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A Review of the Fractal Image Coding Literature
Brendt Wohlberg and Gerhard de Jager

Abstract— Fractal image compression is a relatively recent
technique based on the representation of an image by a con-
tractive transform, on the space of images, for which the
fixed point is close to the original image. This broad principle
encompasses a very wide variety of coding schemes, many of
which have been explored in the rapidly growing body of
published research. While certain theoretical aspects of this
representation are well established, relatively little attention
has been given to the construction of a coherent underlying
image model which would justify its use. Most purely fractal-
based schemes are not competitive with the current state of
the art, but hybrid schemes incorporating fractal compression
and alternative techniques have achieved considerably greater
success. This review represents a survey of the most significant
advances, both practical and theoretical, since the publication in
1990 of Jacquin’s original fractal coding scheme.

Index Terms— Image coding, fractals

I. I NTRODUCTION

The fundamental principle of fractal coding consists of
the representation of an image by a contractive transform of
which the fixed point is close to that image. Banach’s fixed
point theorem guarantees that, within a complete metric space,
the fixed point of such a transform may be recovered by
iterated application thereof to an arbitrary initial element of
that space [1]. Images are represented within this framework
by viewing them as vectors [2] [3, ch. 7] within a Hilbert
space, the metric being derived from the inner product via
the norm [1, pg. 129]. Encoding is not as simple, since
there is no known algorithm for constructing the transform
with the smallest possible distance, given the constraints on
the transform, between the corresponding fixed point and the
image to be encoded. The usual approach is based on the
collage theorem (see Section V-A) which provides a bound
on the distance between the image to be encoded and the
fixed point of a transform, in terms of the distance between
the transform of the image and the image itself. A suitable,
although suboptimal, transform may therefore be constructed
as a “collage” or union of mappings from the image to itself,
a sufficiently small “collage error” (the distance between the
collage and the image) guaranteeing that the fixed point of
that transform is close to the original image.

In the original approach, devised by Barnsley, this transform
was composed of the union of a number of affine mappings on
the entire image - an Iterated Function System (IFS) [3, ch. 2]
[4]. While a few impressive examples of image modelling were
generated by this method (Barnsley’s fern [4] [5, pg. 256], for
example), no automated encoding algorithm was found. Fractal
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compression became a practical reality with the introduction
by Jacquin1 of the Partitioned IFS (PIFS) [3, ch. 2], which
differs from an IFS in that each of the individual mappings
operates on a subset of the image, rather than the entire image.
Since the image support is tiled by “range blocks”, each of
which is mapped from one of the “domain2 blocks” as depicted
in Figure 1, the combined mappings constitute a transform on
the image as a whole. The transform minimising the collage
error within this framework is constructed by individually
minimising the collage error for each range block, which
requires locating the domain block which may be made closest
to it under an admissible block mapping. This transform is
then represented by specifying, for each range block, the
identity of the matching domain block together with the block
mapping parameters minimising the collage error for that
block. Distances are usually measured by the MSE (Mean-
Squared Error), equivalent to the distance derived from thel2

inner product [1, pg. 133], since optimisation3 of the standard
block mappings is simple under this measure [3, pp. 20-21].

Partition Scheme Virtual Codebook
(Domain Blocks)(Range Blocks)

Fig. 1. One of the block mappings in a PIFS representation.

The fundamental principle of fractal coding clearly leaves
considerable latitude in the design of a particular implementa-
tion. Within this broad framework, the differences between the
majority of existing fractal coding schemes may be classified
into the following categories:

• The partition imposed on the image support by the range
blocks.

• The composition of the pool of domain blocks.
• The class of transforms applied to the domain blocks.
• The type of search used in locating suitable domain

blocks.

1Note that there is an error with respect to a contractivity criterion [6, pp.
207-208] in Jacquin’s early work.

2The names of these blocks are derived from their roles in the mappings.
Note, though, that these labels are reversed by Barnsley [7, pg. 181].

3Optimisation with respect to the sup norm has also been considered [8].
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• The representation and quantisation of the transform
parameters.

There are unfortunately very few theoretical results on which
design decisions in any of these aspects may be based, and
choices are often made on a ratherad hocbasis. In addition,
these categories are not independent, in the sense that any
comparative analysis of coding performance between different
options in one of these categories is usually contingent on the
corresponding choices in the other categories; a meaningful
comparison between the relative merits of particular choices
in each category is consequently very difficult. This review is
therefore intended primarily as an overview of the variety of
schemes that have been investigated, although brief compar-
isons are made where possible. Details of the more theoretical
aspects of fractal compression, such as the collage theorem
and convergence conditions, are presented where appropriate,
and the review is concluded with a wavelet based analysis of
fractal compression, and a comparison of the performance of
the most effective fractal coding based compression algorithms
in the literature.

While fractal coding of colour images [9] [10] and video
[11] [12] [13] have been investigated, space limitations neces-
sitate the restriction of the scope of this review to the coding
of greyscale images (all of which may be assumed to have
8 bits/pixel). Since publications responsible for introducing
new concepts are usually cited in derived work, we have in
some cases referenced the more recent or easily accessible
work. In addition to the proceedings [14] [15] of the 1995
NATO conference on the subject, of which many of the papers
are referenced in this review, there are currently three books
devoted entirely to this subject. The book by Barnsley and
Hurd [7], the first on the subject, reveals relatively little
practical detail. The book edited by Fisher [3] contains two
introductory chapters and a collection of significant work by a
number of authors, while the recent book by Lu [16] combines
introductory material with an in-depth discussion of many
aspects of fractal coding.

II. PARTITION SCHEMES

The first decision to be made when designing a fractal
coding scheme is in the choice of the type of image partition
used for the range blocks. Since domain blocks must be
transformed to cover range blocks, this decision, together with
the choice of block transformation described later, restricts
the possible sizes and shapes of the domain blocks. A wide
variety of partitions have been investigated, the majority being
composed of rectangular blocks.

A. Fixed size square blocks

The simplest possible range partition consists of the fixed
size square blocks [17] [18] [19] depicted in Figure 2a. This
type of block partition is successful in transform coding
of individual image blocks4 since an adaptive quantisation
mechanism is able to compensate for the varying “activity”

4Such as implemented in the JPEG standard [20].

levels of different blocks, allocating few bits to blocks with
little detail and many to detailed blocks.

Fractal coding based on the standard block transform, in
contrast, is not capable of such adaptation, representing a
significant disadvantage of this type of block partition for frac-
tal coding. This deficiency may be addressed by introducing
adaptivity to the available block transforms as described in
Section III-B, but the usual solution is to introduce an adaptive
partition with large blocks in low detail regions and small
blocks where there is significant detail. There is, of course, a
trade-off between the lower distortion expected by adapting the
partition to the image content, and the additional bits required
to specify the partition details.

b) Quadtree

c) Horizontal-Vertical d) Irregular partition

a) Fixed block size

Fig. 2. Right-angled range partition schemes.

B. Quadtree

The quadtree partition (see Figure 2b) employs the well-
known image processing technique based on a recursive
splitting of selected image quadrants, enabling the resulting
partition to be represented by a tree structure in which
each non-terminal node has four descendents. The usual top-
down construction starts by selecting an initial level in the
tree, corresponding to some maximum range block size, and
recursively partitioning any block for which a match better
than some preselected threshold is not found [3, ch. 3] [16,
pp. 93-105] [21] (or more efficiently, by deciding whether to
split a block by examining the variance of its pixels [16, pp.
105-106] [22]). The alternative bottom-up construction begins
with a uniform partition using the smallest block size, and
then proceeds to merge those neighbouring blocks for which a
more efficient representation is provided by the resulting larger
block one level up the quadtree [16, pp. 93-105] [23]. Compact
coding of partition details is possible by taking advantage of
the tree structure of the partition.

Jacquin’s original scheme [24] [25] [26] used a variant
of the quadtree partition in which the block splitting was
restricted to two levels. Instead of automatically discarding
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the larger block prior to splitting it into four subblocks if
an error threshold was exceeded, it was retained if additional
transforms on up to two subblocks were sufficient to reduce
the error below the threshold.

C. Horizontal-vertical

The Horizontal-Vertical (HV) partition [3, ch. 6] [5, app.
A] [27] [28] (see Figure 2c), like the quadtree, produces a
tree-structured partition of the image. Instead of recursively
splitting quadrants, however, each image block is split into
two by a horizontal or vertical line. Splitting positions may
be constructed so that boundaries tend to fall along prominent
edges [3, pg. 120], or based on the accuracy of approximation
by constant pixel values in each of the new blocks created by
a particular split [28]. Compact coding of the partition details,
similar to that utilised for the quadtree partition, is possible.

D. Irregular regions

A tiling of the image by right-angled irregular-shaped ranges
may be constructed by a variety of merging strategies on an
initial fixed square block [29] [30] [31] [32] (see Figure 2d)
or quadtree [33] partition; chain codes allow the range shapes
to be coded efficiently.

E. Polygonal blocks

A number of different constructions of triangular partitions
(see Figures 3a-3c) have been investigated. Starting by split-
ting the image into two main triangles by the insertion of
a suitable diagonal, progressively smaller triangles may be
placed where necessary by a 3-side split [5, app. A] in which
a new vertex is created on each of the sides of an existing
triangle, or by a 1-side split [34] [35] in which an existing
triangle is split into two by inserting a line from a vertex of
the triangle to a point on the opposite side. An alternative
triangular partition is based on aDelaunay triangulation[36]
of the image, which is constructed on an initial set of “seed
points”, and is adapted to the image by adding extra seed
points in regions of high image variance [37] [38] [39].

Polygonal partitions have been constructed by recursive
subdivision of an initial coarse grid by the insertion of line
segments at various angles [40] (see Figure 3d), as well as
by merging triangles, in a Delaunay triangulation, to form
quadrilaterals [41].

F. Overlapped blocks

Overlapping range blocks have been used to reduce block-
ing artifacts, without a corresponding improvement in MSE,
within a quadtree partition [42], and with multiple domain
transforms (such as those described in Section III-B.4) in
a fixed block size partition [43]. A more complex form of
block overlapping, but with a fixed block size range partition,
provided improved MSE and subjective quality [44]. These
techniques, while promising, have been overtaken to a large
extent by developments in wavelet domain fractal coding,
reviewed in Section IX.

c) Delaunay triangulation d) Polygonal

a) Triangular (3-side split) b) Triangular (1-side split)

Fig. 3. Triangular and polygonal range partition schemes.

G. Comparison

The simplest partition (quadtree) was found to provide the
best rate distortion results in a comparison of polygonal,
HV, and quadtree partitions [40]. An independent comparison
between the quadtree and HV partitions, in contrast, found the
HV partition to be superior [45], while irregular partitions have
been found to outperform a fixed square block partition [29]
[31] as well as a quadtree partition [30] [33]. A disadvantage
of partitions which are not right-angled is the interpolation
required in performing the block transforms when there is
no simple pixel-to-pixel correspondence between domain and
range blocks.

III. B LOCK TRANSFORMS

The type of block transform selected is a critical element of
a fractal coding scheme since it determines the convergence
properties on decoding, and its quantised parameters comprise
the majority of the information in the compressed representa-
tion. A distinction is made here between transforms operating
on the block support (“geometric” transforms in Jacquin’s
terminology5 [26]) and those operating on the pixel values
(termed “massic” transforms by Jacquin).

A. Block support

The permissible transforms on the block support are re-
stricted by the block partition scheme, since domain block
supports are required to be mapped onto range block supports.

1) Rectangular blocks:The block support transform for
rectangular blocks may be separated into an initial spatial
contraction followed, for square blocks, by one of the square
isometry operations.

The spatial contraction of domains as introduced by Jacquin
[25] is almost universally applied, despite being inessential for

5The block isometries are considered to be block support transforms here,
in contrast to Jacquin’s usage.
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the contractivity of the image map as a whole [6] [16, pp. 127-
129] [27]. While contraction by a factor of two in width and
height is standard, smaller factors have also been considered
[46], and increasing6 this to a factor of three has been found
to improve decoder convergence [48]. Contraction is usually
achieved by the averaging of neighbouring pixels, which may
be improved by the addition of an anti-aliasing filter [49]. The
alternative of decimating by discarding pixels [3, pg. 141] is
slightly faster, but results are inferior to those obtained by
averaging [27].

The symmetry operations utilised by Jacquin are widely
used as a means of enlarging the domain pool. While some
authors have reported similar frequency of usage for all of the
isometry operations [50] [51], others have presented evidence
to the contrary [16, pp. 123-125] [52]. These conflicting
results are possibly due to the sensitivity to design choices
in each of the categories listed in the introduction. Despite
their widespread usage, there is evidence that their application
is counter-productive in a rate distortion sense [51] [53] [54]
[55]. Affine transforms other than the isometries have also
been considered [16, pp. 129-131], and generalised square
isometries constructed by conformal mapping from a square
to a disk are reported to be capable of improved performance
over the true square isometries [56].

2) Non-rectangular blocks:An affine mapping on the im-
age support is sufficiently general to transform domain trian-
gles to range triangles in a triangular partition. These affine
transforms are determined by requiring that the transformed
vertices of the domain blocks match those of the range blocks.
Depending on their structure, polygonal blocks may require
transforms more general than affine in transforming domain
to range blocks [41].

B. Block intensity

The simplest intensity transform in common use is that
introduced by Jacquin

Mu = su + o1, (1)

wheres ando are variable scaling and offset coefficients,u is
a suitable vector representation [2] of the domain block after
application of any block support operations such as spatial
contraction, and1 is a vector of unit components.

1) Orthogonal projection:The subtraction of the DC com-
ponent of the domain block prior to scaling [3, ch. 8] [57]

Mu = s

(
u− 〈u,1〉

‖1‖2
1
)

+ o1, (2)

(where〈·, ·〉 and‖ · ‖ are the inner product and derived norm
of an appropriate inner product space - usuallyl2) creates
transformed domains which are orthogonal to the fixed block
1, with the desirable effect of decorrelating thes and o
coefficients. In addition, convergence at the decoder within a
fixed number of iterations may be guaranteed by imposing
the additional restrictions of a quadtree range partition, a

6It is also possible, by an appropriate choice of spatial contractivity, to
achieve decoding by a single iteration of the transform [3, pp. 171-172] [47,
pp. 56-60].

domain pool constructed so that every domain block contains
an integer number of range blocks, and spatial contraction by
pixel averaging [3, pg. 160].

2) Frequency domain:Selective manipulation of the block
spectral contents is allowed by the transform [49] [58] [59]

Mu = C−1




a0 0 0 . . .
0 a1 0 . . .
0 0 a2 . . .
...

...
...

...

 Cu +


b0

b1

b2

...


 ,

(3)
where C is the Discrete Cosine Transform (DCT) matrix.
Adaptivity to block activity levels may be achieved by varying
the number ofai and bi that are individually specified, the
remainder being set to zero. This hybrid scheme constitutes a
transition between conventional fractal coding and transform
coding, being equivalent to the former when all of theai are
equal, and onlyb0 is non-zero, and to the latter when a full
set ofbi values is utilised, and all of theai are zero.

Alternative hybrids between fractal and transform coding
have been constructed by DCT coding of the error image
resulting from fractal coding [19] [60].

3) Multiple fixed blocks:Instead of the usual single fixed
block 1, multiple fixed blocksvi may be employed in the
transform

Mu = au +
∑

i

bivi. (4)

Orthogonalisation of the domain block term with respect to the
fixed block terms may be achieved by projecting the domain
block perpendicular to the subspace spanned by the fixed
domain blocks [3, ch. 8].

Transform (1) may be extended by including fixed blocks
with constant gradient in the vertical and horizontal directions
respectively [61] [62]. Further extensions [18] [51] [63] to
“order 2 polynomials” by including blocks with quadratic
form, and to “order 3” with the addition of cubic form blocks
have also been considered. The “order 2” transform was found
to be best, in a rate distortion sense, in experiments with
limited domain searching [64].

If all of the ai in the frequency domain transform (3)
are equal, it becomes equivalent to transform (4) with DCT
basis vectors as the fixed blocks (such a transform, with
orthogonalisation with respect to the subspace spanned by the
first few DCT basis vectors, has been examined [65] [66]).
Although no explicit comparison has been made between the
use of polynomial or DCT basis fixed blocks, in the absence
of experimental evidence the DCT basis blocks are likely to
be superior, since they are known to form an efficient basis for
image blocks and, unlike the polynomial bases, are mutually
orthogonal.

4) Multiple domains: A transform constructed by adding
independently scaleddomainblocks has also been considered
[3, ch. 10]. Computational tractability was achieved by creat-
ing an orthogonal basis of the domain block set, representing
each range by a scaling of as few basis vectors as possible.
A variety of mappings using multiple fixed blocks as well
as multiple domain blocks, including domain blocks with no
spatial contractivity, have also been investigated [67] [68] [69],
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a linear combination of these blocks being selected via a
technique known as matching pursuit.

IV. D OMAIN POOL SELECTION

The domain pool used in fractal compression is often
referred to as a virtual codebook [52], in comparison with the
codebook of Vector Quantisation (VQ) [70]. It should be clear
from this comparison that a suitable domain pool is crucial to
efficient representation since, although increased fidelity may
be obtained by allowing searching over a larger set of domains,
there is a corresponding increase in the number of bits required
to specify the selected domain.

A bound|s| ≤ smax is usually placed on the block intensity
transform scaling coefficients in order to guarantee contrac-
tivity (see Section V-B), in which case a scaling coefficient
exceeding this bound is set equal to it prior to calculating the
distance between the transformed domain and the range.

A. Global domain pool

The simplest domain pool design provides a fixed domain
pool for all range blocks in the image, or for a particular class
of range blocks distributed throughout the image (eg. range
blocks of one size in a quadtree partition). This design choice
is motivated by experiments indicating that the best domain
for a particular range is not expected to be spatially close7

to that range to any significant degree [3, pp. 69-71] [27, pp.
56-57] [50] (it is clear from the following section, however,
that there is some disagreement over this issue).

In the fixed square block or quadtree partitions, domain
blocks may be placed at intervals as small as one pixel. Since
this results in an enormous domain pool which is slow to
search, larger domain increments are usually selected, typically
equal to the domain block width [3, ch. 3] [17] [27] or half the
domain block width [3, ch. 3, 4] [24]. Improved convergence
is also obtained with either of these increments [3, ch. 8],
while the larger of the two corresponding domain pools was
found to be superior in fidelity and compression ratio [27].

In adaptive partitions the domain pool usually consists of the
larger blocks in the range pool [27], or larger blocks created
by the same partitioning mechanism [29] [41].

B. Local domain pool

A number of researchers have noticed a tendency for a
range block to be spatially close to the matching domain block
[48] [49], based on the observed tendency for distributions of
spatial distances between range and matching domain blocks
to be highly peaked at zero [52] [64] [71]. Motivated by this
observation, the domain pool for each range block may be
restricted to a region about the range block [24], or a spiral
search path may be followed outwards from the range block
position [48] [49]. More complicated alternatives include using
a domain position mask, centred at each range block, with

7Note that this is the distance (measured in pixels) in the image support
between the range and domain block centres, andnot the distortion resulting
from representing the range block by that particular domain block (the collage
error for that range block).

positions in the mask dense near the centre and progressively
less dense further away, and using widely spaced domain
blocks together with a fine lattice in the vicinity of the best
match in the coarse lattice [71].

The domain search may also be dispensed with entirely,
either by selecting each domain in a fixed position relative
to the range [61] [62], or by placing the domain so that it
contains the range, and the dominant edge is in the same
relative position in both blocks [65]. The search may also
be restricted to a very small set about the range block [18].
There is some evidence that local codebooks outperform global
ones [16, pg. 122], and that any domain searching is counter-
productive in a rate distortion sense [64] for the “order 2”
polynomial transform described in Section III-B.3.

C. Synthetic codebook

In a significant variation8 from standard fractal coding, the
domain pool may be extracted from a low resolution image
approximation (which is coded independently), rather than
from the image itself [72] [73] [74]. Decoding does not require
iteration, and the collage error minimised at the encoder is also
the true distortion.

D. Hybrid codebooks

A coding scheme allowing range blocks to be represented
either as mappings from domain blocks or a fixed VQ code-
book was found to perform significantly better9 than when
the VQ option was excluded, and slightly better than when
the fractal option was excluded [75].

E. Comparison

The question of domain locality (the tendency for a range
and matching domain to be spatially close) plays an important
role in the design of an efficient domain pool. While the
degree to which this effect is present may be dependent on the
particular fractal coding scheme for which it is evaluated, this
does not adequately explain the extent of the disagreement in
the literature (see reference [76, pp. 46-47, 75-77] for further
discussion of this issue).

V. ENCODING

Fractal coding is achieved by representing a signalx by a
quantised representation of a contractive transformT which
is chosen such that the fixed pointxT of T is close tox.
AlthoughxT may be recovered fromT by the iterative process
described previously, there is usually no simple expression
for xT in terms of its quantised coefficients. As a result, and
given the constraints onT imposed by its dependence on its
constituent coefficients, it is not usually possible to optimise
those coefficients to make the fixed point as close as possible
to a given signalx.

8This technique does not, strictly speaking, fall within the scope of fractal
coding, since the representation is not in any sense a fractal.

9Encoder and decoder speeds were also improved.
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A. The collage theorem

Since the the distortion‖eT ‖ (where eT = x − xT )
introduced by the fractal approximation can usually not be
directly optimised for these reasons, the standard approach
is to optimiseT to minimise the collage error‖eC‖ (where
eC = x−Tx), which is usually computationally tractable. The
collage theorem guarantees that‖eT ‖ may be made small by
finding T such that‖eC‖ is sufficiently small10.

The most common form of the collage theorem is

‖eT ‖ ≤ (1− α)−1‖eC‖,

whereT is a contractive transform with Lipschitz factorα (i.e.
‖Tx−Ty‖ ≤ α‖x−y‖). In image coding terms this implies
that a transformT , for which the fixed pointxT is close to an
original imagex, may be found by designing the transform
T such that the “collage”Tx is close tox, achieved by
minimising the collage error individually for each range block.
A similar bound is possible foreventual contractivity[3, ch. 2],
while a tighter collage bound is possible by imposing certain
restrictions, consisting primarily of requiring DC subtraction
in the block transform and setting the domain increment to
be equal to the range block size [3, ch. 8] [57]. Despite
the considerable improvement over the usual collage theorem
bound, this bound is still rather loose [57].

The majority of existing fractal coding schemes restrictT
to be an affine transformTx = Ax + b, where A is a
linear transform (encapsulating the combined effects of the
spatial contractions, isometry operations, and scalings of the
individual domain to range mappings) andb is an offset vector
(composed of the offsets in each of the individual domain to
range mappings) [3, ch. 7]. In this caseeC = (I −A)eT , and
bounds11

(1 + ‖A‖)−1‖eC‖ ≤ ‖eT ‖ ≤ (1− ‖A‖)−1‖eC‖

may be derived, in terms of an operator norm‖A‖ consistent
with the vector norm [78], by noting that that| ‖u‖ − ‖v‖ | ≤
‖u− v‖ ≤ ‖u‖+ ‖v‖ for arbitrary vectorsu andv.

B. Convergence

It is clearly desirable that the encoding process produce
a transform for which the decoding sequence is guaranteed
to converge; while necessary and sufficient conditions for
convergence are known, their computation during coding is
generally not feasible, posing a significant problem for a
practical encoder implementation. Contractivity under thesup
norm may be guaranteed12 by settingsmax < 1 for each of the
block transforms of which the image transformT is composed
[3, ch. 2] [6, pp. 207-210]. This restriction is sufficient but not
necessary for convergence, and empirical evidence indicates
that convergence is often achieved for larger values ofsmax,

10It is important to note that the collage error‖eC‖ is usually smaller than
the actual distortion‖eT ‖ [76, pp. 87-88] [77], whereas the various forms of
the collage theorem provide an upper boundin terms of the collage error.

11Note that the upper bound is only valid when‖A‖ < 1.
12Note however, that, since it is not additive, thesup norm is not

appropriate for independent blockwise collage minimisation, which is usually
performed under thel2 norm.

for which reduced distortion is obtained in reconstruction
[27], although smaller values ofsmax provide more rapid
convergence on decoding [3, pg. 62]. A disadvantage of
increasingsmax is a corresponding increase in the cost or
distortion in quantising the scaling coefficients.

1) Orthogonalisation:The introduction of an orthogonal-
isation operator to each domain block, making it orthogonal
to the constant blocks, results in a transform which (given a
few additional constraints) may be shown to converge exactly
within a fixed number of iterations [3, ch. 8].

2) Mapping cycles:The interdependence between ranges
at one iteration of decoding and domains at the next may be
analysed in terms of “mapping cycles”, each of which consists
of an independent set of domain to range mappings [79] [80]
[81]. The full image transform is convergent if each of its
independent cycles is convergent.

3) Transform eigenvalues:When the transform is affine,
a necessary and sufficient condition for convergence of the
transform sequence on decoding is that the spectral radius13

of the linear part be less than unity (equivalent to eventual
contractivity) [78] [79] [82] [83]. It is possible, in simple
cases, to determine the spectral radius in terms of the transform
parameters, allowing analytic determination of convergence
requirements on the transform coefficients. While computation
of the spectral radius is difficult for the general case, the
probability of contractivity may be estimated by considering a
statistical distribution for the eigenvalues, based on probability
distributions for the transform parameters [79].

C. Optimal encoding

Although the collage theorem currently forms the basis of
virtually all fractal coders, it does not result in an optimal
image representation given the constraints imposed on the
transform. Suboptimality is, amongst others, a result of op-
timisation of individual block transforms with respect to the
domains in the original image, whereas only the fixed point
domains are available during decoding. It has been shown
that optimal encoding is NP-hard [84], and that collage based
coding may produce a solution of arbitrary distance from the
optimal solution. Collage based encoding may, however, be
shown to be optimal under certain restrictions [3, ch. 8] [47].

Updating the scaling and offset coefficients after coding,
by re-optimising them with respect to domains extracted
from the decoded image, was found to result in reduced
distortion on reconstruction [49], as was a scheme involving
multiple compression stages during each of which domains
were extracted from the decoded image of the previous stage
[16, pp. 81-82]. Improvements due to more computationally
intensive optimisation techniques have also been reported [85]
[86].

VI. SEARCH STRATEGIES

The significant computational requirements of the domain
search resulted in lengthy coding times for early fractal

13The spectral radiusr(A) of linear transformA is the maximum absolute
value of the eigenvalues ofA.
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compression algorithms. The design of efficient domain search
techniques has consequently been one the most active areas
of research in fractal coding, resulting in a wide variety of
solutions. The survey presented here is rather brief due to
space restrictions; the reader is referred to a comprehensive
review [87] of these techniques for further details.

A. Invariant representation

The search for the best domain block for a particular range
block is complicated by the requirement that the range matches
a transformedversion of a domain block; the problem is
in fact to find for each range block, the domain block that
can bemadethe closest by an admissible transform. Given a
set of domain blocksdi and the admissible transformsMp

parameterised byp, the optimum domain block for range
block r results in a collage error ofminp,i ‖r−Mpdi‖.

The problem may be simplified by constructing an appropri-
ate invariant representation for each image block. Transform-
ing range and contracted domain blocks to this representation
allows direct distance comparisons between them to determine
the best possible match [88].

The standard invariant representation for the block intensity
transform14 is constructed by applying the orthogonal projec-
tion onto the orthogonal complement of the space spanned by
the fixed block terms, followed by normalisation. Alternative
representations15 for the single constant block transform utilise
the DCT (or another orthogonal transform) of the vector
followed by zeroing of the DC term and normalisation. This
representation can decrease the time required for an efficient
domain search [15, ch. 6] [48] [91], and allows the utilisation
of a distance measure adapted to the properties of the human
visual system [16, pp. 190-193] [48] [58].

B. Domain pool reduction

One of the simplest ways of decreasing coding time is to
decrease the size of the domain pool in order to decrease the
number of domains to be searched, which is often achieved
by a spatial constraint on the domain pool for each range, as
described in Section IV-B. Noting that a contractive mapping
requires a domain with a higher variance than the range
to which it is mapped, domains with low variance may be
excluded from the domain pool [92]. Alternatively, the domain
pool may be pruned in order to exclude domains which have
similar invariant representations [93] to other domains in the
pool.

C. Classification

Classification based search techniques often do not explic-
itly utilise an invariant representation as formalised above,
but rely instead on features which are at least approximately
invariant to the transforms applied. Domain and range blocks
may either be classified into a fixed number of classes ac-
cording to these features [3, ch. 3] [24] [25] [71], a matching

14An appropriate invariant representation with respect to the block isome-
tries is not possible, although invariantfeaturesare [89] [90].

15These alternatives are equivalent to the standard representation in a
different basis.

domain for each range only being sought within the same
class, or inspection of domains may be restricted to those with
feature values close to those of the range [34] [50].

D. Distance bounds

Instead of locating likely matches, impossible matches may
be excluded by utilising features in terms of which distance
inequalities are available. Examples include inner products
with a fixed set of vectors [6] which provide lower bounds
on distances between domain and range blocks, allowing
many of the domains to be excluded from the actual distance
calculation, and features based on the distribution of energy
within image blocks [94].

E. Multiresolution search

A tree search has been applied to a pyramid of progres-
sively coarser resolution domains, the search at each level
progressing in the region of the best match in the previous level
[95] [96]. A similar technique, using collage errors at coarse
resolutions as lower bounds for those at finer resolutions, has
also been implemented [15, ch. 7] [97].

F. Clustering

Clustering of the domain blocks, under a distance measure
invariant to the block transforms, allows a fast search by
locating the optimum cluster centre and then the optimum
domain within that cluster. The Generalised Lloyd Algorithm
[3, ch. 9] [37] [47], the Pairwise Nearest Neighbour algorithm
[98] and Self-Organising Maps [99] have been utilised in
the construction of these clusters. The computational cost of
clustering during encoding may be avoided by designing the
clusters on an initial training set rather than determining them
adaptively for each image [3, ch. 4] [99].

G. Efficient distance computation

Since a significant fraction of the computational cost of
the domain search lies in the actual calculation of distances
between domain and range blocks, the time required for the
search may be reduced by improving the efficiency of these
calculations.

A simple technique for decreasing search time is thepartial
distance[70, pp. 479-480] method used in VQ. The efficiency
of this search is improved by constructing an invariant rep-
resentation from Hadamard transform coefficients in zig-zag
scan order [48], since the energy packing property of this
transform shifts most of the variance to the initial elements
of the vector. A similar approach based on the Haar transform
has also been investigated [94].

Efficient computation of the inner products between domain
and range blocks can result in a significant improvement,
since these calculations dominate the computational cost of the
distance computations. These calculations may be efficiently
performed in the frequency domain by considering the calcu-
lation of the inner products between a particular range block
and all domain blocks as a convolution of the image with that
range block [100].
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H. Nearest neighbour search

Efficient nearest neighbour search techniques utilise a pre-
processing stage to arrange the set to be searched in an appro-
priate data structure, usually a tree representing a hyperplane
induced partition of the search space, allowing the vector in
the search set closest (the invariant representation of range and
domain blocks is used) to the specified vector to be located
without actually examining every point in the set. Existing
techniques [101, ch. 2, 3] [102] have been applied to domain
searching [15, ch. 6] [16, pp. 179-200] [88] [103] [104], as
have algorithms specifically designed for this purpose [94]
[105] [106].

VII. T RANSFORMREPRESENTATION

Domain positions, and any additional partition information
required in an adaptive partition, are represented by discrete
values and are not subjected to quantisation. There are usually
compact methods of representing the range partition details
in adaptive partitions such as quadtree or HV [3, ch. 3, 6].
Efficient representation of the domain positions [16, pp. 114-
121, 132-133] may be achieved by indexing in decreasing
order of probability of a match, as in the spiral search [49]
described in Section IV-B, a Finite State approach based on
the corresponding VQ technique [70, ch. 14] also having been
considered [107].

A. Quantisation

Although the distributions for the scaling and offset coef-
ficients have been observed to be non-uniform, quantisation
is usually uniform [3, ch. 3] [17], but with the possibility of
compensation for inefficiency by subsequent entropy coding.
Bit allocations16 for the scaling and offset coefficients have
been respectively 2 and 6 [52], 5 and 8 [108], and between
2 and 4 for the scaling and between 3 and 8 for the offset
[9]. An allocation of 5 and 7 bits to the scaling and offset
coefficients respectively provided the best performance in a
comparison over a number of bit allocations [3, pp. 61-65].

Logarithmic [3, pg. 63] and pdf optimised [108] quan-
tisation of the scaling coefficients have been investigated,
the former not resulting in an improvement over uniform
quantisation, with which the latter was not compared. Since the
scaling coefficients are often rather coarsely quantised, there
is a significant advantage in calculating collage errors for each
domain block using quantised transform coefficients [27, pg.
45] [108], although this may be difficult to achieve for some
of the fast domain search methods [15, ch. 6].

It has been observed that the standard block transform (with-
out DC subtraction17) results in correlated scaling and offset
coefficients [9] [109]. Alternative responses to this observation
have been VQ of combined scaling and offset coefficients
[109] [110], and linear prediction of the offset from the scaling
[9]. Since there is usually also some correlation between

16Constant scaling coefficients fixed at 0.50 [53] and 0.75 [16, pp. 156-159]
have also been used, and the scaling coefficients have been restricted to the
set{0.0, 0.5, 1.0} in a hybrid scheme [19].

17The same transform with DC subtraction does not result in a significant
correlation between these coefficients [108].

the offset coefficients for neighbouring blocks, some form of
predictive coding is indicated [16, pp. 140-144], but presents
practical difficulties for some range partitions [108].

Quantisation optimisation has also been investigated for
polynomial fixed block transforms [51] [63], and VQ of
the transform coefficients has been considered [49] for the
frequency domain transform.

B. Rate-distortion optimisation

An adaptive block coding technique may provide a number
of options (eg. either splitting the block into smaller blocks
or adding additional fixed blocks into the block transform),
each associated with a different cost in bits, for reducing
the distortion in representing a particular block. In this case
the appropriate choice is not the option providing the lowest
distortion, but the option for which the ratio between the
decrease in distortion and the associated bit cost is the greatest.

Such rate-distortion optimisation has been applied in the
selection between adaptive block transforms [58] [66], in the
construction of an optimum range partition [16, pp. 93-105]
[28] [66], in the selection of local domain search regions
[16, pp. 114-123], in the selection of an optimum linear
combination of basis blocks [69], and in the decision whether a
mapping from a domain block is beneficial in a hybrid coding
scheme [65]. As a result of the encoding difficulties (described
in Section V) necessitating the use of the collage theorem,
complete rate-distortion optimisation over all components of
the representation is, however, usually impractical.

VIII. D ECODING

Reconstruction of the encoded image is achieved by com-
puting the fixed point of the image transformT from its
encoded coefficients. Since the encoded representation of a
transform may be independent of the size of the encoded
image, a form of interpolation is possible by reconstructing
the fixed point at a higher resolution than the encoded image
[3, pg. 59].

A. Standard decoding

Reconstruction of the fractal coded approximation of a
signal is theoretically based on Banach’s fixed point theorem
which guarantees that the sequence constructed by the iterative
application of a contractive transformT to an arbitrary initial
elementx0 of a complete metric space converges to the fixed
point xT = limn→∞ Tnx0 of that transform.

When the transformT is affine, withTx = Ax+b, the fixed
point may, in principle, be expressed asxT = (I − A)−1b
if |I − A| 6= 0 (equivalent to the condition thatA has no
eigenvalues equal to 1). If the spectral radiusr(A) < 1, a
Taylor series expansion of the term(I − A)−1 provides an
alternative derivation of the reconstruction seriesxT = b +
Ab + A2b + . . . resulting from iterated application of the
transformT to an initial zero vector.
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B. Successive correction decoding

Improved decoding speed has been achieved by a successive
correction scheme (such as Gauss-Seidel [111]), updating each
range block in place as soon as the corresponding domain is
mapped to it, rather than mapping the domains into a tempo-
rary image on each iteration [53] [112] [113]. This technique
was found to provide a further improvement when decoding
of range blocks was ordered so that regions containing the
most highly utilised domain blocks were decoded first on each
iteration [112] [114].

C. Hierarchical decoding

If the domain increment is equal to the range block size, a
PIFS may be iteratively decoded to a minimum-length vector
in which each range block consists of a single pixel. Given
a few additional restrictions [3, pg. 95], one may consider
the domain to range mappings as providing a relationship
between consecutive resolution approximations in the Haar
wavelet basis. This relationship provides an algorithm in which
the range block dimensions are doubled at each step, until the
desired size is reached [3, ch. 5] [115] [116]; a considerable
computational saving is obtained over applying the standard
iterative method to full-sized blocks.

D. Pixel chaining

If spatial contraction is achieved by subsampling, each pixel
(considered as part of a range block) has a single associated
reference pixel (in the corresponding domain block) from
which it is mapped by the image transformT . Since the
reference pixel itself has an associated reference pixel, a chain
of associated pixels may be constructed in this way. These
chains may be utilised in decoding by either tracing back
the path of influence of a pixel until a known pixel value
is encountered, or by utilising a segment of the chain long
enough to provide an acceptable approximation of the desired
pixel value [3, pp. 305-307] [16, pp. 207-210].

E. Postprocessing

Postprocessing in the form of smoothing along block bound-
aries has been found to be beneficial in reducing blocking
artifacts [3, pg. 59] [16, pp. 222-224].

F. Resolution independence

While “resolution independence” has been cited in the
popular technical press as one of the main advantages of fractal
compression [117], there is little evidence for the efficacy of
this technique. Subsampling an image to a reduced size, fractal
encoding it, and decoding at a larger size has been reported
to produce results comparable to fractal coding of the original
image [21], although there is no indication that replacing the
fractal interpolation stage by another form of interpolation
would not produce comparable results. Comparisons with
classical interpolation techniques indicate that, while fractal
techniques result in more visually acceptable straight edges
than linear interpolators, they are inferior in terms of the MSE
measure [118]. An alternative study [119] found slightly better
results for the fractal technique in isolated cases, but a general
superiority for the classical techniques.

IX. WAVELET ANALYSIS

The most significant recent development in fractal coding
theory is the independent discovery by a number of researchers
of a multiresolution analysis description of certain classes
of fractal coding [77] [120] [121] [122]. This discovery has
not only resulted in improved fractal coders, but a better
understanding of the mechanism underlying standard fractal
coding.

A. Mappings between wavelet subtrees

If the domain increment is equal to the domain block size,
and subject to a few additional restrictions [3, pg. 95], there is
a direct correspondence between the domain and range blocks
(without DC component) in a signal, and subtrees rooted at
consecutive resolutions in the Haar wavelet transform of that
signal (essentially in an extension of the analysis described
in Section VIII-C). The domain to range mappings may be
expressed as mappings between subtrees if the block transform
(2) with DC subtraction is used, a domain subtree being
mapped to a range subtree by scaling the detail coefficients,
shifting the entire subtree one resolution higher, and discarding
the highest resolution detail coefficients.

The same analysis may be extended to images by consid-
ering the non-standard [123, pp. 313-316] extension of the
Haar basis to two-dimensions, in which subtrees in each of
the directional subbands are combined to form a composite
subtree (see Figure 4). The square isometries may also be
applied within this framework [77].

�������
�������
�������
�������

�������
�������
�������
�������

DH

V

Fig. 4. Detail coefficient extrapolation by mappings between subtrees.

Encoding is achieved by locating the best matching domain
subtree for each range subtree, in the sense that the MSE
distance between the range subtree and appropriately scaled
domain subtree is minimised. Decoding within this framework
is achieved within a fixed number of iterations, since the
corresponding linear operator is strictly lower triangular below
a few initial rows - convergence problems for small domain
increments may be seen as a result of dependency loops from
high to low resolution detail coefficients [124] [125].
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B. General wavelet bases

This interpretation of fractal coding naturally suggests the
substitution of a smooth wavelet basis for the Haar basis.
Note, of course, that strict correspondence with standard
fractal coding breaks down under this extension, particularly
for biorthogonal bases, where spatial and transform domain
energies are not equal. Such an extension was found to reduce
blocking artifacts and improve the reconstruction MSE [77]
[120] [126].

A number of hybrid coders have been implemented, com-
bining the subtree mapping of fractal coding with scalar
quantisation techniques of varying complexity [122] [124]
[127] [128].

C. Alternative schemes

In contrast to the generalisation of the usualsubtreepre-
diction described above, asubbandprediction scheme in the
non-standard image decomposition has also been proposed
[129] [130]. Each image subband is covered by range blocks
which are mapped from domain blocks of the same size from
the next lower resolution subband (see Figure 5). Since each
subband is predicted from thecodedversion of the previous
subband, contractivity is not required18, and the coding error
may be evaluated at coding time. Low resolution subbands and
residual errors after block prediction were coded by Laplacian
scalar quantisers [130], or by a sophisticated Lattice Vector
Quantisation technique [129].

Standard fractal coding of individual subbands (i.e. domain
and range blocks are extracted from the same subband) has
also been considered [131]. Block shapes within each subband
were designed to reflect the correlation structure within that
subband, the blocks in the horizontal directional subbands
being horizontally elongated, for example.
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Fig. 5. Mappings between subbands (note that these are not constrained by
the tree structure as in Figure 4) in the subband prediction algorithm [130].

18As a result, it is not, strictly speaking, fractal coding, despite the
considerable similarities.

X. PERFORMANCECOMPARISONS

The greatest difficulty in comparing results of different
lossy coding algorithms is the absence of an objective dis-
tortion measure which accurately reflects perceived distortion.
A further complication in the comparison of fractal coding
algorithms is the scarcity of theoretical results to support
design choices; as a result, most stages of coder design are
based on empirical studies, and the lack of consensus on
important issues is probably largely a result of the dependence
between different aspects of fractal coder design referred to in
the introduction. Coder design by a “greedy algorithm” which
optimises each stage separately is therefore bound to fail.

Since the most widely used test image is the 8 bits/pixel
512 × 512 Lena image, PSNR (Peak Signal-to-Noise Ratio)
results published for coding of this image may be used as
a basis for comparison19, as displayed in Figures 6 and 7,
between a variety of coding schemes. The wide range in per-
formance is striking, a number of the more effective algorithms
offering performance comparable to that of Shapiro’s EZW
algorithm [132], which is often used as a benchmark in the
recent literature. While it is difficult to identify the primary
factors responsible for the superior performance of the better
algorithms, a few general tendencies may be observed:

Partition The best algorithms tend to utilise quadtree parti-
tions or their wavelet domain equivalents, although
one of the irregular partition algorithms also offers
superior performance. None of the non-right-angled
partitions offer competitive performance.

TransformThe majority20 of the best algorithms either
operate in the wavelet transform domain, or utilise
frequency domain block transforms.

Transform RepresentationAs might be expected, attention
to quantisation of transform parameters, and rate-
distortion optimisation strategies appear to play a
significant role in improving performance.

Hybrids Many of the best algorithms are constructed as
hybrids of fractal coding and alternative techniques.
In many of these cases, and in particular, for the
coder in Figure 7a, the role of the fractal part in
these hybrids is relatively small.

XI. CONCLUSIONS

Despite the considerable attention received by the technical
aspects of constructing a fractal representation of an image,
it is certainly not clear why a contractive transform should
be expected to provide an efficient representation for natural
images [133]; most authors assume, without direct evidence,

19Caution should be exercised in evaluating this comparison. First, there
are, unfortunately, different versions of the same image in common use, one
of which is significantly easier to code than the other. Second, PSNR is an
unreliable measure of perceived image quality, and while its definition involves
the dynamic range of an image, this value is usually taken as 255, despite
images such as Lena not utilising the full 8 bits available. Finally, the exclusion
of algorithms for which published results for this image were not available
makes a fair comparison across all schemes impossible.

20The notable exception of Figure 6a was probably tested on the more
easily coded Lena image.
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a) Irregular partition coder [33].
b) Multiple domain transform [69].
c) Quadtree partition coder with VQ of transform parameters

[110].
d) Irregular partition coder [32].
e) HV partition coder [3, ch. 6].
f) Quadtree partition coder [3, ch. 3].
g) Triangular partition coder [41].
h) Irregular partition coder [29]
i) Quadtree partition coder [21].
j) Fixed square block partition coder [17].
k) Original Jacquina 2-level coder [24].
l) Triangular partition coder [35].
EZW EZW coder results [132].

aIn a later publication [52] Jacquin reports on a similar coder for which a
PSNR of 31.4dB is achieved at a rate of 0.06 b/p; since the coder described
is very similar to the earlier one [24], it is likely that a typographical error
transformed 0.6 b/p into 0.06 b/p.

Fig. 6. Comparison of the performance of fractal coding (pure fractal coders)
and EZW for the 8 b/p512× 512 Lena image.

that natural images exhibit significant “self-affinity”. Nev-
ertheless, an understanding of the statistical image model21

underlying fractal compression, together with associated flaws,
has recently begun to emerge.

Motivation for the representation has been proposed in terms
of comparisons with alternative techniques such as predictive
coding [134], classified transform coding [135], and VQ [47,
ch. 5]. More direct statistical examination [76] [127, ch. 4] has
revealed the role played by the second order statistics of the
image model, a decaying power spectrum and the statistical
self-similarity of fractional Brownian motion models being
most significant [125]. There is evidence, however, that the
underlying model does not represent a particularly accurate
characterisation of natural images [136]. An optimised VQ
codebook generally outperforms the domain pool of a fractal
representation, and domain pools extracted fromdifferent
images are generally no less effective than those extracted
from thesameimage as the range blocks [47, ch. 5] [76] [137].

21Representing a coherent description of the image statistics required for
fractal coding to be effective.
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a) Hybrid wavelet significance map/fractal coder [128].
b) DCT domain block transform coder [49].
c) Subband block prediction with PVQ [129].
d) Subband block prediction with scalar quantisation [130].
e) Hybrid wavelet scalar quantisation/fractal coder [124].
EZW EZW coder results [132].

Fig. 7. Comparison of the performance of fractal coding (hybrid coders) and
EZW for the 8 b/p512× 512 Lena image.

Furthermore, fractal coding is less effective than transform
coding for the underlying models of transform coding, even
when these models are statistically self-similar [76] [138],
and it appears as if the simpler zerotree recently introduced
in wavelet scalar quantisation [132] is able to account for
similar higher-order dependencies to those represented by the
underlying fractal coding model [125] [127, ch. 4].

While the performance comparisons presented here imply
that the better fractal coders offer rate distortion performance
at least comparable with the current state of the art, it should
be noted that the majority of these algorithms are not classical
fractal coders relying purely on image self-affinity, but incor-
porate the ability to exploit alternative forms of redundancy for
which there is better evidence. It remains to be seen whether
fractal compression captures any statistical property of natural
images which can not be exploited as effectively by alternative
techniques.
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[86] B. Hürtgen, “Performance bounds for fractal coding,” inProceedings
ICASSP-95 (IEEE International Conference on Acoustics, Speech and
Signal Processing), vol. 4, (Detroit, MI, USA), pp. 2563–2566, May
1995.

[87] D. Saupe and R. Hamzaoui, “Complexity reduction methods for
fractal image compression,” inProceedings of the IMA Conference
on Image Processing: Mathematical Methods and Applications(J. M.
Blackledge, ed.), (Oxford, England), pp. 211–229, Sept. 1994.

[88] D. Saupe, “Accelerating fractal image compression by multi-
dimensional nearest neighbor search,” inProceedings DCC’95 (IEEE
Data Compression Conference)(J. A. Storer and M. Cohn, eds.),
(Snowbird, UT, USA), pp. 222–231, Mar. 1995.

[89] D. C. Popescu and H. Yan, “MR image compression using iterated
function systems,”Magnetic Resonance Imaging, vol. 11, no. 5,
pp. 727–732, 1993.

[90] D. Götting, A. Ibenthal, and R.-R. Grigat, “Fractal image coding and
magnification using invariant features,”Fractals, vol. 5 (Supplementary
Issue), pp. 65–74, Apr. 1997.

[91] B. Wohlberg and G. de Jager, “Fast image domain fractal compression
by DCT domain block matching,”Electronics Letters, vol. 31, pp. 869–
870, May 1995.

[92] D. Saupe, “Lean domain pools for fractal image compression,” inStill-
Image Compression II(R. L. Stevenson, A. I. Drukarev, and T. R.
Gardos, eds.), vol. 2669 ofSPIE Proceedings, (San Jose, CA, USA),
pp. 150–157, Jan. 1996.



14

[93] J. Signes, “Geometrical interpretation of IFS based image coding,”
Fractals, vol. 5 (Supplementary Issue), pp. 133–143, July 1997.

[94] G. Caso, P. Obrador, and C.-C. J. Kuo, “Fast methods for fractal image
encoding,” inVisual Communications and Image Processing ’95(L. T.
Wu, ed.), vol. 2501 ofSPIE Proceedings, (Taipei, Taiwan), pp. 583–
594, May 1996.

[95] M. Kawamata, M. Nagahisa, and T. Higuchi, “Multi-resolution tree
search for iterated transformation theory-based coding,” inProceedings
ICIP-94 (IEEE International Conference on Image Processing), vol. III,
(Austin, TX, USA), pp. 137–141, Nov. 1994.

[96] H. Lin and A. Venetsanopoulos, “A pyramid algorithm for fast fractal
image compression,” inProceedings ICIP-95 (IEEE International
Conference on Image Processing), vol. III, (Washington, D.C., USA),
pp. 596–599, Oct. 1995.

[97] F. M. Dekking, “Fractal image coding: some mathematical remarks on
its limits and its prospects,” Tech. Rep. 95-95, Faculty of Technical
Mathematics and Informatics, Delft University of Technology, Delft,
The Netherlands, 1995.

[98] C. J. Wein and I. F. Blake, “On the performance of fractal compression
with clustering,” IEEE Transactions on Image Processing, vol. 5,
pp. 522–526, Mar. 1996.

[99] R. Hamzaoui, “Codebook clustering by self-organizing maps for fractal
image compression,”Fractals, vol. 5 (Supplementary Issue), pp. 27–38,
Apr. 1997.

[100] D. Saupe and H. Hartenstein, “Lossless acceleration of fractal image
compression by fast convolution,” inProceedings ICIP-96 (IEEE
International Conference on Image Processing), vol. I, (Lausanne,
Switzerland), pp. 185–188, Sept. 1996.

[101] H. Samet, The Design and Analysis of Spatial Data Structures.
Addison-Wesley Series in Computer Science, Reading, MA, USA:
Addison-Wesley, 1989.

[102] S. Arya and D. M. Mount, “Algorithms for fast vector quantization,” in
Proceedings DCC’93 (IEEE Data Compression Conference)(J. Storer
and M. Cohn, eds.), (Snowbird, UT, USA), pp. 381–390, Mar. 1993.

[103] D. Saupe, “Breaking the time complexity of fractal image compres-
sion,” Tech. Rep. 53, Institut für Informatik, University of Freiburg,
Freiburg, Germany, 1994.

[104] J. Kominek, “Algorithm for fast fractal image compression,” inDig-
ital Video Compression: Algorithms and Technologies 1995(A. A.
Rodriguez, R. J. Safranek, and E. J. Delp, eds.), vol. 2419 ofSPIE
Proceedings, (San Jose, CA, USA), pp. 296–305, Feb. 1995.

[105] B. Bani-Eqbal, “Speeding up fractal image compression,” inStill-Image
Compression(M. Rabbani, E. J. Delp, and S. A. Rajala, eds.), vol. 2418
of SPIE Proceedings, (San Jose, CA, USA), pp. 67–74, Feb. 1995.

[106] B. Bani-Eqbal, “Enhancing the speed of fractal image compression,”
Optical Engineering, vol. 34, pp. 1705–1710, June 1995.

[107] H. T. Chang and C. J. Kuo, “Finite-state fractal block coding of
images,” inProceedings ICIP-96 (IEEE International Conference on
Image Processing), vol. I, (Lausanne, Switzerland), pp. 133–136, Sept.
1996.

[108] G. E. Øien, “Parameter quantization in fractal image coding,” in
Proceedings ICIP-94 (IEEE International Conference on Image Pro-
cessing), vol. III, (Austin, TX, USA), pp. 142–146, Nov. 1994.
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