
LA-UR-02-1827

Cite Details
B. Wohlberg, “Noise Sensitivity of Sparse Signal Representations: Reconstruction Error Bounds
for the Inverse Problem,”IEEE Transactions on Signal Processing, vol. 51, no. 12, pp. 3053-
3060, December 2003.

IEEE Copyright Notice

c©2003 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.



1

Noise Sensitivity of Sparse Signal Representations:
Reconstruction Error Bounds for the Inverse

Problem
Brendt Wohlberg

Abstract— Certain sparse signal reconstruction problems have
been shown to have unique solutions when the signal is known
to have an exact sparse representation. This result is extended
to provide bounds on the reconstruction error when the signal
has been corrupted by noise, or is not exactly sparse for some
other reason. Uniqueness is found to be extremely unstable for
a number of common dictionaries.

Index Terms— dictionary, sparse representation, basis selec-
tion, adaptive decomposition, inverse problem, error bounds

I. I NTRODUCTION

In contrast to most traditional signal decompositions, such
as Fourier and wavelet transforms, in which all signals are
represented on the same basis, adaptive signal decompositions
represent each signal using an optimal1 subset of basis func-
tions selected from a redundantdictionary. The representation
of signal s ∈ CN using dictionary{φ0,φ1, . . . ,φM−1} may
be expressed asΦα = s, where atoms φk ∈ CN are
the columns ofN × M matrix Φ, and the corresponding
coefficients in the linear combination are the elements of
α ∈ CM . One of the most common optimisation criteria is
sparsity, where a linear combination is sought which represents
the signal with the minimum possible number of non-zero
coefficients. Such sparse representations have found a number
of applications [1], including EEG (electroencephalography)
and MEG (magnetoencephalography) estimation [2], time-
frequency analysis [3], and spectrum estimation [4]. The most
significant current decomposition algorithms are Matching
Pursuit [3] and its variations [5], Basis Pursuit [6], and
FOCUSS [2].

Sparse representations are of particular interest when one
has reason, based on physics or other prior knowledge, to
expect the signals in question to consist of a superposition
of only a few fundamental functions, the coefficients of which
are significant. In this case, it is useful to know when recovered
coefficients may be expected to correspond to the original
generating coefficients.

The author is with T-7 Mathematical Modeling and Analysis, Los Alamos
National Laboratory, Los Alamos, NM 87545, USA. Phone: (505) 667
6886, Fax: (505) 665 5757, Email:brendt@t7.lanl.gov. Los Alamos National
Laboratory is operated by the University of California for the U. S. Department
of Energy under contract W-7405-ENG-36.

1A variety of optimality criteria, including minimum entropy and minimum
l1 norm, have been used.

II. U NIQUENESSCONDITIONS AND ERRORBOUNDS

Consider a dictionaryΦ with the property that anyN -
cardinality subset of atoms selected from the dictionary is
linearly independent. Call any set of coefficientsα with N/2
or fewer non-zero coefficients ahighly sparsesolution2 with
respect to dictionaryΦ. It is easily shown that, if a highly
sparse solution exists for signals, then it is the unique highly
sparse solution: if two distinct solutionsα and β both have
N/2 or fewer non-zero coefficients, thenα − β hasN or
fewer non-zero coefficients, and lies in the null space ofΦ,
thus contradicting the linear independence assumption ofN -
cardinality subsets of the dictionary. Gorodnitsky and Rao first
noted this uniqueness principle [2] [7] for general dictionaries,
and Donoho and Huo recently applied the same principle in
demonstrating uniqueness with respect to a specific dictionary
constructed as a union of time and frequency dictionaries [8].

While instructive, this result is of little assistance when the
signal is known to include a noise component, which is almost
invariably the case. The sparse signal representation model is
therefore extended so that the signals = Φα + η includes
a residual componentη without a sparse representation on
dictionary Φ. This residual component will be referred to
as the signal noise due to its role in the signal model,
representing the actual signal noise whenα is the actual
generating coefficient vector, and the hypothetical signal noise
with respect to a specific reconstruction whenα is a solution
to the inverse problem. Under these more realistic conditions,
one would like to be able to bound the reconstruction error in
terms of the signal noise magnitude.

Such a result would provide an indication of the significance
of a particular solutionα, perhaps obtained using one of the
methods mentioned in Section I, by bounding the maximum
‖α−β‖, for any alternative solutionβ of the same3 or higher
sparsity thanα, in terms of the distance‖η‖ = ‖s − Φβ‖,
considered to provide an indication of the relevant noise
magnitude. (While the choice of norm is unconstrained at
this level of generality,‖ · ‖ should be considered to denote
the l2 norm when a specific choice of norm is necessary in
the following sections.) If the bound is small for the primary
solution α and its corresponding noise componentη, then
any other possible reconstruction is constrained to be similar

2The qualifier is required since Gorodnitsky and Rao [2] definesparse
solutions as those withN or fewer non-zero coefficients.

3One might also consider trading slight decreases in sparsity for significant
decreases in the magnitude of the non-sparse part of the solution, but this
avenue opens a number of additional complications, and is not explored here.
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to the primary solution, which is therefore likely to have
special physical or other significance. Conversely, a large
bound suggests the existence of alternative reconstructions
which are not similar to the primary solution, which should
therefore not be expected to have special significance.

III. PROBLEM GEOMETRY

Some notation is required in order to facilitate further
exposition. Define

ΩM,L ={(ω0, ω1, . . . , ωL−1) | ωk ∈ N, 0 ≤ ωk ≤ M − 1,

ωk < ωk+1},
so thatΩM,L is the set of all(

M
L

)
=

M !
L!(M − L)!

distinct index subsets of sizeL for a dictionary ofM atoms.
For ω ∈ ΩM,L, define operatorPω : RM → RL (whereδl

k

denotes the Kronecker delta)

Pω =


δω0
0 δω0

1 . . . δω0
M−1

δω1
0 δω1

1 . . . δω1
M−1

...
...

...
...

δ
ωL−1
0 δ

ωL−1
1 . . . δ

ωL−1
M−1

 ,

which maps from the coefficient space of the full dictionary
into the reduced coefficient space consisting of those compo-
nents indexed byω. The projection operatorQω : RM →
RM , projecting the full coefficient space into the subspace
corresponding to the components indexed byω, is defined as
Qω = PT

ω Pω. Finally, define

ΓM,L = {PT
ω α | α ∈ CL, ω ∈ ΩM,L}

= {Qωα | α ∈ CM , ω ∈ ΩM,L}
as the set (it is not a linear space) of all coefficient vectors in
CM with at mostL non-zero coefficients.

By considering only solutions with at mostL non-zero
coefficients, one is effectively restricting one’s attention to
solutions for sub-dictionariesΦPT

ω with ω ∈ ΩM,L. All of
the ΦPT

ω are full rank if L ≤ N , since only dictionaries with
the linear independence condition discussed in Section II are
considered. The behaviour of each of these sub-dictionaries is
revealed by the Singular Value Decomposition (SVD) [9, pp.
70-73]. The SVD ofN × L matrix A is

A = UΣV T ,

whereU is anL×L matrix, the columnsuk of which are the
left singular vectors, V is anN×N matrix, the columnsvk of
which are theright singular vectors, andΣ is a diagonal matrix
of singular valuesσk, 0 ≤ k ≤ min{N,L} − 1, ordered
so that σk ≥ σk+1. The maximum and minimum singular
value ofA are denoted asσmax(A) andσmin(A) respectively.
Geometrically, the singular values are the lengths of the semi-
axes of the hyperellipsoid constructed as the mapping byA
of the unit hypersphere in the domain space ofA. Conversely,
the inverses of the singular values define a hyperellipsoid in
the domain space ofA as the pre-image of the unit sphere in
its range space. The range space of each sub-dictionaryΦPT

ω

is a subspace of the range space of the full dictionaryΦ.

IV. A SOLUTION-DEPENDENTBOUND

Given a specific dictionaryΦ with primary solutionα, and
maximum signal noise magnitudeε, the the maximum distance
betweenα and any other sparse solution with at mostL non-
zero coefficients may be expressed as4

ρL,α(ε) = max
‖Φβ−Φα‖≤ε, β∈ΓM,L

‖β −α‖

= max
‖ΦQωβ−Φα‖≤ε, β∈CM , ω∈ΩM,L

‖Qωβ −α‖,

where theΦ and M subscripts ofρ, explicitly indicating
dependence on these parameters, are suppressed for notational
simplicity. The common assumption that all atoms in the dic-
tionary have unit norm is adopted in order to avoid problems
of dependence on dictionary scaling (an alternative approach
is outlined in Appendix I). Computation of this value requires
computation of

ρL,α,ω(ε) = max
‖ΦQωβ−Φα‖≤ε, β∈CM

‖Qωβ −α‖

for all ω ∈ ΩM,L, which is computationally infeasible except
for very small values ofM andL. It is also important to note
that this bound is only valid for a specific primary solutionα,
and does not represent a general property of the dictionary for
all signals and possible solutions. Nevertheless, computation
of this value for very small problems is instructive, a method
being described in Appendix II.

Using this method, the results plotted in Figures 1 and 2
were computed for two example dictionaries; one based on
the Discrete Fourier Transform (DFT)

φk(n) = exp
(
−2πı

M
kn

)
n ∈ {0, . . . , N − 1},

k ∈ {0, . . . ,M − 1},

and the other on the Discrete Cosine Transform of Type II
(DCT-II) [10, pp. 276-281]

φk(n) = cos
(

πk(n + 1
2 )

M

)
n ∈ {0, . . . , N − 1},

k ∈ {0, . . . ,M − 1}

(the normalisations are omitted from these definitions for
simplicity, but all results are presented for dictionaries with
all atoms scaled to have unit norm). In all cases the primary
solution α has unit norm, so that the rangeε ∈ [0, 1] corre-
sponds to a signal to noise ratio range of infinity to 0 dB. Note
the complex behaviour of the plots (for example, the bound
for α is larger than that forα′ for low noise, but becomes
smaller forε larger than about 0.3), the significant differences
in stability between the DFT and DCT-II dictionaries, and the
rapid decrease in reconstruction stability of both dictionaries
with increasingL.

V. A SOLUTION-INDEPENDENTBOUND

In addition to the computational expense of the bound
ρL,α(ε) described in the previous section, it is valid only
for a specific primary solutionα. An alternative approach

4Equivalently, the problem may also be expressed as the maximisation of
‖P T

ω β −α‖ for β ∈ CL, subject to the constraint‖ΦP T
ω β − Φα‖ ≤ ε.
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(a) DFT dictionary,N = 16, M = 32.
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(b) DCT-II dictionary,N = 16, M = 32.

Fig. 1. A comparison of ρL,α(ε) for DFT and DCT-II dictionaries for L = 5 and α = (1, 1, 1, 1, 1, 0, 0, 0, 0, . . .)/
√

5, α′ =
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, . . .)/

√
5, andα′′ = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, . . .)/

√
5.
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(a) DFT dictionary,N = 16, M = 32.
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(b) DCT-II dictionary,N = 16, M = 32.

Fig. 2. A comparison ofρL,α(ε) for DFT and DCT-II dictionaries withα such thatα7 = 1, αk = 0 ∀k 6= 7.

is to generalise the noise-free uniqueness result of Section
II to obtain a bound that is independent of this variable.
While the resulting bound is not as accurate as that of the
previous section, it will be shown, by making a connection
with ρL,α(ε), to be the least upper bound independent of this
variable (i.e. it is the smallest possible bound that does not
depend on any specific primary solution).

For anyN × L complex matrixA, define [11, pg. 216]

glb(A) = inf
u 6=0

‖Au‖
‖u‖

= min
‖u‖=1

‖Au‖,

so that

‖Au‖ ≥ glb(A)‖u‖ ∀u ∈ CN .

Since‖u‖ =
√

uHu (in this section‖·‖ denotes thel2 norm),

infu 6=0
‖Au‖
‖u‖ is equal to

√
infu 6=0

uHAHAu
uHu

, the square root
of the minimum value taken on by the Rayleigh quotient of
AHA, which is equal to the smallest eigenvalue ofAHA [11,
pp. 108-109] andσmin(A) in the SVD of A [9, pp. 70-73].
Note thatglb(A) = 1/‖A−1‖ when the inverse exists (when
L = N ).

Define
ζL = min

ω∈ΩM,L

glb(ΦPT
ω )

for fixed L ≤ N (glb(A) is necessarily zero whenL > N ),
providing the bound

‖Φα‖ ≥ ζL‖α‖
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for all α with L or fewer non-zero coefficients. Once again,
it is important to impose the dictionary normalisation require-
ment to avoid dependence on dictionary scaling (as before, an
alternative approach is outlined in Appendix I). It should be
emphasised that the bound is tight, since equality is attained
by settingα to the right singular vector corresponding to the
minimum singular value definingζL.

The valueζL is a measure of the stability of the linear
independence ofL-sized subsets of atoms ofΦ. Givens = Φα
ands′ = Φβ, whereα andβ have maximum numbers of non-
zero coefficientsLα andLβ respectively,ζL for L = Lα+Lβ

provides the bound

‖∆α‖ ≤ ζ−1
L ‖∆s‖

on the difference∆α between the two solutions in terms of
the difference∆s between the two signals. (If the difference
∆s between the two signals is known to be confined to some
subspace5 of the signal space, an improved bound may be
obtained by restricting the minimisation in the computation of
glb(A) to that subspace, as described in Appendix III.)

The bound based onζL may be shown to be the smallest
possible solution-independent bound by examining the connec-
tion with the solution-specific boundρL,α(ε) of the previous
section. The obvious derivation fromρL,α(ε) of a solution-
independent bound is the definition (the motivation for the
L′+L′′ subscript ofρL′+L′′(ε) will become apparent shortly)

ρL′+L′′(ε) = max
α∈ΓM,L′′

ρL′,α(ε)

= max
‖Φ(β−α)‖≤ε, β∈ΓM,L′ , α∈ΓM,L′′

‖β −α‖,

representing the maximum distance between anyβ with at
mostL′ non-zero coefficients and anyα with at mostL′′ non-
zero coefficients, when the maximum signal noise magnitude
is ε. Noting that6

{β −α | β ∈ ΓM,L′ , α ∈ ΓM,L′′} = ΓM,L′+L′′ ,

which suggests the substitutionsL = L′+L′′ andγ = β−α
for γ ∈ ΓM,L, one may write7

ρL(ε) = max
‖Φγ‖≤ε, γ∈ΓM,L

‖γ‖ = max
‖ΦP T

ω γ‖≤ε, γ∈CL, ω∈ΩM,L

‖γ‖,

from which it is clear that

ρL(ε) = ζ−1
L ε.

Computation ofζL is clearly intractable, in general, for
large M and L. Certain dictionaries, may, however, exhibit
sufficient structure to reduce the number of subsets to be

5Donoho and Huo [8], in contrast, restrict the noise so that a sparse
representation is still possible on a dictionary combining signal and noise
sub-dictionaries. Initial stability computations (for smallN ) for this combined
dictionary, for whichM = 2N , suggest that the representation is reasonably
stable forL within the given uniqueness bounds.

6This is easily shown; the differenceβ − α has at mostL′ + L′′ non-
zero coefficients and is therefore always inΓM,L′+L′′ , and any element of
ΓM,L′+L′′ may be expressed as such a difference by choosing an appropriate
partition of the indices on which it has non-zero coefficients.

7It is interesting to note thatρL(ε) = ρL,0(ε), the solution-dependent
bound for the zero-vector, implying that the zero-vector is always the primary
solution for which the solution-dependent bound is the largest.

considered to a manageable number. Consider, for example,
a dictionary in which many distinct subset matricesΦPT

ω are
unitary transforms of one another. Sinceglb(UA) = glb(A)
for unitary U , only one of these related subsets needs to be
considered in the minimisation. When the number of subsets is
intractable, an upper bound onζL may obviously be obtained
by consideration of as many subsets as possible (a random
selection may be used, for example) under the prevailing
computational constraints. Similarly, if a dictionaryΦ consists
of a union of the sets of atoms from dictionariesΦ0 andΦ1,
thenζL(Φ) ≤ min{ζL(Φ0), ζL(Φ1)}.

Results for the example dictionaries defined in Section IV
are presented in Figures 3(a), 3(b), 3(c), and 3(d). Note the
rapid decay in stability with increasingL, and the significantly
greater decay rate of the DCT-II dictionary.

More efficient computation ofζL for the DFT dictionary is
possible by noting that any subset ofL atoms with indices
(ω0, ω1, . . . , ωL−1) is a unitary transform of the set with in-
dices(ω0+k, ω1+k, . . . , ωL−1+k) for k ∈ Z when indices are
considered moduloM . In fact, empirical evidence obtained for
a wide range ofN , M , andL values supports the conjecture
that theζL for this dictionary may be obtained by considering
only the single index subsetω = (0, 1, . . . , L − 1). Results
computed in this way for larger dictionaries are presented in
Figures 4(a) and 4(b).

Bounds derived fromζL are compared with the more
accurateρL,α(ε) bounds in Figure 5. In each caseα is chosen
to have a single non-zero coefficient, and theρL,α(ε) bound
is compared with the bound obtained fromζL+1 (since the
primary solutionsα are constrained to have a single non-zero
coefficient, and are compared with all possible solutions with
at mostL non-zero coefficients, the difference between the
solutions may have at mostL+1 non-zero coefficients). Note
that theζL derived bounds in Figure 5(a) represent, for the
chosenα, the tightest possible bounds linear inε, while the
bounds are somewhat looser for the DCT-II dictionary. It is
interesting to note that, for the DFT dictionary (but not the
DCT-II dictionary), the same results are obtained for anyα
with a single non-zero coefficient - this phenomenon is likely
to be related to the structural simplicity which allows the rapid
computation ofζL for this dictionary.

When ω is the index set on whichα has its non-zero
coefficients, it is worth noting8 that

ρL,α,ω(ε) =
[
glb(ΦPT

ω )
]−1

ε,

so that the reconstruction error bound is linear inε. This bound
is relevant when the reconstruction error is sufficiently small
that no equally sparse solutions exist in any other index set.

It is clear that none of the non-zero coefficients of primary
solutionα (with L non-zero coefficients) may take on a zero
value within the ball of radiusmin{|αk| | 0 ≤ k < M, αk 6=
0} aboutα. Any alternative solutionβ with at mostL non-
zero coefficients, must, therefore, have its non-zero coefficients
on the same index setω asα if ‖α− β‖ < min{|αk| | 0 ≤

8This is easily shown by utilising the equivalent definition ofρL,α,ω(ε)
in terms of the operatorP T

ω and observing that‖P T
ω β‖ = ‖β‖ ∀β ∈ CL

and, in this case,α = P T
ω Pωα.
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(d) DCT-II dictionaries withM = 32.

Fig. 3. Variation ofζL with L for example dictionaries.

k < M, αk 6= 0}, since the sparsity restrictions require at
least one of the non-zero coefficients inα to become zero
to allow a zero coefficient inα to be non-zero inβ. This
maximum reconstruction error may be guaranteed by imposing
a signal noise bound ofζ2L min{|αk| | 0 ≤ k < M, αk 6= 0}.
(Alternatively,β may be restricted to the same index setω as
α by imposing a signal noise bound smaller than the distance
betweenα andα′ = (ΦQω′)+ΦQωα for all other index sets
ω′ of the same sparsity.)

VI. D ISCUSSION

The tools introduced above allow quantification of the noise
sensitivity of sparse reconstruction problems, and provide
bounds on the reconstruction error when the signal noise
magnitude is known. Except at very low noise levels, very
high degrees of sparsity, or small overcompleteness factors
M/N , these results indicate very high noise sensitivities for
the common DFT and DCT-II dictionaries. In superresolution

applications using overcomplete sinusoidal dictionaries [4], for
example, these results allow an explicit quantification of the
tradeoff between spectral resolution (depending on the degree
of overcompleteness of the dictionary) and noise sensitivity
of the result, and also suggest that the DFT dictionary is a
better choice for superresolution than the DCT-II dictionary
due to the significantly lower noise sensitivity of the former
dictionary.

While the bound based onζL is less informative than the
more accurateρL,α(ε) bound, it does appear to provide a
useful indication of the relative noise sensitivities of different
dictionaries, as well as of the increase in reconstruction error
with decreasing sparsity (increasingL). Given the significant
differences in the stabilities of the DFT and DCT-II dictionar-
ies, an upper bound on the stability of any dictionary of a given
size would be valuable, but is difficult to obtain. TheN ×M
dictionary with the largest possibleζL is related to the opti-
mum packing in the complex Grassmannian spaceG(N,L)
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(b) DFT dictionaries withM = 1024.

Fig. 4. Variation ofζL with L for large DFT dictionaries. The vertical axis has been restricted to avoid display of values which are inaccurate due to limited
numerical precision in the computation ofζL.
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(a) DFT dictionary,N = 16, M = 32, α7 = 1, αk = 0 ∀k 6= 7.
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Fig. 5. A comparison ofρL,α(ε) andρL+1(ε) bounds for DFT and DCT-II dictionaries

of the

(
M
L

)
L-dimensional subspaces associated with that

dictionary, but existing results for packings in Grassmannian
spaces [12] are not applicable since the distance measure used
is not appropriate for this application.

APPENDIX I
ALTERNATIVE BOUNDS INDEPENDENT OFDICTIONARY

SCALING

The bounds defined in Sections IV and V require restrictions
to be placed on dictionary normalisation to avoid dependence
on dictionary scaling. Similar bounds may also be defined
which are, by their construction, independent of dictionary
scaling (although the modifiedρL,α(ε) is expected to present
greater computational difficulties).

A version of ρL,α(ε) that is independent of the scaling of
Φ may be defined as

ρ′L,α(ε) = max
‖ΦQωβ−Φα‖/‖Φα‖≤ε, β∈CM , ω∈ΩM,L

‖Qωβ −α‖
‖α‖

.

Therefore, for allβ with at mostL non-zero coefficients,

‖s− Φβ‖
‖s‖

< ε ⇒ ‖α− β‖
‖α‖

< ρ′L,α(ε).

Defining signal to noise ratios

SNRα = −20 log10

‖∆α‖
‖α‖

SNRs = −20 log10

‖∆s‖
‖s‖

in the coefficient and signal spaces respectively, this may be
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expressed as

SNRs > −20 log10 ε ⇒ SNRα > −20 log10 ρ′L,α(ε).

An alternative version ofζL that is invariant to scaling of
Φ may be defined as

ζ ′L = min
ω∈ΩM,L

glb(ΦPT
ω )

‖ΦPT
ω ‖

= min
ω∈ΩM,L

σmin(ΦPT
ω )

σmax(ΦPT
ω )

,

from which the bound

ζ ′L
‖∆α‖
‖α‖

≤ ‖∆s‖
‖s‖

may be obtained. Using the signal to noise ratios defined
above, this may be expressed as

SNRα ≥ SNRs + 20 log10 ζ ′L.

APPENDIX II
COMPUTATION OF THE MAXIMUM RECONSTRUCTION

ERROR

The computation ofρL,α,ω(ε) as defined in Section IV
involves the maximisation of‖Qωβ − α‖, subject to the
constraint‖ΦQωβ − Φα‖ ≤ ε, for β ∈ CM (the equivalent
formulation in terms ofΦPT

ω leads to a derivation similar to
that which follows). This is closely related toleast squares
with quadratic constraint[13][9, Ch. 12] (‖ · ‖ denotes the
l2 norm in this section), but does not conform to all of the
restrictions on which the standard approaches are based.

A simpler solution may be derived by consideration of the
geometry of the problem in signal space. As illustrated in
Figure 6, the feasible region represents the intersection of the
ε-ball abouts = Φα and the range space ofΦQω. The closest
point to s in this range space is its orthogonal projection into
that space (A+ denotes the pseudo-inverse ofA)

s′ = ΦQω(ΦQω)+s,

and there is no feasible point when‖s − s′‖ > ε. The
feasible region is itself a hypersphere. Since the projection
is orthogonal,s′−p ⊥ s′− s for anyp in the feasible region,
and the radius of this hypersphere is

ε′ =
√

ε2 − ‖s− s′‖2.
Now, defineα′ = (ΦQω)+s so that s′ = ΦQωα′. The

original problem may be expressed as the maximisation of
‖β − α‖ subject to the constraint thatβ = Qωβ (i.e. β is
in the subspace defined byQω) and ‖ΦQω(β − α′)‖ ≤ ε′.
This feasible region represents anε′-ball abouts′ in signal
space, with a corresponding feasible region in coefficient
space consisting of a hyperellipsoid aboutα′, defined as the
preimage underΦQω of this ε′-ball abouts′. Under the change
of coordinatesβ′ = β − α′, this becomes the maximisation
of ‖β′ − (α − α′)‖ with the constraint‖ΦQωβ′‖ ≤ ε′,
transforming the feasible region into a hyperellipsoid about
the origin.

After introducing simplified notation9, the problem is to
find, for transformA (which has rankR), point p, and radius

9The original problem is addressed by making the substitutions

p = α−α′ q = β′ A = ΦQω r = ε′.

r, the vectorq maximising the distance‖q − p‖ such that
‖Aq‖ ≤ r andq is orthogonal to the null space ofA (this final
requirement ensuring thatq respects the subspace constraint).
Using the SVDA = UΣV T , expressq as a linear combination

q =
R−1∑
k=0

ckvk

of the right singular vectorsvk, so thatq is orthogonal to the
null space ofA and

Aq =
R−1∑
k=0

ckAvk =
R−1∑
k=0

ckσkuk.

Since the left singular vectorsuk are mutually orthonormal,
‖Aq‖2 =

∑R−1
k=0 σ2

k|ck|2, and the problem may be posed
as maximising‖

∑R−1
k=0 ckvk − p‖ subject to the constraint∑R−1

k=0 σ2
k|ck|2 ≤ r2.

Now, the optimal q must lie on the boundary of the
feasible region since any interiorq may be moved a finite
distance in a direction which increases its distance fromp
(the distance function does not have local maxima within the
feasible region). The constraint may therefore be expressed
as
∑R−1

k=0 σ2
k|ck|2 = r2, allowing the Lagrange multiplier

approach

L(c, λ) =
R−1∑
k=0

|ck|2 − 2 Re

(
R−1∑
k=0

ck〈vk,p〉

)
+ ‖p‖2−

λ

(
R−1∑
k=0

σ2
k|ck|2 − r2

)
,

with the solution

ck =
〈vk,p〉
1− λσ2

k

and
R−1∑
k=0

σ2
k

(
〈vk,p〉
1− λσ2

k

)2

= r2.

The constraint equation on the right is solved numerically for
λ, and the correspondingq is obtained via theck. Eachλ
corresponds to a stationary point of the distance function; the
solution to the problem is provided by theλ for which the
correspondingq has the greatest distance fromp.

Two special cases of the problem require different treatment:

The vectorp is at the origin If p = 0 one obtains the
equations(1−λσ2

k)ck = 0 so that, for eachk, either
ck = 0 or λ = σ−2

k . In the general case in which
all of the σk are distinct, the choiceλ = σ−2

k may
only be made for a singlek, imposingck = 0 for
all otherk ∈ {0, 1, . . . , R− 1}. The desired solution
is obtained by choosing theck corresponding to the
smallestσk to be non-zero, so thatcR−1 = ±rσ−1

R−1

andq = rσ−1
R−1vR−1. The geometrical interpretation

of this solution is that the maximum distance from
the centre of the hyperellipsoid to a point on its
boundary is along the direction of the longest semi-
axis.

The constraint region is a hypersphere If
σk = σl ∀0 ≤ k, l < R, one may drop
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ε-ball abouts

range space ofΦQω

ε

ε′

s

s′

p

‖s− s′‖

Fig. 6. Computation ofρL,α,ω(ε): illustration of the geometry of the feasible region in signal space (forN = 3).

the subscript onσ and write the constraint as
σ2
∑R−1

k=0 |ck|2 = r2, obtaining the expression

λ = σ−2

1±

√√√√R−1∑
k=0

〈vk,p〉2

 ,

so that

ck =
−〈vk,p〉

σ
r

√∑R−1
k=0 〈vk,p〉2

.

The geometrical interpretation of this solution is that,
since the feasible region is a hypersphere, the furthest
point fromp is the point directly opposite the origin
from p.

APPENDIX III
RESTRICTION OF THEGREATESTLOWER BOUND TO A

SUBSPACE

The greatest lower bound ofA restricted to the subspace
spanned by the columns ofB may be expressed as

glbB(A) = min
‖u‖=1, Au∈ran(B)

‖Au‖,

whereran(B) denotes the range space ofB. The minimisation
is restricted to allu for which Au = Bv for some v.
Rewriting as (

A −B
)( u

v

)
= 0,

it is apparent that, if the columns ofF are a basis for the null
space of

(
A −B

)
, all valid u,v pairs may be generated

as (
u
v

)
= Fw =

(
FA

FB

)
w.

Thereforeu = FAw = Qw, where the columns ofQ (which
may be computed using the complex QR factorisation [9, pg.
233] of FA) form an orthonormal basis forran(FA), and

glbB(A) =

√
min
‖w‖=1

wHQHAHAQw
wHQHQw

=

√
min
‖w‖=1

wHQHAHAQw
wHw

= glb(AQ).
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