algorithms that have been used in hydrologic
also introduce and analyze the use of regression Support Vector modeling. While versatile and efficient for many important
Machines to estimate the parameter values between points where - . . . ) . .
the parameter is sampled. applications, including the deI|neat|or_1 of geologic facies [6],
neural networks usually do not provide bounds on expected

classification errors.

We recently introduced [7] another subset of machine learn-
ing techniques, the Support Vector Machine (SVM), for appli-
I. INTRODUCTION cation in facies delineation. While similar to neural networks

Our knowledge of the spatial distribution of the physicdl tS 90als, the SVM is firmly grounded in the rigorous mathe-
properties of geologic formations is often uncertain because™ftical analysis of Vapnik's Statistical Learning Theory (SLT)
ubiquitous heterogeneity and the sparsity of data. Geostatisties Which allows one to assess its performance and bound the
has become an invaluable tool for estimating such propertie€gfresponding errors. Like other machine learning techniques,
points in a computational domain where data are not availabf/MS €nable one to treat the subsurface environment and
as well as for quantifying the corresponding uncertainti’.s pgrgmeters as determ,mspc. _Uncertamty associated with
Geostatistical frameworks treat a formation’s properties, sutifpufficient data parameterization is then represented and quan-
as hydraulic conductivityX (x), as random fields that aretlfled_by treating sampling Io_ca'uons as a random _sub.sey of all
characterized by multivariate probability density functions oP©SSible measurement locations. Such a formulation is ideally
equivalently, by their joint ensemble moments. Thisgx) is Suited for subsurface imaging.
assumed to vary not only across the physical space (coordinat¥? [7], we used linear SVMs to locate a boundary between
x), but also in probability space (this variation may be reprdV0 materials in a perfectly stratified geologic formation.
sented by another coordinage which is usually suppressedSUCh a boqndary is by deflnlyon e|ther_a strgught line (in
to simplify notation). Whereas spatial moments &f are two. dimensions) or a plape (in three dimensions), so that
obtained by sampling<(x) in physical space (across), its available data are always Ilnearly_sep_arable. Here we consider
ensemble moments are defined in terms of samples colleci®g general (nonlinear) form, which is referred to simply as
in probability space (acrost). Since in reality only a single SVMs, to delineate hlghly wregular boundaries between two
realization of a geologic site exists, it is necessary to invoke tR§€rogeneous geologic facies, based on a sparsely sampled
ergodicity hypothesis in order to substitute the sample spaf@rameter. _ o _
statistics, which can be inferred from field and/or laboratory e formulate the problem of facies delineation in Section II.
scale data, for the ensemble statistics, which are actuaﬁ Ct|on_III provides a brief descnptpn of th_e general theor_y
required. Ergodicity cannot be proved, and requires a numttr Nonlinear Support Vector Machines, with an emphasis
of modeling assumptions, e.g., [1, Sec. 2.7] and referenc¥s their application in subsurface imaging. SVMs are then

therein. One of the most popular geostatistical approacH&€d in Section IV to reconstruct a boundary between two
heterogeneous geologic facies from a few data points extracted
D. M. Tartakovsky and B. Wohlberg, Theoretical Division, Group T-7, M§rom a randomly generated porous medium. In Section IV we
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geostatistical approach. Then the problem of minimizing (2) reduces to the minimiza-
tion of the indicator variance

II. APROBLEM OF FACIES DELINEATION U% _ /(I _ I)QdP(I). (3)

Consider the problem of reconstructing a boundary between ) o
two heterogeneous materials (geologic facies) from paramel&r approximateP(I), geostatistical approaches assume er-
dataK; = K(x;) collected atN locationsx; = (z;,y;)7, god|C|ty, i.e. that the samplg statlstlgs Bf including mean
wherei € {1,...,N}. Such problems are ubiquitous intI: yananpeﬁ, and correlation functiom; com.puted from
subsurface hydrology since the geologic structure of the siatially distributed dat@/(x;) Al can be substituted for the
surface plays a crucial role in fluid flow and contaminant tran§nNSemble statistics. Furthermore, it is necessary to assume that
port. A typical example is the problem of locating permeab@ese sampling statistics are repr_esentatlve of the whole field.
zones in the aquiclude that separates two aquifers, the upperL! [8] often uses the.! norm in (2), and treats
aquifer contaminated with industrial pollutants, and the lower 1) the indicator function/(x) as deterministic, and
aquifer used for municipal water supplies [9]. Parameter data2) the choice of sampling locationsc; };%; as random.
can include measurements of hydraulic conductivity, electridien the problem of minimizing (2) reduces to the minimiza-

resistivity, cumulative thickness of relevant geologic facie§on of theexpected risk

and grain sizes. 1
The first step to facies delineation consists of analyzing a Rexp = 2 / [ = Z|dP(x). )
data histogram to assign to each data point a value of f@ther than attempting to estimate probability distribution
indicator function, P(x) from spatially distributed data, statistical learning re-
1 x,eM places the expected risk..,, with the empirical risk
0 X; € Mo, 1 N
where M; and M, are the two facies. This step is often Remp = ﬁZII(Xi) — )l ®)

=1

nontrivial, since a typical geologic facies is heterogeneous, g ¢ i lated b babilistic bound
that parameter measurements vary from point to point. He)E ese two quantities are related Ly a probabliistic bound,
exp < Remp + ¢, Where the known functiory depends

we assume that the available parameter ddtdx;)}Y , are : : . ; :
well differentiated, so that the process of assigning the valu®d the Vapnik - Chervonenkis (VC) dimensigrepresenting

f the indicator functi ¢ intsx, 1Y d tintrod a measure of the complexity of the family of functiof$
iontergrlenti\:;ae?rro?snc lons to pointx; };—, does not introduce and the number of data point¥ [10][11, Ch. 4][12, Sec.

Let Z(x, ) be an estimate of the “true” indicator ﬁeld1.3][12, Ch. 5]. Analysis of the tightness of the bouRg,, <

I(x), whose adjustable parametetsare consistent with, and é%emp f? dprl;)vlldes: useful thte orr]etlclzgll;n Ot'V?tg)Thfotr tt::e iVM q
determined from, the available d&ts;, I(x;)}X ;. One would escribed vefow. However, 1 snol'd be noted that this boun

like to construct an estimate that is as close to the true field'flsOften too loose to be of much practical significance.

possible, i.e., to minimize the differencg] — Z||, between I1l. SUPPORTVECTORMACHINES
the two. Since parameters are typically sparsely sampled
this problem is ill-posed and requires regularization. Thg
most common regularization procedure treats the underlyi
deterministic but sparsely sampled spatial functiéi{s) and
I(x) as random fields. An added benefit of such approac
is that they allow one to estimate the uncertainty associat&
with insufficient data parameterizations.

Within a general probabilistic framework, both the indicato|re
field I(x) and the choice of sampling locatiofig; } Y, can be
V'.EW.Ed as random, and can be described by a_J‘_"”t probabil Vstraight lines (in two dimensions). It is generalized to
distribution P(I,x). Then the problem of obtaining the best,

. - ot ; L2 ccommodate arbitrary data sets by means of the kernel
estimate of the indicator field is equivalent to minimizing th?echnique introduced in the following section
functional '

From the outset, we wish to emphasize the novelty of the
R=/||I—I|\dP(IaX)~ (2) proposed use of SVMs. In the usual pattern classification
applications of SVMs, each data point is of high (often very
Unfortunately, since in reality only a single realization ofjgh) dimensionality. For example, in the classical example
a specific geologic formation exists, there is no direct wayf handwritten digit classification, each image of a digit is
to eVaIuateP(I,X). Geostatistical and Statistical Learning:onsidered a sing'e h|gh dimensional data point, and the

The SVM is a relatively recent technique that has attracted
reat deal of interest due to its excellent performance on a
e range of classification problems, e.g., [10], [11], [13].

The theoretical foundation of this technique is provided by

, which provides a bound on the expected rg&k,, [11,
. 6, Remark 6.7], [12, Chapter 7].

The simplest SVM deals with linearly separable data col-

cted from perfectly stratified geologic media, where different

eologic facies are separated by planes (in three dimensions)

techniques provide two alternatives for evaluating (2). sampling density of the entire space is, by practical necessity,
Geostatistical approaches use thienorm in (2), and treat exceedingly small. In subsurface characterization, each sample
1) the indicator function/(x) as a random field, and point represents a location within 2-D or 3-D space, and the

2) the choice of sampling locatior{; } ¥ ; as determinis- sampling density, while usually small, is much larger than in
tic. most pattern recognition applications.



A. Linear SVMs These inequalities imply that the estimated boundary lies at
the center of the margin, i.e., thdt = d; = d/2. Defining

the indicator functionJ(x) = 2I(x) — 1, so thatJ(x) =
a-x+b=0. (6) —1 wheneverl(x) = 0 and J(x) = 1 wheneverl(x) =

1, and denotingJ; = J(x;) allows one to combine the two
inequalities (7) into one,

Consider a boundary given by the straight line

We wish to determine the unknown coefficieats= (a1, as)”
andb from the data sefx;, I(x;)},. In machine learning,
an algorithm for constructing such a boundary is known as a (a-x; +b)J; > 1 for ie{l,...,N}. (8

linear classifier. . ” "
The inequalities (8) become equalities for tke that are

support vectors. Letla|| = y/a? + a3 denote the Euclidean
length ofa. Since the distances andp, from the coordinate

origin to the linesa-x; + b =1 anda-x; + b = —1 are,
respectively,
b+1 b—1
p=-rr and  pp=-—T ()
||| |||
the distance between these two lines— p,, i.e., the margin
d, is given by )
= —. (10)
all
Thus the SVM can be formulated as a problem of maximizing

d (or, equivalently, minimizing||al|) subject to the linear
constraints (8). Introducing Lagrange multiplieys > 0 for

Fig. 1. A schematic representation of the boundary between two heteroge- {1 o N} leads to the Objective function

neous geologic facied/; and M2 (located above and below the boundary, ’ ’

respectively) in a perfectly stratified geologic formation. Fheand ©® signs 1 N

indicate the locations where a paramet&r is sampled andl = 1 or _ = 2 ) v L

= 0, respectively. A maximum margin linear classifier for displayed samples L(a, ”Y) 2 ||a|\ Z Vi [(a X+ b)‘]’ 1}' (11)
consists of the decision boundary or the boundary estimate (solid line), and =1

the margin (dotted lines). A solution of this optimization problem definesand b and

thus, in accordance with (6), the boundary between the two

A maximum margin linear classifier is illustrated in Fig. Jayers, located at the center of the margin.
— the boundary estimate is indicated with the solid line, Often, the data are not perfectly linearly separable. A
and the dotted lines indicate the extent of tmargin i.e., more general SVM formulation introduces slack variables
the region within which the boundary could be shifted of; > 0 into the optimization, allowing for misclassification
thogonally without misclassifying any of the data.df and but penalizing the sum of the classification errors, so that the
d2 designate the perpendicular distances from the estimafgdblem becomes the minimization of
boundary (solid line) to the nearest data point(s) in materials N
M, and M, respectively, then the size of the margin (dotted }HaHQ i 025. (12)
lines) isd = dy + ds, and the sample points determining the 2 —~ !
position of the margin are called thsupport vectorsSince _ ) )
the lines bounding the margin are parallel to the boundary (§j‘,’bJeCt to the constraints [13, Ch. 2] [14, Section 12.2.1]
their normal is alsaa. The SVM determines the coefficients (4.x; 4+ )7, >1—¢ for ie{l,...,N}.
a andb in (6) by maximizing the size of this margin. While (13)
any choice of straight line that lies within the margin provides ) ) o
the same empirical risRenp, the straight line at the centerS before, introducing Lagrange multipliers,d; > 0 for
of the maximum margin is a principled choice for minimizing € {1,---, N} gives the objective function
the expected risk.., [12, Section 7.2]. 1 N

The SVM is constructed as follows. Let- x +b = +1  L(a,b,&,v,d) = §|\a||2 - Z%- [(a-x;+b)J; —1+&]

be two equations for the dashed lines bounding the margin in i=1

Fig. 1. (Note that while constants andb in (6) are defined N N

up to a multiplicative constant, these equations ensure their + CZ@ - 251‘&- (14)
unigueness.) Since the margin separates the two materials, all i=1 i=1

data points satisfy either Denoting the optimal values oh and b by a* and b*

respectively, the indicator functiofi(x) is given b
a-x; +b>+1 (7a) oPECVEY (x) is given by
or J(x) =sign(a* - x + b*). (15)
and is usually referred to asdecision functionn the SVM
a-x;+b< -1 (7B) literature.



To obtaina* andb*, it is often convenient to use the dual The dual optimization problem (16) is now recast as
optimization problem [14, Section 12.2.1]

N N N
1
N N N
1 max Yi— = YivyJidj F (%) - F(x5) (24)
msx{zw—22271:%@@-&} (16 7 {Z; PRL J
i=1

i=1 j=1
i=1 j=1

subject to the constraints subject to the constraints

N N
0<vy < C and Z’y“]z =0. (17) 0<v < C and Z’th]z = 0. (25)
1=1 i=1
Let~; (i € {1,...,N}) be solutions of (16) — (17). Then the The key observation here is that the feature space vectors
solutions ofdL/day, = 0 for (14) give enter into the optimization only within an inner product. If a
Mercer kernel

N
a* = Z’Yi*Jinw (18)
=1 K(x,x') = F(x) - F(x) (26)
Let x; and x_ denote arbitrary support vectors for whichs ayailable for a specific mapping, the required inner
J =1andJ = —1, respectively. Then the constraints (13)products may be computed directly from the physical space,
which at these points become equalities, give without explicitly performing the potentially computationally
R expensive mapping into the feature space. Hence the dual
bt =gt (x4 x), (19) optimization (24) may be expressed as

Thus a solution for the indicator function (15) is

N 1 N N
N max oz o~ T T (X X 27
J(X) — sign <Z ’Y:J’LX’L .x + b*) . (20) ’;a {zzzl’yl 2 ;;’Yz’ijz‘]?K( T J)} ’ ( )
=1
avoiding explicit computation of the mapping.
B. Nonlinear SVMs In analogy to (18) — (20), the indicator function is now given
In most practical problems, boundaries between geolod¥
facies are significantly more complex than a straight line N
or a plane. To account for this geometric complexity, one o * 7. , *
can generalize the linear SVM by noting that data which I (x) = sign (Z 7%, xi) + b ) ' (28)
cannot be separated by a straight line or plane in the two- or
three-dimensional space of observation often become lineadrgre v; (i € {1,...,N}) defined as a solution of the dual
separable (i.e., separable by a hyperplane) when projected grimization problem (27),
another, usually higher-dimensional space. N
Let F : R® — R™ be a mapping of thex-dimensional * _ * 7. ,
physical space onto am-dimensional space (known as a a= Z% i (i), (29)
feature space) in which the linear SVM can be applied. The
equation for a hyperplane separating the two materials in tAgd b* is given by (19). Note that the decision function (28)
m-dimensional space is is expressed in terms of the kern€l without the need for
explicit mapping onto the feature space.
a-F(x)+b=0, (21) Among a wide variety of Mercer kernels, we will consider

where the dimensiom: and parametera € R™ andb are the performance of the polynomial kernel of orger
determined from the transformed data $&(x;), J;}Y, by . .
solving the quadratic optimization of the linear SVM (14), KeLm(x,x) = (x-x" +1)7, (30a)

i=1

i=1

I the sigmoid kernel

i=1 Ksia(x,x') = tanh(px - x" + 0), (30b)
N N
+CY &= sk (22) exponential radial basis function kernel
i=1 =1
In analogy to (15), the indicator function is given by Kerp(x,x') = exp <|X22X|> , (30c)
(o2
J(x) = sign(a* - F(x) + b*). (23)

and the Gaussian radial basis function kernel
While this indicator function is linear in the feature space, it

corresponds to a nonlinear function in the physical (or input) Karp(x,x') = exp (_|X_x/||2> ) (30d)
space, the specific form being determined by the mapging 202



IV. SYNTHETIC EXAMPLE

To demonstrate the applicability of SVMs to subsurface
imaging, and to elucidate their relative advantages with respect
to a geostatistical approach, we reconstruct, from a few data
points randomly selected according to a uniform distribution,
the boundaries between two heterogeneous geologic facies in
a synthetic porous medium shown in Fig. 2. This synthetic
example was generated as follows.

We start by generating two autocorrelated, weakly station-
ary, normally distributed processes, representing two distinct
spatial distributions of log hydraulic conductivity = In K
with the ensemble means ef0.1 and 7.0. When hydraulic
conductivities are expressed fim/day], this corresponds to
clayey and sandy materials, respectively. Both log-conductivity
d'_smbUt_lonS have_ unit variance and Gaussian au'FocorreIatl,gB. 3. Classification of data in Figure 2, obtained by setting a threshold
with unit correlation scale. We take these two fields to bgiue of 4.0.
mutually uncorrelated. The fields are generated by the SGSIM
code [15] on a60 x 60 grid, using a grid spacing of /5 of . ) ] ]
the log-conductivity correlation length. kernels in (30). One can see that the radial basis funct_lon

Next, the composite porous medium in Fig. 2 is constructé§els (GRB and ERB) provide the best performance, which
by randomly choosing the shape of the internal boundaﬁ/nOt surprising given the general popularity of these kernels

between the two materials and by assigning values of lof)-SVM applications [17].

conductivity to cells in the domain. Assigning the indicator

function (1) with a threshold value of 4.0 to each element on 50 T T T T

the grid results in Fig. 3. 45 =, —
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Fig. 4.  Error rates corresponding to the SVMs with = 1.0 and the
following kernels: polynomial (PLM) withp = 2 andp = 3, sigmoid (SIG)
with p = 1.0 and ¢ = 0.0, Gaussian radial basis (GRB) with= 1.0, and
exponential radial basis (ERB) wiit = 1.0.

Figs. 5 and 6 show the geologic facies reconstructed by
Fig. 2. Synthetic data on 60 x 60 grid. Values range between -2.04 andgn ERB SVM witho = 1.0 from 9 and 180 sample points,
9.89. respectively. The locations of sample points are indicated by
We used an SVM [13], [16] to reconstruct the boundar h.e lighter shades. .The.comparlson of these reconstructions
ith the true field in Fig. 3 shows that even very sparse

between the two geologic facies in Fig. 3 from sets . . .
randomly selected data points. A set of sampling densiti%@mplmg might be sufficient for the SVMs to capture general

ranging from0.25% (9 data points) t®20% (720 data points) tLéndS |fn the spatle}l g{;ﬁl/lngement ﬁf geologlg f?mes{ HOV\r/]ngIr '
was selected, and for each sampling density an ensemble i pe(rj or[[nanctﬁ 0 ¢ ISI on fsuc sfpgrste a'atse's IS h'lghl y
20 randomly generated realizations of the sample Iocatioﬂgpen ent on the actual locations of data points (i.e., highly

was constructed. (To accentuate the sparsest data sets,vﬂﬁ' .ble _from one realization to another.). As the sampling
figures below only show the results up to the% sampling dens_lty increases, the SVMs_ capt_ure finer fgatures of the
density.) Classification errors for each sampling density We.?gat'al arrangement of geolog_lc fame;, a_nd their performance
computed as the fraction of misclassified grid points averag'édles'S dependent on a sampling realization.

over the classification results for each of the 20 realizations ) ) o

at that sampling density. Fig. 4 compares the performanfe COmparison with a geostatistical approach

of SVMs with the polynomial (PLM), exponential radial We compare the accuracy of the facies reconstruction by
basis (ERB), Gaussian radial basis (GRB), and sigmoid (SI@ans of the SVM with that obtained by a geostatistical



Error (%)
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Fig. 7. Error rates corresponding to the GSA and SMM £ 10.0, ERB
kernel withe = 1.0) approaches.

Fig. 5. Classification of data in Fig. 2, obtained by an ERB SMM £

1.0, 0 = 1.0) using 9 sample point0(25% sampling density).

B. SVM parameter sensitivity

The performance of the SVMs depends on the choice of
C in (22) and the fitting parameters in the Mercer kernels
(30). The optimal selection of these parameters is a nontrivial
issue. The standard approach is ei@ss validation which
involves excluding a subset of the training data from the
training step, and using it to evaluate the performance of the
resulting classifier [12, Sec. 7.8.1]. This simplest form of cross
validation is theLeave-One-Ouf{LOO) method [18], [19],
described in some detail in Section IV-C. Alternatives to cross
validation include those discussed in [20], [17], [21], [22].

We address this important issue in the context of subsurface
characterization by performing a sensitivity analysis of the
SVM performance with respect to the fitting parameters.
Thereafter, as described in some detail in Section IV-C,
we employ the LOO method to automatically select these
Fig. 6. Classification of data in Fig. 2, obtained by an ERB SMM £ parameters.

1.0,0 = 1.0) using 180 sample point$¥: sampling density). Figs. 8 and 9 and demonstrate the sensitivity to a fitting
parameters of the SVMs with the exponential radial basis
(ERB) and Gaussian radial basis (GRB) kernels given by
approach (GSA) described in the Appendix. It is importar§80c) and (30d), respectively. One can see that, when the
to note that this and other geostatistical approaches to faci@npling density exceed$s, the performance of both SVMs
delineation assume that the relative volumes occupied by tierelatively insensitive to the choice aef (with its values
two materials obtained from a sample are representative of ¥t@&ying over about two orders of magnitude). This finding

whole field. This assumption is usually difficult to validate & encouraging, since the optimal choice ®fis nontrivial,
priori. and computationally expensive when performed via LOO and

Fig. 7 shows the comparison of the performance of GSi&lated methods.
and a SVM withC' = 10.0 and the ERB kernel witlr = 1.0. _
When enough measurements are available (i.e., when fheSVM parameter selection
sampling density is high enough), both methods have similarThe apparent lack of sensitivity of the SVM performance
performance, with the SVM being slightly more accurate thao the selection of kernel parameterin our application can
GSA. Two factors, however, argue strongly in favor of SVMde used to justify the manual selection of a set of SVM
First, they perform relatively well even on highly sparse daggarameters. We used this approach in Section IV-A to compare
sets (see the boundary reconstruction frorsampling points the relative performance of the GSA and SVM methods.
in Fig. 5), on which GSA fails because the sample statisti&ich a procedure might bias this comparison in favor of the
(variograms in particular) become statistically meaninglesSVM method. To demonstrate that this bias is insignificant,
Second, SVMs are highly automated, while GSA generallye compare the performance of the SVM with manually
requires manual data analysis to construct sample spatialected parameters with the performance of an SVM, whose
variograms and to identify a proper interpretive theoreticplirameters are selected automatically by means of the standard
model. As a result, GSAs are highly time consuming ardOO method. The LOO method consists of the following
depend on the subjective judgment of the practitioner. steps.
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Fig. 9. Error rates corresponding to the SVMs with= 10.0 and a GRB

kernel (30d) with several values of.
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Fig. 10. Error rates corresponding to the GSA approach (GSA) and the SVM
with the ERB kernel, with parameter selected either manually (SVM-f) or
automatically by the leave-one-out method (SVM-I).

the domain reconstruction errors resulting from the geosta-
tistical approach (GSA), the SVM with manually selected
parameters”’ = 10.0 and o = 1.0 (SVM-f), and the SVM
with parameters selected automatically using the LOO method
(SVM-I). One can see that both SVM approaches outperform
the GSA approach, with the the difference between the SVM
approaches being relatively small.

D. ldentification of hydraulic parameters

In hydrologic applications, the delineation of geologic facies
from parameter data is often not sufficient. Since many geo-
logic facies are heterogeneous, it is also necessary to assign
parameter values to locations (e.g., elements of a numerical
grid) where data are not available. Geostatistical approaches
achieve this goal througtata interpolationalgorithms, such

1) Identify the two-dimensional SVM parameter space
(spanned by paramete¢s and ), over which parame-
tersC ando are allowed to vary. In our computational
example, we chose the rangés € [0.10,10.00] and
o = [0.32,10.00] to exclude parameters for which
poor performance is expected priori (see [23] for a
discussion of asymptotic properties of GRB kernels with
respect to these parameters);

2) Discretize the parameter space on a
regular grid. In our example, we use
(C,0) € {0.10,0.32,1.00,3.16,10.00}  x

{0.32,0.56,1.00,1.78,3.16,5.62,10.00};

Leave out the first of the data poinf#(;} ; and train

the SVM on the remainingv — 1 data points;

Compute the error in the SVM estimation of the first
data point for each of the grid point of parametérs
ando;

Repeat this procedure by leaving out the second, third,
and so forth data point, and training the SVM on th
remaining N — 1 data points;

Select the set of parameters to minimize the mean of
these errors over all left-out samples.

3)

4)

5)

6)

as Kriging [15]. SVMs take an alternative route by employing
data regressiorstrategies as outlined in Appendix .

Eig. 11. Regression of 9 sample poings25% sampling density) from data
in Figure 2, obtained by a GRB(= 10.0, ¢ = 10.0) SVM regression.

In addition to the direct use of the nonlinear regression (41),

Given the computational expense, we performed the LO&e explore a two-step procedure. First, we use the SVM to
method for the four lowest sampling densities. The results délineate the geologic facies from a data{s&tx;)}~ ;. Then
these simulations are presented in Figure 10, which compaves perform a separate nonlinear regression (41) on the data
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Fig. 12. Regression of 9 sample points25% sampling density) from data Fig. 14. Regression of 180 sample poini§ysampling density) from data
in Figure 2, obtained by an ERB’(= 1.0,0 = 1.0) SVM classification in Figure 2, obtained by an ERB’(= 1.0,0 = 1.0) SVM classification
followed by a GRB ' = 10.0,0 = 10.0) SVM regression. followed by a GRB ' = 10.0,0 = 10.0) SVM regression.

subsets within each facies. In the simulations presented hesgonstructions is provided below.
we used the regression SVM [13] with the GBF kernel (30d)
ando = 1 for the direct data regression; and the classification
SVM [13] with the GRB kernel (30c) and = 1 and the
regression SVM [13] with the GBF kernel (30d) and= 1

for the two-step data regression.

Fig. 15. Interpolation of 180 sample poin&% sampling density) from data
in Figure 2, obtained by Kriging.

Finally, we compare the SVM regressions with two geo-
statistical approaches, which employ alternative interpolation
Fig. 13. Regression of 180 sample poini€(sampling density) from data Strategies based on Kriging. The first approach uses Kriging to
in Figure 2, obtained by a GRR(= 10.0, ¢ = 10.0) SVM regression. interpolate between th&s0 data points, whose locations are

shown in Fig. 6. An isotropic spherical variogram provides an

Figs. 11 and 12 show th& (x) fields reconstructed with appropriate interpretation of the data with parameters nugget
these two regression strategies, from a sparse dafdsef_, 1.08, sill 12.01, and range 5.261. Note that the synthetic
(the sampling density 06.25%) denoted in Fig. 5 by the data set in Figs. 2 and 3 is a realization of the random
lightly-colored pixels. Figs. 13 and 14 do the same for #eld with a Gaussian variogram. The discrepancy between
denser data set (180 data points, corresponding to a samptimg) theoretical variogram model used to interpret the sample
density of 5%) shown in Fig. 6. As one would expect,variogram inferred from the 180 data points and the variogram
the visual comparison of these four figures with the “truetised to construct the underlying reference field is due to the
K(x) field shown in Fig. 2 suggests that the quality of thénite number of samples and their spatial locations.
reconstruction of theK field increases with the sampling The second approach, which we call Kriging with classifica-
density. The proposed two-step SVM regression (Figs. 12 atioh, consists of two steps. First, we use the geostatistical facies
14) outperforms the direct SVM regression (Figs. 11 and 13)elineation procedure described in Appendix I. Second, we use
capturing some of the main features of tiiedistribution even simple Kriging on the two subsets of th80 points shown in
from an extremely sparse (the sampling density0df5%) Fig. 6, each of which belongs to one of the two facies. This
data set. A quantitative comparison of the accuracy of thesmcedure results in an isotropic exponential variogram with



One can see that in every norm biit the use of classifi-
cation prior to regression improves the quality of the recon-
structedK fields. TheL? norm is an exception, because it un-
duly accentuates the errors introduced by the misclassification
of the elements close to the boundary between two materials.
The corresponding SVM and GSA approaches introduce com-
parable errors, but the Kriging approaches (especially Kriging
with classification) are prone to subjective modeling choices
and much more labor intensive than their SVM counterparts.

V. CONCLUSIONS

We explored the potential of Support Vector Machines
(SVMs) for the delineation of geologic facies from limited
Fig. 16. Interpolation of 180 sample point’% sampling density) from data data. Th.ls was accomp“Shed (I) by reconstructing, from a f?W
in Figure 2, obtained by Kriging with IK classification. data points, a synthetic randomly generated porous medium
consisting of two heterogeneous materials; and (ii) by com-
paring the performance of SVMs with that of the geostatistical

nugget 0.0, sill 0.7 and range 3.357 for the high conductivi§PProach [24].
facies, and in an isotropic exponential variogram with nuggetKey differences between SVMs and geostatistics, first
0.035, sill 0.7 and range 1.768 for the low conductivity faciegointed out in [7], are

Figs. 15 and 16 provide th& fields reconstructed by Krig- « Since SVMs do not treat the subsurface environment
ing, and Kriging with classification, respectively. Comparison as random, they do not require ergodicity and other
of these fields with the “true’K field shown in Fig. 2 reveals statistical assumptions that lie at the heart of geostatistics;
that Kriging with classification outperforms simple Kriging, « While geostatistics provides a set of interpolation tools,
as is the case with their SVM counterparts. If an eyeball SVMs use regression.
measure is used to compare the reconstrufifeiields shown o, analysis leads to the following major conclusions:

in Figs. 13 — 16 with their “true” counterpart in Fig. 2, one may . . )
conclude that the two Kriging approaches slightly outperform * For any sampllng denS|tles,. SVMs S"gh“Y outperforms
the geostatistical approach in reconstructing the bound-

their respective SVM counterparts. ; . ) . L
aries between two geologic facies, while significantly

ITT IZ [FEOI) [ FEQ2 | FE 03) reducing the computational time.
SVM | 1.51 | 2.39 057 0.44 0.39 « For very low sampling densities (e.dg0,25%), which
GSA | 1.28] 211 0.53 0.44 0.40 make the inference of statistical parameters meaningless,
TABLE | the geostatistical approach fails, while SVMs still do a
SEVERAL MEASURES OF THE RECONSTRUCTION ERRORS INTRODUCED BY reasonably good job in reconstructing the boundaries.
THE SVM AND GSA APPROACHES WITHOUT CLASSIFICATION We also employed SVMs and geostatistics to infer pa-

rameter values at spatial locations where parameter data are
not not available. This was accomplished by two alternative
approaches. The first employed direct regression SVMs (or

— 1L212 2L523 FE (g-i; FE (8-25 FE (8-2)3 Kriging). The second consisted of a sequential two-step re-
GSA 113 253 045 035 033 gression SVMs (or geostatistical approach), in which the use

of SVMs (or Indicator Kriging) to delineate geologic facies
was followed by the use of SVM regression (or Kriging
interpolation) to infer parameter values. We found that

« Sequential approaches are more accurate than their direct
counterparts by all measures k.

Tables | and |1 provide more rigorous quantitative compar- * The reconstructions of parameter fields obtained with the
isons of the SVM and GSA approaches without and with SVM and geostatistical approaches are comparable at
classification, respectively. These comparisons are given in Mmedium to high sampling densities.
terms of (i) theL! error computed as the mean of the absolute + Regression SVMs are highly automated, while their geo-
value of the error at each element (pixel), (i) th& error statistical counterparts typically require manual estima-
computed as the square root of the mean of the square of tion of variograms. Consequently, they require less user
the error at each element, and (iii) the fractional error (FE) effort and are less prone to subjective interpretive errors.
computed as the fraction of the elements in the total numbers Regression SVMs can be used at low sampling densities

of elements (3600) for which the relative error exceeds a given (€.9., for the0.25% sampling density 0B data points)
threshold specified in parenthesis. where geostatistical inference becomes meaningless.

TABLE Il
SEVERAL MEASURES OF THE RECONSTRUCTION ERRORS INTRODUCED BY
THE SVM AND GSA APPROACHES WITH CLASSIFICATION
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We thank the anonymous reviewers for their insightfun (12) is replaced by pointwise sufi."; Le(x;, K;, K)
comments. of a loss functionZ(x, K, K) which measures the error in
This research was performed under the auspices of the LUagproximatingx; at x; by K(x;). While it is not the only
Department of Energy, under contract W-7405-ENG-36. Th@hoice, we utilize the-insensitive loss function
work was supported in part by the U.S. Department of Energy . {O for |f((x) K| <e
under the DOE/BES Program in the Applied Mathematical L.(x, K, K) =< . )
Sciences, Contract KC-07-01-01, and in part by the LDRD |K(x) - K| - ¢ otherwise
Program at Los Alamos National Laboratory. This work made (33)
use of shared facilities supported by SAHRA (Sustainabilifitst used in SVM regression. With this loss function, the
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APPENDIXI i1
GEOSTATISTICAL APPROACH subject to the constraints

The geostatistical approach due to [24] was used for per-

formance comparisons with SVMs. This approach consists of (a-xi+b) — K(x;) <e+& (35a)
the following steps: First, we use Kriging [15] to construct a .

map of the ensemble average of the indicator functibix)) K(xi) = (a-xi +b) <e+ &, (35b)

from the data{I(x;)}} ,. The ensemble meah(x) is the wherei € {1,..., N}, and¢; > 0 and 5% > 0 are the slack

probability that a pointk lies in Material 1,(I(x)) = P[x € \ariaples similar to those first introduced in (12).
M;]. Then we define a boundary between the two materialslntroducing Lagrange multipliersy;, 4;, 6; 5 > 0 (i e

as an isolineP[x € M;] = ¢, wherec is a number of data

points in Material 1 (or 2) relative to the total number of dat v

points, after accounting for data clustering. . N 9 s

In some cases, this value does not guarantee that the Kriginé’(a’ b,€,€,7,7,9,0) = 5”3” +C Z(& +&)
estimate of the fraction of the total area covered by the low- N =1
conductivity material equals the declustered global mean of
oy : - : 4+ K —a-x; —

the original indicator data, resulting from the raw data. In Z;%(GJF& +Ki-a-xi—b)
. . . . . 1=

such casesg is set to a value of the Kriged indicator field N

which allows one to recover a reconstruction that honors the _ Z%(G + @ —K;+a-x;+b)

empirical relative volumetric fractions of the two materials.

il, ..., N}) gives the objective function

i=1
N N
APPENDIX I — Z(Sifi — Zsz‘é- (36)
SUPPORTVECTORREGRESSION i=1 i=1
SVM regression may be viewed as a generalization 0f analogy with (16), the dual optimization problem is
the SVM classification introduced in Section Il to delineate N N
the_ boundarlef beEween geolog!c facies. kétx, o) .be an max (i — A1) K; — GZ(% +4)
estimate of a “true” parameter field (x), whose adjustable v p
parametersx are determined from the available parameter data [N N
{K; = K(x;)}Y,. SVM regression aims to minimize the _Z AN (v — AKX 37
difference between the two, while providing a probabilistic 2 ;;(% ) = )% 37
bound on the accuracy of the estimaforat a randomly drawn ) )
point x [11, Sec. 4.5]. subject to the constraints
Similar to SVM classification in Section Ill, SVM re- N
gression is first introduced for linear regression, and is then0 < ~; < C, 0<¥y<C Z(%: —%)=0. (38)
generalized to nonlinear regression via the kernel technique. i=1
For linear regression, we seek to approximate a data set v* and4; (i € {1,...,N}) denote a solution of (37) —
{K; = K(x;)}}X, with a linear function (38). Then the optimal parametessandb are given by [12,
K(x)=a-x+b. 31) Section 9.2]
N
The regression equivalent of the classification functional (12) a* — Z(W‘* — )% (39)
is [11, Sec. 6.2] — "
N
1 . and
Slal? +C Y Le(xi, K;, K), (32)
2 = bV =K; —a*-x; —¢ (40)
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respectively, wherd{; andx; in (40) are chosen such that[20] K. Duan, S. S. Keerthi, and A. N. Poo, “Evaluation of simple perfor-
0<n;<C.

For a non-linear regression, we once again repladey

F(x) to give the regression

K(x)=a-F(x)+b,

(22]

and utilize the dual form of the optimization to express the

problem in terms of the kerndl associated with mapping, [23]
giving the regression
R N [24]
K(x) =Y (v — 4)K(xi,x) + b, (41)
=t [25]

See [25] for a discussion of methods for choosirige, and
the kernel parameter(s) in SVM regression.
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