LA-UR-02-1827

Cite Details

B. Wohlberg, “Noise Sensitivity of Sparse Signal Representations: Reconstruction Error Bounds
for the Inverse ProblemJEEE Transactions on Signal Processjingl. 51, no. 12, pp. 3053-
3060, December 2003.

IEEE Copyright Notice

(©2003 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.



Noise Sensitivity of Sparse Signal Representations:
Reconstruction Error Bounds for the Inverse
Problem

Brendt Wohlberg

Abstract— Certain sparse signal reconstruction problems have Il. UNIQUENESSCONDITIONS AND ERRORBOUNDS

pen fioun o e i Solers uher e 41 ' K00WT Consider a ctonans with the property that anyY-
to provide bounds on the reconstruction error when the signal Cardinality subset of atoms selected from the dictionary is
has been corrupted by noise, or is not exactly sparse for some linearly independent. Call any set of coefficientswvith N/2
other reason. Uniqueness is found to be extremely unstable for or fewer non-zero coefficients faghly sparsesolutior? with
a number of common dictionaries. respect to dictionaryb. It is easily shown that, if a highly
sparse solution exists for signalthen it is the unique highly
Index Terms—dictionary, sparse representation, basis selec- sparse solution: if two distinct solutions and 3 both have
tion, adaptive decomposition, inverse problem, error bounds N/2 or fewer non-zero coefficients, them — 3 has N or
fewer non-zero coefficients, and lies in the null spacebopf
thus contradicting the linear independence assumptioN -of
. INTRODUCTION cardinality subsets of the dictionary. Gorodnitsky and Rao first
noted this uniqueness principle [2] [7] for general dictionaries,
In contrast to most traditional signal decompositions, sueimhd Donoho and Huo recently applied the same principle in
as Fourier and wavelet transforms, in which all signals atemonstrating uniqueness with respect to a specific dictionary
represented on the same basis, adaptive signal decompositiggisstructed as a union of time and frequency dictionaries [8].
represent each signal using an optimslibset of basis func-  While instructive, this result is of little assistance when the
tions selected from a redundattittionary. The representation signal is known to include a noise component, which is almost
of signals € CV using dictionary{¢,, ¢,,...,¢,,_1} may invariably the case. The sparse signal representation model is
be expressed a®a = s, where atoms ¢, € CV are therefore extended so that the sigsa: ®a + 7 includes
the columns of N x M matrix ®, and the correspondinga residual componeny without a sparse representation on
coefficients in the linear combination are the elements dfctionary ®. This residual component will be referred to
a € CM. One of the most common optimisation criteria isis the signal noise due to its role in the signal model,
sparsity, where a linear combination is sought which represenépresenting the actual signal noise whanis the actual
the signal with the minimum possible number of non-zergenerating coefficient vector, and the hypothetical signal noise
coefficients. Such sparse representations have found a nunbieti respect to a specific reconstruction wheris a solution
of applications [1], including EEG (electroencephalographyp the inverse problem. Under these more realistic conditions,
and MEG (magnetoencephalography) estimation [2], timene would like to be able to bound the reconstruction error in
frequency analysis [3], and spectrum estimation [4]. The magirms of the signal noise magnitude.
significant current decomposition algorithms are Matching Such a result would provide an indication of the significance
Pursuit [3] and its variations [5], Basis Pursuit [6], an@f a particular solutionr, perhaps obtained using one of the

FOCUSS [2]. methods mentioned in Section I, by bounding the maximum
Sparse representations are of particular interest when djze— 3||, for any alternative solutio@® of the sam#or higher
has reason, based on physics or other prior knowledge,sfmarsity thanc, in terms of the distancén| = ||s — ®3|],

expect the signals in question to consist of a superpositioansidered to provide an indication of the relevant noise
of only a few fundamental functions, the coefficients of whicmagnitude. (While the choice of norm is unconstrained at
are significant. In this case, it is useful to know when recoverdlis level of generality|| - | should be considered to denote
coefficients may be expected to correspond to the origirthke i> norm when a specific choice of norm is necessary in
generating coefficients. the following sections.) If the bound is small for the primary
solution « and its corresponding noise component then
The author is with T-7 Mathematical Modeling and Analysis, Los Alamo@NY Other possible reconstruction is constrained to be similar
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to the primary solution, which is therefore likely to have IV. A SOLUTION-DEPENDENTBOUND

special physical or other significance. Conversely, a largegijven a specific dictionarg with primary solutione, and
bound suggests the existence of alternative reconstructioRgyimum signal noise magnitudethe the maximum distance

which are not similar to the primary solution, which shoul¢etweena and any other sparse solution with at méshon-
therefore not be expected to have special significance.  zerg coefficients may be expressed as

I1l. PROBLEM GEOMETRY PL.al€) = max 18— «f
. . . . . (|2B—Pcx||<e, BET M, L
Some notation is required in order to facilitate further o
) , = max |QuB — el
exposition. Define 2QuB—Pa|<e, BECM , weQr, L
O ={(wo, w1, ywp—1) |wp €N, 0<w,, <M -1, where the® and M subscripts ofp, explicitly indicating
wi < Wia1}, dependence on these parameters, are suppressed for notational

simplicity. The common assumption that all atoms in the dic-

tionary have unit norm is adopted in order to avoid problems
M\ M! of dependence on dictionary scaling (an alternative approach
L ) LY(M-L) is outlined in Appendix ). Computation of this value requires

distinct index subsets of size for a dictionary of M atoms.

so that(2,,,;, is the set of all

computation of

For w € Quy, 1, define operato,, : RM — RL (whered), PLaw(E) = max 1QuB — a

denotes the Kronecker delta) [2QuB—Pal<e, BECM
o5° 50 c8 for all w € Q) 1, which is computationally infeasible except
55 o 8 for very small values of\/ and L. It is also important to note

P, = , that this bound is only valid for a specific primary solution
w1 ewna Ly and does not represent a general property of the dictionary for
%o o) oM all signals and possible solutions. Nevertheless, computation
which maps from the coefficient space of the full dictionargf this value for very small problems is instructive, a method
into the reduced coefficient space consisting of those comgsing described in Appendix II.

nents indexed byw. The projection operato€),, : RM — Using this method, the results plotted in Figures 1 and 2
RM | projecting the full coefficient space into the subspactere computed for two example dictionaries; one based on

corresponding to the components indexeduyis defined as the Discrete Fourier Transform (DFT)

Q. = PTP,,. Finally, define br(n) = 2y €{0,....,N -1}
Py = (PTec | € Chy o € ar1) k() =exp | ——7rhkn | n e )

:{Qwa|a€(CM7w€QML} ke{O,...,M—l},
as the set (it is not a linear space) of all coefficient vectors &nd the other on the Discrete Cosine Transform of Type Il
CM with at mostL non-zero coefficients. (DCT-1I) [10, pp. 276-281]

By considering only solutions with at mogdt non-zero wk(n + 1)

coefficients, one is effectively restricting one’s attention to ¢ (n) = cos (2> ne{0,...,N —1},

solutions for sub-dictionarie® P with w € Qu; 1. All of M

the ®PL are full rank if L < N, since only dictionaries with ke{0,....,M -1}

the linear independence condition discussed in Section Il §fRe normalisations are omitted from these definitions for

considered. The behaviour of each of these sub-dictionariessiigplicity, but all results are presented for dictionaries with

revealed by the Singular Value Decomposition (SVD) [9, pRil atoms scaled to have unit norm). In all cases the primary

70-73]. The SVD ofN x L matrix A is solution a has unit norm, so that the ranges [0,1] corre-
A=UsvT, sponds to a signal to noise ratio range of infinity to O dB. Note

the complex behaviour of the plots (for example, the bound

whereU is anL x L matrix, the columnss;, of which are the for « is larger than that for’ for low noise, but becomes

left singular vectorsV is anN x N matrix, the columnsr;, of  gmaller fore larger than about 0.3), the significant differences

which are theight singular vectorsandX is a diagonal matrix i stability between the DFT and DCT-II dictionaries, and the

of singular valuesoy, 0 < k < min{N,L} — 1, ordered rapjid decrease in reconstruction stability of both dictionaries
so thato, > oj41. The maximum and minimum singularyth increasingL.

value of A are denoted a8,,.x(A) andoin(A) respectively.
Geometrically, the singular values are the lengths of the semi-
axes of the hyperellipsoid constructed as the mappingiby
of the unit hypersphere in the domain spacetofConversely,

the inverses of the singular values define a hyperellipsoid
the domain space ofl as the pre-image of the unit sphere i

?ts range space. The range space of each Sup'd_iCti@"Bﬂ’ 4Equivalently, the problem may also be expressed as the maximisation of
is a subspace of the range space of the full dictiorary |IPTB — «| for B € CL, subject to the constraifi® Pl 3 — da| < e.

V. A SOLUTION-INDEPENDENTBOUND

In addition to the computational expense of the bound
#a(e) described in the previous section, it is valid only
or a specific primary solutionx. An alternative approach
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Fig. 2. A comparison opy, o (¢) for DFT and DCT-II dictionaries withoe such thatoy = 1, o = 0 Vk # 7.

is to generalise the noise-free uniqueness result of Sect®imce||lu|| = vuu (in this section| - || denotes thé* norm),

Il to obtain a bound that is independent of this variablgnfu 0 Hlﬁ\l is equal to/infyo uf AR Au the square root
u ufiu 1

While the resulting bound is not as accurate as that of t¢ the minimum value taken on by the Rayleigh quotient of
previous section, it will be shown, by making a connection 4 which is equal to the smallest eigenvalueAf A [11,
with pr,«(c), to be the least upper bound independent of this, 108-109] ands,i(A) in the SVD of A [9, pp. 70-73].
variable (i.e. it is the smallest possible bound that does nghie thatglb(A) = 1/[|A~1|| when the inverse exists (when
depend on any specific primary solution). L =N).

For any N x L complex matrixA, define [11, pg. 216] Define

= mi b(®PT
L S0 g (®P,)

o |[Au]]
glb(4) = =
w0 [[ul

min ||Aul|,
=1 for fixed L < N (glb(A) is necessarily zero wheh > N),

so that providing the bound

[Au]| > glb(A)[[u] vu e C™. [Pal| = o]



for all a with L or fewer non-zero coefficients. Once againgonsidered to a manageable number. Consider, for example,
it is important to impose the dictionary normalisation requirea dictionary in which many distinct subset matrice®” are
ment to avoid dependence on dictionary scaling (as before, @nitary transforms of one another. Singk(U A) = glb(A)
alternative approach is outlined in Appendix I). It should b#r unitary U, only one of these related subsets needs to be
emphasised that the bound is tight, since equality is attaineshsidered in the minimisation. When the number of subsets is
by settinga to the right singular vector corresponding to théntractable, an upper bound @@ may obviously be obtained
minimum singular value definingy. by consideration of as many subsets as possible (a random
The value(y, is a measure of the stability of the linearselection may be used, for example) under the prevailing
independence ak-sized subsets of atoms &f Givens = ®a  computational constraints. Similarly, if a dictiona®yconsists
ands’ = ®3, wherea and3 have maximum numbers of non-of a union of the sets of atoms from dictionariés and ®1,
zero coefficientd., andLg respectively(, for L = Lo +Lg  then(p(®) < min{{r(Po), (r(P1)}.
provides the bound Results for the example dictionaries defined in Section IV
1 are presented in Figures 3(a), 3(b), 3(c), and 3(d). Note the
[Aa| < ¢ [|As|| rapid decay in stability with increasing, and the significantly

on the differenceAa between the two solutions in terms ofdreater decay rate of the DCT-II dictionary.
the differenceAs between the two signals. (If the difference More efficient computation of, for the DFT dictionary is
As between the two signals is known to be confined to sorR@ssible by noting that any subset bfatoms with indices
subspac® of the signal space, an improved bound may be’o,w1,.-.,wr—1) is a unitary transform of the set with in-
obtained by restricting the minimisation in the computation &fic€S(wo+k, wi+k, ... ,wr_1+k) for k € Z when indices are
glb(A) to that subspace, as described in Appendix l1.) considered moduld/. In fact, empirical evidence obtained for
The bound based og;, may be shown to be the smalles@ wide range ofV, M, and L values supports the conjecture
possible solution-independent bound by examining the conndat the¢y, for this dictionary may be obtained by considering
tion with the solution-specific boung, « () of the previous Only the single index subset = (0,1,...,L —1). Results
section. The obvious derivation fromy, . (¢) of a solution- cc_)mputed in this way for larger dictionaries are presented in
independent bound is the definition (the motivation for thEigures 4(a) and 4(b).

L'+ L” subscript ofp., 1. (¢) will become apparent shortly) Bounds derived from¢;, are compared with the more
accuratepy, o (€) bounds in Figure 5. In each caaeis chosen

pr 1 (€) = o nax pLa€) to have a single non-zero coefficient, and fhe, (¢) bound
M,L" . . . ’ i
B is compared with the bound obtained frafp; (since the
|®e(B-a)|<e éne%zy, @€l 18 — e, primary solutionsx are constrained to have a single non-zero

) ] ) ] coefficient, and are compared with all possible solutions with
representing the maximum distance between gnwith at 4 nost7, non-zero coefficients, the difference between the
most L’ non-zero coefficients and amy with at mostL” non- <o) 1ions may have at most+ 1 non-zero coefficients). Note
zero coefﬂments, when the maximum signal noise magnituge, the¢;, derived bounds in Figure 5(a) represent, for the
is e. Noting thaf chosena, the tightest possible bounds linear dnwhile the

_ , o= D bounds are somewhat looser for the DCT-II dictionary. It is

{6-alBelmr, aclyr}=Tuwrr, interesting to note that, for the DFT dictionary (but not the
which suggests the substitutiofis= L'+ L"” andy = 8 —a DCT-Il dictionary), the same results are obtained for any

for v € Ty 1, one may writé with a single non-zero coefficient - this phenomenon is likely
(6) = Il = il to be related to the structural simplicity which allows the rapid
P = g demerans ' T T @pTaf<e yelt, wenn, | |17 computation of¢, for this dictionary.

When w is the index set on whiche has its non-zero

from which it is clear that coefficients, it is worth notirythat

= (e -
pr(€e) = (g PLaw(€) = [glb(®P])] ‘e

Computation of(; is clearly intractable, in general, for that th tructi bound is I ifhis bound
large M and L. Certain dictionaries, may, however, exhibic? at the reconstruction error bound IS in€a. IS boun

sufficient structure to reduce the number of subsets to Eerelevant when the recons'truct|on' error 1s suff|C|e.ntIy small
that no equally sparse solutions exist in any other index set.

5Donoho and Huo [8], in contrast, restrict the noise so that a sparselt is clear that none of the non-zero coefficients of primary

representation is still possible on a dictionary combining signal and noigg)|ution o (With L non-zero coefficients) may take on a zero
sub-dictionaries. Initial stability computations (for smal) for this combined

dictionary, for whichM = 2. suggest that the representation is reasonablj@/ue Within the ball of rgdiusnin{\ak| | 0 <k <M, ap #
stable forZ within the given uniqueness bounds. 0} abouta. Any alternative solution3 with at mostL non-

®This is easily shown; the differeng® — o has at mostZ’ + L” non-  zero coefficients, must, therefore, have its non-zero coefficients

zero coefficients and is therefore alwayslin, ;. 1, and any element of . . .
.14 1 May be expressed as such a difference by choosing an appropriat the same index set asa if [la — 8[| < min{fox| [0 <

partition of the indices on which it has non-zero coefficients.

“It is interesting to note thapy,(e) = pr.o(e), the solution-dependent 8This is easily shown by utilising the equivalent definition @f ., (e
bound for the zero-vector, implying that the zero-vector is always the primairy terms of the operatoP and observing thaf P 8| = ||8| V8 € CF
solution for which the solution-dependent bound is the largest. and, in this casesx = PP, .
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Fig. 3. Variation of¢;, with L for example dictionaries.

k < M, oy # 0}, since the sparsity restrictions require aapplications using overcomplete sinusoidal dictionaries [4], for
least one of the non-zero coefficients dn to become zero example, these results allow an explicit quantification of the
to allow a zero coefficient ir to be non-zero in3. This tradeoff between spectral resolution (depending on the degree
maximum reconstruction error may be guaranteed by imposiafy overcompleteness of the dictionary) and noise sensitivity
a signal noise bound @by, min{|ay| |0 < k < M, ai # 0}. of the result, and also suggest that the DFT dictionary is a
(Alternatively, 3 may be restricted to the same index seds better choice for superresolution than the DCT-II dictionary
«a by imposing a signal noise bound smaller than the distandee to the significantly lower noise sensitivity of the former
betweena anda’ = (2Q,,/)T®Q,,« for all other index sets dictionary.

w’ of the same sparsity.) While the bound based ogy, is less informative than the

more accuratep, o(¢) bound, it does appear to provide a
VI. Discussion useful indication of the relative noise sensitivities of different
The tools introduced above allow quantification of the noisgtictionaries, as well as of the increase in reconstruction error
sensitivity of sparse reconstruction problems, and providéth decreasing sparsity (increasig. Given the significant
bounds on the reconstruction error when the signal noiddferences in the stabilities of the DFT and DCT-II dictionar-
magnitude is known. Except at very low noise levels, vergs, an upper bound on the stability of any dictionary of a given
high degrees of sparsity, or small overcompleteness factsigse would be valuable, but is difficult to obtain. Théex M
M/N, these results indicate very high noise sensitivities falictionary with the largest possiblg, is related to the opti-
the common DFT and DCT-II dictionaries. In superresolutiomum packing in the complex Grassmannian sp&gev, L)



PL,x (6)

i

I I
T N =16 1
7 1e-0 N =32 -%--]
] N =64 --X%--
- le-04 N =128 & 7]
] i N =256 — -
7 1e-06- N =512 -0~ ]
4 9 1eo8f -
- le-10 -
- le-12 -
I le-14} .'..

. ] ] ]

40 5 10 15 20 25 30 35 40
L L
(a) DFT dictionaries withV = 256. (b) DFT dictionaries with\/ = 1024.

Fig. 4. \Variation of¢;, with L for large DFT dictionaries. The vertical axis has been restricted to avoid display of values which are inaccurate due to limited
numerical precision in the computation ¢f .

20 I
18 — p4,a(€) b
-1
16 - G5 € ===~ PR
ps.al€) ------
14 - (g — L =
12 - “__,.—"("",—"_ - <
10 T 4 3
e )
8| — SN
6
4
20
0 o= |
0.00 0.25 0.50 0.00 0.05 0.10 0.15 0.20
€ €
(a) DFT dictionary,N =16, M =32, a7 =1, a, =0Vk # 7. (b) DCT-II dictionary, N = 16, M = 32, ag1 = 1, o = 0 Vk # 31.

Fig. 5. A comparison opr,  (€) andpr41(e) bounds for DFT and DCT-II dictionaries

ofthe ([ ™ ) L-dimensional subspaces associated with thatA Version of p;, « (¢) that is independent of the scaling of

L )
- - . . . ® may be defined as
dictionary, but existing results for packings in Grassmannian y

spaces [12] are not applicable since the distance measure used © QLB — |
. . . . . €) = max e TR
is not appropriate for this application. PL.ex |2QuB—dall/||Pal|<e, BECM, weQnr L x|l
APPENDIX | Therefore, for all3 with at mostL non-zero coefficients,
ALTERNATIVE BOUNDS INDEPENDENT OFDICTIONARY
OUNDS oFvicTio [s — B =Bl _
ScaLING Bl <7 g <Pl

The bounds defined in Sections IV and V require restrictions ] ) )
to be placed on dictionary normalisation to avoid dependene&fining signal to noise ratios
on dictionary scaling. Similar bounds may also be defined A | As||
which are, by their construction, independent of dictionary SNRa = —201og; el SNRs = —201og; sl
scaling (although the modifieg, (¢) is expected to present
greater computational difficulties). in the coefficient and signal spaces respectively, this may be



expressed as r, the vectorq maximising the distancéq — p|| such that

Aq|| < r andq is orthogonal to the null space df (this final

SNR, > —20logyge = SNRa > —20logopy olc). A9l = : .
s~ 810 € o = 9810 L. (€) requirement ensuring thag respects the subspace constraint).

An alternative version of, that is invariant to scaling of Using the SVDA = UX V7, expressy as a linear combination
® may be defined as

R—1
T . T
G = i ERORD) o own(®F) a=Y av
WEQNM, L ||(I>Pw H wenm, L Umax(q)Pw) k=0
from which the bound of the right singular vectorsy, so thatq is orthogonal to the
c [Aal _ [[As] null space of4 and
fol = sl " .
may be obtained. Using the signal to noise ratios defined Aq — Av, —
above, this may be expressed as a= kz_% REVE = kz_;) Tk k-
7
SNRa = SNRs + 2010g; Cp- Since the left singular vectors;, are mutually orthonormal,
APPENDIX I |Aq|? = Y54 o%|exl?, and the problem may be posed
L R—1 . .
COMPUTATION OF THE MAXIMUM RECONSTRUCTION aSRTf\X'm'SmQH > k=0 ckVk — P| subject to the constraint
ERROR Yio Ohlen? <12

The computation ofp; .. (¢) as defined in Section Iv = NOW, the optimalq must lie on the boundary of the
involves the maximisation of/Q.3 — a||, subject to the feasible region since any interiaf may be moved a finite
constraint||®Q.,8 — da|| < ¢, for B € CM (the equivalent distance in a direction which increases its distance fiom

formulation in terms ofo P leads to a derivation similar to (the distance function does not have local maxima within the
that which follows). This is closely related feast squares fea5|b1[zfe_1reglon):; The ZConstral_nt may therefore be expressed
with quadratic constrain{13][9, Ch. 12] (| - || denotes the &5 2x—o ilcx|* = 7*, allowing the Lagrange multiplier
12 norm in this section), but does not conform to all of th@PProach
restrictions on which the standard approaches are based. R—1 R—1

A simpler solution may b_e d(_arived by conside_ration of th.e L(c,\) = Z lex|? — 2Re (Z cr{Vi, p>> + |Ip||*—
geometry of the problem in signal space. As illustrated in =0 =0
Figure 6, the feasible region represents the intersection of the R—1
e-ball abouts = &« and the range space @Q,,. The closest A ( 2
point tos in this range space is its orthogonal projection into
that space 4™ denotes the pseudo-inverse 4&f

s' = (I)Qw(q)@w)+s»

R—-1 2
and there is no feasible point whefs — s’|| > e. The e = f‘i"’;;é and Za,f (1<‘ik’)\13>2) =72
feasible region is itself a hypersphere. Since the projection k k=0 k

is orthogonals’ —p L s’ —s for any p in the feasible region
and the radius of this hypersphere is

Z T e I
k=0

with the solution

' The constraint equation on the right is solved numerically for
A, and the corresponding is obtained via thec;. Each A
€ =+e2—|s—¢|> corresponds to a stationary point of the distance function; the
Now, definea’ — (®Q.)*s so thats’ — ®Qua’. The solution to the problem is provided by the for which the

. S c?rrespondingg has the greatest distance frgm
original problem may be expressed as the maximisation OT - fih bl ire diff t treat "
I8 — «|| subject to the constraint tha — Q.3 (i.e. B is wo special cases of the problem require different treatment:

in the subspace defined k,,) and | Q. (8 — o/)|| < ¢.  The vectorp is at the origin  If p = 0 one obtains the
This feasible region represents anball abouts’ in signal equationg1 — Ao} )¢, = 0 so that, for eaclt, either
space, with a corresponding feasible region in coefficient ce = 0 or A = o, In the general case in which
space consisting of a hyperellipsoid abeut defined as the all of the oy are distinct, the choice = o> may
preimage unde® (., of this ¢’-ball abouts’. Under the change only be made for a singlé, imposingc, = 0 for
of coordinatesd’ = B — o/, this becomes the maximisation all otherk € {0,1,..., R—1}. The desired solution
of |3 — (a — &')|| with the constraint|®Q.8'| < ¢, is obtained by choosing the, corresponding to the
transforming the feasible region into a hyperellipsoid about smallesto;, to be non-zero, so thaty_, = £rog!,
the origin. andq = ragilvR,l. The geometrical interpretation
After introducing simplified notatioh the problem is to of this solution is that the maximum distance from
find, for transformA (which has rankR), point p, and radius the centre of the hyperellipsoid to a point on its
» ) ) o boundary is along the direction of the longest semi-
9The original problem is addressed by making the substitutions axis.
p=a-ao q=8 A=2Q, r=¢. The constraint region is a hypersphere If

o = o0y VO < k,I < R, one may drop



e-ball abouts

range space obQ,,

Fig. 6. Computation opy, « . (€): illustration of the geometry of the feasible region in signal space Kfor 3).

the subscript ono and write the constraint asas
o2 S x| = 2, obtaining the expression < u > — Fw = ( Fa ) W,
v FB
Thereforeu = Fyw = Qw, where the columns of) (which
’ may be computed using the complex QR factorisation [9, pg.
233] of F4) form an orthonormal basis faan(F4), and

so that
—(Vk, P) . WwHQHAH AQw
- R—1 5 Iwli=1  wHQHQw
= k=0 <Vk7 p>
HOH AH
L . . . LW A7 AQw
The geometrical interpretation of this solution is that, = \/ min #
since the feasible region is a hypersphere, the furthest Ibwil= wow
point fromp is the point directly opposite the origin = glb(AQ).
from p.
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