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Subsurface Characterization with Support Vector
Machines

Brendt Wohlberg, Daniel M. Tartakovsky, and Alberto Guadagnini

Abstract— A typical subsurface environment is heterogeneous,
consists of multiple materials (geologic facies), and is often
insufficiently characterized by data. The ability to delineate
geologic facies and to estimate their properties from sparse
data is essential for modeling physical and biochemical processes
occurring in the subsurface. We demonstrate that the Support
Vector Machine is a viable and efficient tool for lithofacies delin-
eation, and compare it with a geostatistical approach. To illustrate
our approach, and to demonstrate its advantages, we construct
a synthetic porous medium consisting of two heterogeneous
materials and then estimate boundaries between these materials
from a few selected data points. Our analysis shows that the
error in facies delineation by means of Support Vector Machines
decreases logarithmically with increasing sampling density. We
also introduce and analyze the use of regression Support Vector
Machines to estimate the parameter values between points where
the parameter is sampled.

Index Terms— Support Vector Machine, Machine Learning,
geostatistics, geologic facies, data analysis

I. I NTRODUCTION

Our knowledge of the spatial distribution of the physical
properties of geologic formations is often uncertain because of
ubiquitous heterogeneity and the sparsity of data. Geostatistics
has become an invaluable tool for estimating such properties at
points in a computational domain where data are not available,
as well as for quantifying the corresponding uncertainty.
Geostatistical frameworks treat a formation’s properties, such
as hydraulic conductivityK(x), as random fields that are
characterized by multivariate probability density functions or,
equivalently, by their joint ensemble moments. Thus,K(x) is
assumed to vary not only across the physical space (coordinate
x), but also in probability space (this variation may be repre-
sented by another coordinateξ, which is usually suppressed
to simplify notation). Whereas spatial moments ofK are
obtained by samplingK(x) in physical space (acrossx), its
ensemble moments are defined in terms of samples collected
in probability space (acrossξ). Since in reality only a single
realization of a geologic site exists, it is necessary to invoke the
ergodicity hypothesis in order to substitute the sample spatial
statistics, which can be inferred from field and/or laboratory
scale data, for the ensemble statistics, which are actually
required. Ergodicity cannot be proved, and requires a number
of modeling assumptions, e.g., [1, Sec. 2.7] and references
therein. One of the most popular geostatistical approaches
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to lithofacies delineation employs discontinuous geostatistical
models, such as the Indicator Kriging (IK) [2], [3], [4]. IK has
also found its way into image processing [5].

Machine learning provides an alternative to geostatistics by
allowing one to make predictions in the absence of sufficient
data parameterization, without treating geologic parameters
as random and, hence, without the need for the ergodicity
assumptions. Closely related to the field of pattern recogni-
tion, machine learning refers to a family of computational
algorithms for data analysis that are designed to automatically
tune themselves in response to data. Neural networks are an
example of such algorithms that have been used in hydrologic
modeling. While versatile and efficient for many important
applications, including the delineation of geologic facies [6],
neural networks usually do not provide bounds on expected
classification errors.

We recently introduced [7] another subset of machine learn-
ing techniques, the Support Vector Machine (SVM), for appli-
cation in facies delineation. While similar to neural networks
in its goals, the SVM is firmly grounded in the rigorous mathe-
matical analysis of Vapnik’s Statistical Learning Theory (SLT)
[8], which allows one to assess its performance and bound the
corresponding errors. Like other machine learning techniques,
SVMs enable one to treat the subsurface environment and
its parameters as deterministic. Uncertainty associated with
insufficient data parameterization is then represented and quan-
tified by treating sampling locations as a random subset of all
possible measurement locations. Such a formulation is ideally
suited for subsurface imaging.

In [7], we used linear SVMs to locate a boundary between
two materials in a perfectly stratified geologic formation.
Such a boundary is by definition either a straight line (in
two dimensions) or a plane (in three dimensions), so that
available data are always linearly separable. Here we consider
the general (nonlinear) form, which is referred to simply as
SVMs, to delineate highly irregular boundaries between two
heterogeneous geologic facies, based on a sparsely sampled
parameter.

We formulate the problem of facies delineation in Section II.
Section III provides a brief description of the general theory
of nonlinear Support Vector Machines, with an emphasis
on their application in subsurface imaging. SVMs are then
used in Section IV to reconstruct a boundary between two
heterogeneous geologic facies from a few data points extracted
from a randomly generated porous medium. In Section IV we
also introduce a regression SVM to estimate parameter values
at points where parameter data are not available. Finally,
we contrast the performance of the SVM with that of a
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geostatistical approach.

II. A PROBLEM OF FACIES DELINEATION

Consider the problem of reconstructing a boundary between
two heterogeneous materials (geologic facies) from parameter
data Ki = K(xi) collected atN locationsxi = (xi, yi)T ,
where i ∈ {1, . . . , N}. Such problems are ubiquitous in
subsurface hydrology since the geologic structure of the sub-
surface plays a crucial role in fluid flow and contaminant trans-
port. A typical example is the problem of locating permeable
zones in the aquiclude that separates two aquifers, the upper
aquifer contaminated with industrial pollutants, and the lower
aquifer used for municipal water supplies [9]. Parameter data
can include measurements of hydraulic conductivity, electric
resistivity, cumulative thickness of relevant geologic facies,
and grain sizes.

The first step to facies delineation consists of analyzing a
data histogram to assign to each data point a value of the
indicator function,

I(xi) =
{

1 xi ∈ M1

0 xi ∈ M2,
(1)

where M1 and M2 are the two facies. This step is often
nontrivial, since a typical geologic facies is heterogeneous, so
that parameter measurements vary from point to point. Here
we assume that the available parameter data{K(xi)}N

i=1 are
well differentiated, so that the process of assigning the values
of the indicator functions to points{xi}N

i=1 does not introduce
interpretive errors.

Let I(x,α) be an estimate of the “true” indicator field
I(x), whose adjustable parametersα are consistent with, and
determined from, the available data{xi, I(xi)}N

i=1. One would
like to construct an estimate that is as close to the true field as
possible, i.e., to minimize the difference,||I − I||, between
the two. Since parameters are typically sparsely sampled,
this problem is ill-posed and requires regularization. The
most common regularization procedure treats the underlying
deterministic but sparsely sampled spatial functionsK(x) and
I(x) as random fields. An added benefit of such approaches
is that they allow one to estimate the uncertainty associated
with insufficient data parameterizations.

Within a general probabilistic framework, both the indicator
field I(x) and the choice of sampling locations{xi}N

i=1 can be
viewed as random, and can be described by a joint probability
distribution P (I,x). Then the problem of obtaining the best
estimate of the indicator field is equivalent to minimizing the
functional

R =
∫
||I − I||dP (I,x). (2)

Unfortunately, since in reality only a single realization of
a specific geologic formation exists, there is no direct way
to evaluateP (I,x). Geostatistical and Statistical Learning
techniques provide two alternatives for evaluating (2).

Geostatistical approaches use theL2 norm in (2), and treat

1) the indicator functionI(x) as a random field, and
2) the choice of sampling locations{xi}N

i=1 as determinis-
tic.

Then the problem of minimizing (2) reduces to the minimiza-
tion of the indicator variance

σ2
I =

∫
(I − I)2dP (I). (3)

To approximateP (I), geostatistical approaches assume er-
godicity, i.e. that the sample statistics ofI, including mean
µI , varianceσ2

I , and correlation functionρI computed from
spatially distributed data{I(xi)}N

i=1 can be substituted for the
ensemble statistics. Furthermore, it is necessary to assume that
these sampling statistics are representative of the whole field.

SLT [8] often uses theL1 norm in (2), and treats
1) the indicator functionI(x) as deterministic, and
2) the choice of sampling locations{xi}N

i=1 as random.
Then the problem of minimizing (2) reduces to the minimiza-
tion of theexpected risk

Rexp =
1
2

∫
|I − I|dP (x). (4)

Rather than attempting to estimate probability distribution
P (x) from spatially distributed data, statistical learning re-
places the expected riskRexp with the empirical risk

Remp =
1

2N

N∑
i=1

|I(xi)− I(xi)|. (5)

These two quantities are related by a probabilistic bound,
Rexp ≤ Remp + φ, where the known functionφ depends
on the Vapnik - Chervonenkis (VC) dimension(representing
a measure of the complexity of the family of functionsI)
and the number of data pointsN [10][11, Ch. 4][12, Sec.
1.3][12, Ch. 5]. Analysis of the tightness of the boundRexp ≤
Remp+φ provides a useful theoretical motivation for the SVM
described below. However, it should be noted that this bound
is often too loose to be of much practical significance.

III. SUPPORTVECTORMACHINES

The SVM is a relatively recent technique that has attracted
a great deal of interest due to its excellent performance on a
wide range of classification problems, e.g., [10], [11], [13].
The theoretical foundation of this technique is provided by
SLT, which provides a bound on the expected riskRexp [11,
Ch. 6, Remark 6.7], [12, Chapter 7].

The simplest SVM deals with linearly separable data col-
lected from perfectly stratified geologic media, where different
geologic facies are separated by planes (in three dimensions)
or straight lines (in two dimensions). It is generalized to
accommodate arbitrary data sets by means of the kernel
technique introduced in the following section.

From the outset, we wish to emphasize the novelty of the
proposed use of SVMs. In the usual pattern classification
applications of SVMs, each data point is of high (often very
high) dimensionality. For example, in the classical example
of handwritten digit classification, each image of a digit is
considered a single high dimensional data point, and the
sampling density of the entire space is, by practical necessity,
exceedingly small. In subsurface characterization, each sample
point represents a location within 2-D or 3-D space, and the
sampling density, while usually small, is much larger than in
most pattern recognition applications.
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A. Linear SVMs

Consider a boundary given by the straight line

a · x + b = 0. (6)

We wish to determine the unknown coefficientsa = (a1, a2)T

and b from the data set{xi, I(xi)}N
i=1. In machine learning,

an algorithm for constructing such a boundary is known as a
linear classifier.

Fig. 1. A schematic representation of the boundary between two heteroge-
neous geologic faciesM1 and M2 (located above and below the boundary,
respectively) in a perfectly stratified geologic formation. The+ and� signs
indicate the locations where a parameterK is sampled andI = 1 or
= 0, respectively. A maximum margin linear classifier for displayed samples
consists of the decision boundary or the boundary estimate (solid line), and
the margin (dotted lines).

A maximum margin linear classifier is illustrated in Fig. 1
— the boundary estimate is indicated with the solid line,
and the dotted lines indicate the extent of themargin, i.e.,
the region within which the boundary could be shifted or-
thogonally without misclassifying any of the data. Ifd1 and
d2 designate the perpendicular distances from the estimated
boundary (solid line) to the nearest data point(s) in materials
M1 andM2, respectively, then the size of the margin (dotted
lines) isd = d1 + d2, and the sample points determining the
position of the margin are called thesupport vectors. Since
the lines bounding the margin are parallel to the boundary (6),
their normal is alsoa. The SVM determines the coefficients
a and b in (6) by maximizing the size of this margin. While
any choice of straight line that lies within the margin provides
the same empirical riskRemp, the straight line at the center
of the maximum margin is a principled choice for minimizing
the expected riskRexp [12, Section 7.2].

The SVM is constructed as follows. Leta · x + b = ±1
be two equations for the dashed lines bounding the margin in
Fig. 1. (Note that while constantsa and b in (6) are defined
up to a multiplicative constant, these equations ensure their
uniqueness.) Since the margin separates the two materials, all
data points satisfy either

a · xi + b ≥ +1 (7a)

or

a · xi + b ≤ −1. (7b)

These inequalities imply that the estimated boundary lies at
the center of the margin, i.e., thatd1 = d2 = d/2. Defining
the indicator functionJ(x) = 2I(x) − 1, so thatJ(x) =
−1 wheneverI(x) = 0 and J(x) = 1 wheneverI(x) =
1, and denotingJi = J(xi) allows one to combine the two
inequalities (7) into one,

(a · xi + b)Ji ≥ 1 for i ∈ {1, . . . , N}. (8)

The inequalities (8) become equalities for thexi that are
support vectors. Let||a|| ≡

√
a2
1 + a2

2 denote the Euclidean
length ofa. Since the distancesρ1 andρ2 from the coordinate
origin to the linesa · xi + b = 1 and a · xi + b = −1 are,
respectively,

ρ1 = −b + 1
||a||

and ρ2 = −b− 1
||a||

, (9)

the distance between these two linesρ2 − ρ1, i.e., the margin
d, is given by

d =
2
‖a‖

. (10)

Thus the SVM can be formulated as a problem of maximizing
d (or, equivalently, minimizing||a||) subject to the linear
constraints (8). Introducing Lagrange multipliersγi ≥ 0 for
i ∈ {1, . . . , N} leads to the objective function

L(a, b,γ) =
1
2
||a||2 −

N∑
i=1

γi

[
(a · xi + b)Ji − 1

]
. (11)

A solution of this optimization problem definesa and b and
thus, in accordance with (6), the boundary between the two
layers, located at the center of the margin.

Often, the data are not perfectly linearly separable. A
more general SVM formulation introduces slack variables
ξi ≥ 0 into the optimization, allowing for misclassification
but penalizing the sum of the classification errors, so that the
problem becomes the minimization of

1
2
||a||2 + C

N∑
i=1

ξi (12)

subject to the constraints [13, Ch. 2] [14, Section 12.2.1]

(a · xi + b)Ji ≥ 1− ξi for i ∈ {1, . . . , N}.
(13)

As before, introducing Lagrange multipliersγi, δi ≥ 0 for
i ∈ {1, . . . , N} gives the objective function

L(a, b, ξ,γ, δ) =
1
2
||a||2 −

N∑
i=1

γi

[
(a · xi + b)Ji − 1 + ξi

]
+ C

N∑
i=1

ξi −
N∑

i=1

δiξi. (14)

Denoting the optimal values ofa and b by a? and b?

respectively, the indicator functionJ(x) is given by

J(x) = sign(a? · x + b?). (15)

and is usually referred to as adecision functionin the SVM
literature.
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To obtaina? and b?, it is often convenient to use the dual
optimization problem [14, Section 12.2.1]

max
γ


N∑

i=1

γi −
1
2

N∑
i=1

N∑
j=1

γiγjJiJjxi · xj

 (16)

subject to the constraints

0 ≤ γi ≤ C and
N∑

i=1

γiJi = 0. (17)

Let γ?
i (i ∈ {1, . . . , N}) be solutions of (16) – (17). Then the

solutions of∂L/∂ak = 0 for (14) give

a? =
N∑

i=1

γ?
i Jixi. (18)

Let x+ and x− denote arbitrary support vectors for which
J = 1 and J = −1, respectively. Then the constraints (13),
which at these points become equalities, give

b? = −1
2
a? · (x+ + x−) . (19)

Thus a solution for the indicator function (15) is

J(x) = sign

(
N∑

i=1

γ?
i Jixi · x + b?

)
. (20)

B. Nonlinear SVMs

In most practical problems, boundaries between geologic
facies are significantly more complex than a straight line
or a plane. To account for this geometric complexity, one
can generalize the linear SVM by noting that data which
cannot be separated by a straight line or plane in the two- or
three-dimensional space of observation often become linearly
separable (i.e., separable by a hyperplane) when projected onto
another, usually higher-dimensional space.

Let F : Rn → Rm be a mapping of then-dimensional
physical space onto anm-dimensional space (known as a
feature space) in which the linear SVM can be applied. The
equation for a hyperplane separating the two materials in the
m-dimensional space is

a · F(x) + b = 0, (21)

where the dimensionm and parametersa ∈ Rm and b are
determined from the transformed data set{F(xi), Ji}N

i=1 by
solving the quadratic optimization of the linear SVM (14),

L(a, b, ξ,γ, δ) =
1
2
||a||2 −

N∑
i=1

γi

[
(a · F(xi) + b)Ji − 1 + ξi)

]
+ C

N∑
i=1

ξi −
N∑

i=1

δiξi. (22)

In analogy to (15), the indicator function is given by

J(x) = sign(a? · F(x) + b?). (23)

While this indicator function is linear in the feature space, it
corresponds to a nonlinear function in the physical (or input)
space, the specific form being determined by the mappingF .

The dual optimization problem (16) is now recast as

max
γ


N∑

i=1

γi −
1
2

N∑
i=1

N∑
j=1

γiγjJiJjF(xi) · F(xj)

 (24)

subject to the constraints

0 ≤ γi ≤ C and
N∑

i=1

γiJi = 0. (25)

The key observation here is that the feature space vectors
enter into the optimization only within an inner product. If a
Mercer kernel

K(x,x′) = F(x) · F(x′) (26)

is available for a specific mappingF , the required inner
products may be computed directly from the physical space,
without explicitly performing the potentially computationally
expensive mapping into the feature space. Hence the dual
optimization (24) may be expressed as

max
γ


N∑

i=1

γi −
1
2

N∑
i=1

N∑
j=1

γiγjJiJjK(xi,xj)

 , (27)

avoiding explicit computation of the mappingF .
In analogy to (18) – (20), the indicator function is now given

by

J(x) = sign

(
N∑

i=1

γ?
i JiK(x,xi) + b?

)
. (28)

Here γ?
i (i ∈ {1, . . . , N}) defined as a solution of the dual

optimization problem (27),

a? =
N∑

i=1

γ?
i JiF(xi), (29)

and b? is given by (19). Note that the decision function (28)
is expressed in terms of the kernelK, without the need for
explicit mapping onto the feature space.

Among a wide variety of Mercer kernels, we will consider
the performance of the polynomial kernel of orderp

KPLM(x,x′) = (x · x′ + 1)p, (30a)

the sigmoid kernel

KSIG(x,x′) = tanh(ρx · x′ + %), (30b)

exponential radial basis function kernel

KERB(x,x′) = exp
(
−||x− x′||

2σ2

)
, (30c)

and the Gaussian radial basis function kernel

KGRB(x,x′) = exp
(
−||x− x′||2

2σ2

)
. (30d)
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IV. SYNTHETIC EXAMPLE

To demonstrate the applicability of SVMs to subsurface
imaging, and to elucidate their relative advantages with respect
to a geostatistical approach, we reconstruct, from a few data
points randomly selected according to a uniform distribution,
the boundaries between two heterogeneous geologic facies in
a synthetic porous medium shown in Fig. 2. This synthetic
example was generated as follows.

We start by generating two autocorrelated, weakly station-
ary, normally distributed processes, representing two distinct
spatial distributions of log hydraulic conductivityY = lnK
with the ensemble means of−0.1 and 7.0. When hydraulic
conductivities are expressed in[cm/day], this corresponds to
clayey and sandy materials, respectively. Both log-conductivity
distributions have unit variance and Gaussian autocorrelation
with unit correlation scale. We take these two fields to be
mutually uncorrelated. The fields are generated by the SGSIM
code [15] on a60 × 60 grid, using a grid spacing of1/5 of
the log-conductivity correlation length.

Next, the composite porous medium in Fig. 2 is constructed
by randomly choosing the shape of the internal boundary
between the two materials and by assigning values of log-
conductivity to cells in the domain. Assigning the indicator
function (1) with a threshold value of 4.0 to each element on
the grid results in Fig. 3.

Fig. 2. Synthetic data on a60 × 60 grid. Values range between -2.04 and
9.89.

We used an SVM [13], [16] to reconstruct the boundary
between the two geologic facies in Fig. 3 from sets of
randomly selected data points. A set of sampling densities,
ranging from0.25% (9 data points) to20% (720 data points)
was selected, and for each sampling density an ensemble of
20 randomly generated realizations of the sample locations
was constructed. (To accentuate the sparsest data sets, the
figures below only show the results up to the10% sampling
density.) Classification errors for each sampling density were
computed as the fraction of misclassified grid points averaged
over the classification results for each of the 20 realizations
at that sampling density. Fig. 4 compares the performance
of SVMs with the polynomial (PLM), exponential radial
basis (ERB), Gaussian radial basis (GRB), and sigmoid (SIG)

Fig. 3. Classification of data in Figure 2, obtained by setting a threshold
value of 4.0.

kernels in (30). One can see that the radial basis function
kernels (GRB and ERB) provide the best performance, which
is not surprising given the general popularity of these kernels
in SVM applications [17].

ERB
GRB
SIG

PLM p = 3
PLM p = 2

Sampling density (%)

E
rr

or
(%

)

1086420

50
45
40
35
30
25
20
15
10
5

Fig. 4. Error rates corresponding to the SVMs withC = 1.0 and the
following kernels: polynomial (PLM) withp = 2 andp = 3, sigmoid (SIG)
with ρ = 1.0 and% = 0.0, Gaussian radial basis (GRB) withσ = 1.0, and
exponential radial basis (ERB) withσ = 1.0.

Figs. 5 and 6 show the geologic facies reconstructed by
an ERB SVM withσ = 1.0 from 9 and 180 sample points,
respectively. The locations of sample points are indicated by
the lighter shades. The comparison of these reconstructions
with the true field in Fig. 3 shows that even very sparse
sampling might be sufficient for the SVMs to capture general
trends in the spatial arrangement of geologic facies. However,
the performance of SVMs on such sparse data sets is highly
dependent on the actual locations of data points (i.e., highly
variable from one realization to another). As the sampling
density increases, the SVMs capture finer features of the
spatial arrangement of geologic facies, and their performance
is less dependent on a sampling realization.

A. Comparison with a geostatistical approach

We compare the accuracy of the facies reconstruction by
means of the SVM with that obtained by a geostatistical
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Fig. 5. Classification of data in Fig. 2, obtained by an ERB SVM (C =
1.0, σ = 1.0) using 9 sample points (0.25% sampling density).

Fig. 6. Classification of data in Fig. 2, obtained by an ERB SVM (C =
1.0, σ = 1.0) using 180 sample points (5% sampling density).

approach (GSA) described in the Appendix. It is important
to note that this and other geostatistical approaches to facies
delineation assume that the relative volumes occupied by the
two materials obtained from a sample are representative of the
whole field. This assumption is usually difficult to validate a
priori.

Fig. 7 shows the comparison of the performance of GSA
and a SVM withC = 10.0 and the ERB kernel withσ = 1.0.
When enough measurements are available (i.e., when the
sampling density is high enough), both methods have similar
performance, with the SVM being slightly more accurate than
GSA. Two factors, however, argue strongly in favor of SVMs.
First, they perform relatively well even on highly sparse data
sets (see the boundary reconstruction from9 sampling points
in Fig. 5), on which GSA fails because the sample statistics
(variograms in particular) become statistically meaningless.
Second, SVMs are highly automated, while GSA generally
requires manual data analysis to construct sample spatial
variograms and to identify a proper interpretive theoretical
model. As a result, GSAs are highly time consuming and
depend on the subjective judgment of the practitioner.

SVM
GSA

Sampling density (%)

E
rr

or
(%

)

1086420

30

25

20

15

10

5

Fig. 7. Error rates corresponding to the GSA and SVM (C = 10.0, ERB
kernel withσ = 1.0) approaches.

B. SVM parameter sensitivity

The performance of the SVMs depends on the choice of
C in (22) and the fitting parameters in the Mercer kernels
(30). The optimal selection of these parameters is a nontrivial
issue. The standard approach is viacross validation, which
involves excluding a subset of the training data from the
training step, and using it to evaluate the performance of the
resulting classifier [12, Sec. 7.8.1]. This simplest form of cross
validation is theLeave-One-Out(LOO) method [18], [19],
described in some detail in Section IV-C. Alternatives to cross
validation include those discussed in [20], [17], [21], [22].

We address this important issue in the context of subsurface
characterization by performing a sensitivity analysis of the
SVM performance with respect to the fitting parameters.
Thereafter, as described in some detail in Section IV-C,
we employ the LOO method to automatically select these
parameters.

Figs. 8 and 9 and demonstrate the sensitivity to a fitting
parameterσ of the SVMs with the exponential radial basis
(ERB) and Gaussian radial basis (GRB) kernels given by
(30c) and (30d), respectively. One can see that, when the
sampling density exceeds2%, the performance of both SVMs
is relatively insensitive to the choice ofσ (with its values
varying over about two orders of magnitude). This finding
is encouraging, since the optimal choice ofσ is nontrivial,
and computationally expensive when performed via LOO and
related methods.

C. SVM parameter selection

The apparent lack of sensitivity of the SVM performance
to the selection of kernel parameterσ in our application can
be used to justify the manual selection of a set of SVM
parameters. We used this approach in Section IV-A to compare
the relative performance of the GSA and SVM methods.
Such a procedure might bias this comparison in favor of the
SVM method. To demonstrate that this bias is insignificant,
we compare the performance of the SVM with manually
selected parameters with the performance of an SVM, whose
parameters are selected automatically by means of the standard
LOO method. The LOO method consists of the following
steps.
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Fig. 8. Error rates corresponding to the SVMs withC = 10.0 and an ERB
kernel (30c) with several values ofσ.
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Fig. 9. Error rates corresponding to the SVMs withC = 10.0 and a GRB
kernel (30d) with several values ofσ.

1) Identify the two-dimensional SVM parameter space
(spanned by parametersC andσ), over which parame-
tersC andσ are allowed to vary. In our computational
example, we chose the rangesC ∈ [0.10, 10.00] and
σ = [0.32, 10.00] to exclude parameters for which
poor performance is expecteda priori (see [23] for a
discussion of asymptotic properties of GRB kernels with
respect to these parameters);

2) Discretize the parameter space on a
regular grid. In our example, we use
(C, σ) ∈ {0.10, 0.32, 1.00, 3.16, 10.00} ×
{0.32, 0.56, 1.00, 1.78, 3.16, 5.62, 10.00};

3) Leave out the first of the data points{Ki}N
i=1 and train

the SVM on the remainingN − 1 data points;
4) Compute the error in the SVM estimation of the first

data point for each of the grid point of parametersC
andσ;

5) Repeat this procedure by leaving out the second, third,
and so forth data point, and training the SVM on the
remainingN − 1 data points;

6) Select the set of parameters to minimize the mean of
these errors over all left-out samples.

Given the computational expense, we performed the LOO
method for the four lowest sampling densities. The results of
these simulations are presented in Figure 10, which compares

SVM-l
SVM-f

GSA

Sampling density (%)

E
rr

or
(%

)

2.52.01.51.00.50.0

30

28

26

24

22
20

18

16

14

Fig. 10. Error rates corresponding to the GSA approach (GSA) and the SVM
with the ERB kernel, with parameterσ selected either manually (SVM-f) or
automatically by the leave-one-out method (SVM-l).

the domain reconstruction errors resulting from the geosta-
tistical approach (GSA), the SVM with manually selected
parametersC = 10.0 and σ = 1.0 (SVM-f), and the SVM
with parameters selected automatically using the LOO method
(SVM-l). One can see that both SVM approaches outperform
the GSA approach, with the the difference between the SVM
approaches being relatively small.

D. Identification of hydraulic parameters

In hydrologic applications, the delineation of geologic facies
from parameter data is often not sufficient. Since many geo-
logic facies are heterogeneous, it is also necessary to assign
parameter values to locations (e.g., elements of a numerical
grid) where data are not available. Geostatistical approaches
achieve this goal throughdata interpolationalgorithms, such
as Kriging [15]. SVMs take an alternative route by employing
data regressionstrategies as outlined in Appendix II.

Fig. 11. Regression of 9 sample points (0.25% sampling density) from data
in Figure 2, obtained by a GRB (C = 10.0, σ = 10.0) SVM regression.

In addition to the direct use of the nonlinear regression (41),
we explore a two-step procedure. First, we use the SVM to
delineate the geologic facies from a data set{K(xi)}N

i=1. Then
we perform a separate nonlinear regression (41) on the data
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Fig. 12. Regression of 9 sample points (0.25% sampling density) from data
in Figure 2, obtained by an ERB (C = 1.0, σ = 1.0) SVM classification
followed by a GRB (C = 10.0, σ = 10.0) SVM regression.

subsets within each facies. In the simulations presented here,
we used the regression SVM [13] with the GBF kernel (30d)
andσ = 1 for the direct data regression; and the classification
SVM [13] with the GRB kernel (30c) andσ = 1 and the
regression SVM [13] with the GBF kernel (30d) andσ = 1
for the two-step data regression.

Fig. 13. Regression of 180 sample points (5% sampling density) from data
in Figure 2, obtained by a GRB (C = 10.0, σ = 10.0) SVM regression.

Figs. 11 and 12 show theK(x) fields reconstructed with
these two regression strategies, from a sparse data set{Ki}9

i=1

(the sampling density of0.25%) denoted in Fig. 5 by the
lightly-colored pixels. Figs. 13 and 14 do the same for a
denser data set (180 data points, corresponding to a sampling
density of 5%) shown in Fig. 6. As one would expect,
the visual comparison of these four figures with the “true”
K(x) field shown in Fig. 2 suggests that the quality of the
reconstruction of theK field increases with the sampling
density. The proposed two-step SVM regression (Figs. 12 and
14) outperforms the direct SVM regression (Figs. 11 and 13),
capturing some of the main features of theK distribution even
from an extremely sparse (the sampling density of0.25%)
data set. A quantitative comparison of the accuracy of these

Fig. 14. Regression of 180 sample points (5% sampling density) from data
in Figure 2, obtained by an ERB (C = 1.0, σ = 1.0) SVM classification
followed by a GRB (C = 10.0, σ = 10.0) SVM regression.

reconstructions is provided below.

Fig. 15. Interpolation of 180 sample points (5% sampling density) from data
in Figure 2, obtained by Kriging.

Finally, we compare the SVM regressions with two geo-
statistical approaches, which employ alternative interpolation
strategies based on Kriging. The first approach uses Kriging to
interpolate between the180 data points, whose locations are
shown in Fig. 6. An isotropic spherical variogram provides an
appropriate interpretation of the data with parameters nugget
1.08, sill 12.01, and range 5.261. Note that the synthetic
data set in Figs. 2 and 3 is a realization of the random
field with a Gaussian variogram. The discrepancy between
the theoretical variogram model used to interpret the sample
variogram inferred from the 180 data points and the variogram
used to construct the underlying reference field is due to the
finite number of samples and their spatial locations.

The second approach, which we call Kriging with classifica-
tion, consists of two steps. First, we use the geostatistical facies
delineation procedure described in Appendix I. Second, we use
simple Kriging on the two subsets of the180 points shown in
Fig. 6, each of which belongs to one of the two facies. This
procedure results in an isotropic exponential variogram with
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Fig. 16. Interpolation of 180 sample points (5% sampling density) from data
in Figure 2, obtained by Kriging with IK classification.

nugget 0.0, sill 0.7 and range 3.357 for the high conductivity
facies, and in an isotropic exponential variogram with nugget
0.035, sill 0.7 and range 1.768 for the low conductivity facies.

Figs. 15 and 16 provide theK fields reconstructed by Krig-
ing, and Kriging with classification, respectively. Comparison
of these fields with the “true”K field shown in Fig. 2 reveals
that Kriging with classification outperforms simple Kriging,
as is the case with their SVM counterparts. If an eyeball
measure is used to compare the reconstructedK fields shown
in Figs. 13 – 16 with their “true” counterpart in Fig. 2, one may
conclude that the two Kriging approaches slightly outperform
their respective SVM counterparts.

L1 L2 FE (0.1) FE (0.2) FE (0.3)
SVM 1.51 2.39 0.57 0.44 0.39
GSA 1.28 2.11 0.53 0.44 0.40

TABLE I

SEVERAL MEASURES OF THE RECONSTRUCTION ERRORS INTRODUCED BY

THE SVM AND GSA APPROACHES WITHOUT CLASSIFICATION.

L1 L2 FE (0.1) FE (0.2) FE (0.3)
SVM 1.22 2.53 0.45 0.36 0.33
GSA 1.13 2.53 0.42 0.35 0.33

TABLE II

SEVERAL MEASURES OF THE RECONSTRUCTION ERRORS INTRODUCED BY

THE SVM AND GSA APPROACHES WITH CLASSIFICATION.

Tables I and II provide more rigorous quantitative compar-
isons of the SVM and GSA approaches without and with
classification, respectively. These comparisons are given in
terms of (i) theL1 error computed as the mean of the absolute
value of the error at each element (pixel), (ii) theL2 error
computed as the square root of the mean of the square of
the error at each element, and (iii) the fractional error (FE)
computed as the fraction of the elements in the total number
of elements (3600) for which the relative error exceeds a given
threshold specified in parenthesis.

One can see that in every norm butL2 the use of classifi-
cation prior to regression improves the quality of the recon-
structedK fields. TheL2 norm is an exception, because it un-
duly accentuates the errors introduced by the misclassification
of the elements close to the boundary between two materials.
The corresponding SVM and GSA approaches introduce com-
parable errors, but the Kriging approaches (especially Kriging
with classification) are prone to subjective modeling choices
and much more labor intensive than their SVM counterparts.

V. CONCLUSIONS

We explored the potential of Support Vector Machines
(SVMs) for the delineation of geologic facies from limited
data. This was accomplished (i) by reconstructing, from a few
data points, a synthetic randomly generated porous medium
consisting of two heterogeneous materials; and (ii) by com-
paring the performance of SVMs with that of the geostatistical
approach [24].

Key differences between SVMs and geostatistics, first
pointed out in [7], are

• Since SVMs do not treat the subsurface environment
as random, they do not require ergodicity and other
statistical assumptions that lie at the heart of geostatistics;

• While geostatistics provides a set of interpolation tools,
SVMs use regression.

Our analysis leads to the following major conclusions:

• For any sampling densities, SVMs slightly outperforms
the geostatistical approach in reconstructing the bound-
aries between two geologic facies, while significantly
reducing the computational time.

• For very low sampling densities (e.g.,0.25%), which
make the inference of statistical parameters meaningless,
the geostatistical approach fails, while SVMs still do a
reasonably good job in reconstructing the boundaries.

We also employed SVMs and geostatistics to infer pa-
rameter values at spatial locations where parameter data are
not not available. This was accomplished by two alternative
approaches. The first employed direct regression SVMs (or
Kriging). The second consisted of a sequential two-step re-
gression SVMs (or geostatistical approach), in which the use
of SVMs (or Indicator Kriging) to delineate geologic facies
was followed by the use of SVM regression (or Kriging
interpolation) to infer parameter values. We found that

• Sequential approaches are more accurate than their direct
counterparts by all measures butL2.

• The reconstructions of parameter fields obtained with the
SVM and geostatistical approaches are comparable at
medium to high sampling densities.

• Regression SVMs are highly automated, while their geo-
statistical counterparts typically require manual estima-
tion of variograms. Consequently, they require less user
effort and are less prone to subjective interpretive errors.

• Regression SVMs can be used at low sampling densities
(e.g., for the0.25% sampling density or9 data points)
where geostatistical inference becomes meaningless.
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APPENDIX I
GEOSTATISTICAL APPROACH

The geostatistical approach due to [24] was used for per-
formance comparisons with SVMs. This approach consists of
the following steps: First, we use Kriging [15] to construct a
map of the ensemble average of the indicator function〈I(x)〉
from the data{I(xi)}N

i=1. The ensemble meanI(x) is the
probability that a pointx lies in Material 1,〈I(x)〉 = P [x ∈
M1]. Then we define a boundary between the two materials
as an isolineP [x ∈ M1] = c, wherec is a number of data
points in Material 1 (or 2) relative to the total number of data
points, after accounting for data clustering.

In some cases, this value does not guarantee that the Kriging
estimate of the fraction of the total area covered by the low-
conductivity material equals the declustered global mean of
the original indicator data, resulting from the raw data. In
such cases,c is set to a value of the Kriged indicator field
which allows one to recover a reconstruction that honors the
empirical relative volumetric fractions of the two materials.

APPENDIX II
SUPPORTVECTORREGRESSION

SVM regression may be viewed as a generalization of
the SVM classification introduced in Section II to delineate
the boundaries between geologic facies. LetK̂(x,α) be an
estimate of a “true” parameter fieldK(x), whose adjustable
parametersα are determined from the available parameter data
{Ki = K(xi)}N

i=1. SVM regression aims to minimize the
difference between the two, while providing a probabilistic
bound on the accuracy of the estimatorK̂ at a randomly drawn
point x [11, Sec. 4.5].

Similar to SVM classification in Section III, SVM re-
gression is first introduced for linear regression, and is then
generalized to nonlinear regression via the kernel technique.
For linear regression, we seek to approximate a data set
{Ki = K(xi)}N

i=1 with a linear function

K̂(x) = a · x + b. (31)

The regression equivalent of the classification functional (12)
is [11, Sec. 6.2]

1
2
||a||2 + C

N∑
i=1

Lε(xi,Ki, K̂), (32)

where the pointwise sum of classification errors
∑N

i=1 ξi

in (12) is replaced by pointwise sum
∑N

i=1 Lε(xi,Ki, K̂)
of a loss functionL(x,K, K̂) which measures the error in
approximatingKi at xi by K̂(xi). While it is not the only
choice, we utilize theε-insensitive loss function

Lε(x,K, K̂) =

{
0 for |K̂(x)−K| < ε

|K̂(x)−K| − ε otherwise,
(33)

first used in SVM regression. With this loss function, the
primal optimization problem for SVM regression is the mini-
mization of

1
2
||a||2 + C

N∑
i=1

(ξi + ξ̂i) (34)

subject to the constraints

(a · xi + b)−K(xi) ≤ ε + ξi (35a)

K(xi)− (a · xi + b) ≤ ε + ξ̂i, (35b)

where i ∈ {1, . . . , N}, and ξi ≥ 0 and ξ̂i ≥ 0 are the slack
variables similar to those first introduced in (12).

Introducing Lagrange multipliersγi, γ̂i, δi, δ̂i ≥ 0 (i ∈
{1, . . . , N}) gives the objective function

L(a, b, ξ, ξ̂,γ, γ̂, δ, δ̂) =
1
2
||a||2 + C

N∑
i=1

(ξi + ξ̂i)

−
N∑

i=1

γi(ε + ξi + Ki − a · xi − b)

−
N∑

i=1

γ̂i(ε + ξ̂i −Ki + a · xi + b)

−
N∑

i=1

δiξi −
N∑

i=1

δ̂iξ̂i. (36)

In analogy with (16), the dual optimization problem is

max
γ,γ̂

{
N∑

i=1

(γi − γ̂i)Ki − ε
N∑

i=1

(γi + γ̂i)

−1
2

N∑
i=1

N∑
j=1

(γi − γ̂i)(γj − γ̂j)xi · xj

 (37)

subject to the constraints

0 ≤ γi ≤ C, 0 ≤ γ̂i ≤ C
N∑

i=1

(γi − γ̂i) = 0. (38)

Let γ?
i and γ̂?

i (i ∈ {1, . . . , N}) denote a solution of (37) –
(38). Then the optimal parametersa andb are given by [12,
Section 9.2]

a? =
N∑

i=1

(γ?
i − γ̂?

i )xi. (39)

and

b? = Kj − a? · xj − ε, (40)
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respectively, whereKj and xj in (40) are chosen such that
0 < γ?

j < C.
For a non-linear regression, we once again replacex by

F(x) to give the regression

K̂(x) = a · F(x) + b,

and utilize the dual form of the optimization to express the
problem in terms of the kernelK associated with mappingF ,
giving the regression

K̂(x) =
N∑

i=1

(γi − γ̂i)K(xi,x) + b. (41)

See [25] for a discussion of methods for choosingC, ε, and
the kernel parameter(s) in SVM regression.
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