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Abstract

Fractal image compression is a comparatively new technique which has gained consider-
able attention in the popular technical press, and more recently in the research literature.
The most significant advantages claimed are high reconstruction quality at low coding
rates, rapid decoding, and “resolution independence” in the sense that an encoded image
may be decoded at a higher resolution than the original. While many of the claims pub-
lished in the popular technical press are clearly extravagant, it appears from the rapidly
growing body of published research that fractal image compression is capable of perfor-
mance comparable with that of other techniques enjoying the benefit of a considerably
more robust theoretical foundation.

So called because of the similarities between the form of image representation and a
mechanism widely used in generating deterministic fractal images, fractal compression
represents an image by the parameters of a set of affine transforms on image blocks
under which the image is approximately invariant. Although the conditions imposed
on these transforms may be shown to be sufficient to guarantee that an approximation
of the original image can be reconstructed, there is no obvious theoretical reason to
expect this to represent an efficient representation for image coding purposes. The usual
analogy with vector quantisation, in which each image is considered to be represented
in terms of code vectors extracted from the image itself is instructive, but transforms
the fundamental problem into one of understanding why this construction results in an
efficient codebook.

The signal property required for such a codebook to be effective, termed “self-affinity”,
is poorly understood. A stochastic signal model based examination of this property is
the primary contribution of this dissertation. The most significant findings (subject
to some important restrictions) are that “self-affinity” is not a natural consequence
of common statistical assumptions but requires particular conditions which are inad-
equately characterised by second order statistics, and that “natural” images are only
marginally “self-affine”, to the extent that fractal image compression is effective, but
not more so than comparable standard vector quantisation techniques.
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Chapter 1

Introduction

The recent growth in the demand for digital transmission of speech, still images, and video
has created potential applications for which viable hardware solutions are not available. Since
a considerable degree of redundancy is present in these signals, and in many cases a signal
perceptually equivalent but not identical to the original signal is acceptable, a decrease in the
size of the digital representation by more than an order of magnitude is possible by employing
suitable data compression techniques. While there is a considerable common theoretical basis
for the compression of any of these signals, the compression of still greyscale images is the
subject of this dissertation.

Digital still images are used in a wide variety of applications, including entertainment,
advertising, journalism, security and law enforcement, medical imaging, and satellite imaging.
Although many of these images are in colour, greyscale images predominate in medical imag-
ing, and colour image compression is usually achieved by a relatively simple extension of the
principles appropriate for greyscale images [115, pp. 664-665] [158, app. A]. The compression
of colour or multi-band images is not considered here.

Despite the wide variety and considerable complexity of many data compression tech-
niques, they are all based on the same simple principle, requiring a statistical characterisation
of the data to be compressed, with which a measure of probability or frequency of occurrence
is associated. In the case of reversible compression (in which decoding results in an exact re-
production of the original data) an average reduction in the length of the data representation
as a string of symbols is achieved by using a shorter representation for more likely data, and
a longer representation for less likely data. Irreversible compression (in which the decoded
signal is merely similar to the original) achieves additional compression by discarding the least
important components of the data, reducing the information to be represented. The majority
of image compression techniques are based on a statistical image model which describes the
statistical properties exploited by the compression scheme. Although these image models
are usually only an approximation to the true image statistics, they do provide a theoretical
justification for the resulting compression algorithm, as well as a reasonable characterisation
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2 Chapter 1

of the type of signal for which the algorithm is expected to be effective.
One of the most recent image compression techniques is so-called fractal compression,

which is patented and marketed by its originator, who has made public only sketchy details
of the design of the commercial software [16]. Fractal compression has been viewed with some
skepticism within the engineering community, largely as a result of extravagant claims in the
popular technical press of 1000:1 compression ratios [211] and “resolution independence” [6].
This has nevertheless become an active area of research, experiencing an exponential growth
in publications over the last four years. The majority of research has been directed towards
solving technical difficulties, such as the computational complexity of the encoding stage. In
contrast, very little progress has been made towards understanding why fractal compression
is as effective as it is, or characterising the type of signal for which it is effective. The research
described in this dissertation is motivated by these questions.

1.1 Synopsis

A brief synopsis of the remainder of this dissertation is presented here as an aid to the
reader. Chapter 2 consists of a broad overview of data and image compression. The basic
elements of information theory are introduced, with a description of entropy and the rate
distortion function. Examples of the most common reversible and irreversible coding methods
are presented after a brief description of the properties of images relevant to their compression.
The chapter closes with an introduction to fractal compression.

A survey of the current fractal coding literature, excluding colour image and video coding
research, is presented in Chapter 3. The options available at each stage of algorithm design are
summarised, with comments on their relative merits where possible, and the major theoretical
aspects of the construction of a fractal representation are briefly described. The recent wavelet
transform domain interpretation, having led to a new generation of improved fractal coding
schemes, receives particular attention. Performance comparisons reveal that the best fractal
compression algorithms are remarkably effective, motivating the necessity for an improved
understanding of the image properties associated with this success.

Chapter 4 describes an evaluation of the effectiveness of fractal coding for a simple class
of statistical signal models. This research provides valuable insight into the dependence of
fractal coding on the statistical structure of the signals to which it is applied. The assumptions
of fractal coding are found to be poorly adhered to for this class of signal models, resulting in
significantly suboptimal performance. These results suggest that the conditions necessary
for effective fractal coding are not a natural consequence of weak or common statistical
assumptions.

The opposite approach is followed in Chapter 5 by defining a stochastic signal model
with precisely the properties required for effective fractal compression. Examination of this



Introduction 3

signal model reveals that the resulting second order statistics are approximately compatible
with those observed for “natural” images, but that the model is poorly characterised by its
second order statistics as a result of significant additional dependence. A wavelet transform
domain version of this model is also constructed, and proves convenient for comparisons with
properties of test images.

Chapter 6 builds on the wavelet domain form of fractal coding described in Chapter 3. The
wavelet domain statistics of a set of test images are compared with those of the model defined
in Chapter 5, and are observed to be approximately compatible. Direct measurement of the
suitability of the test images for fractal compression suggest that they are only marginally so.
The observed success of fractal coding for “natural” images is linked with the interpretation
as a form of “self-quantisation” in the wavelet transform domain.

The conclusions are presented in Chapter 7, drawing together the results of the three
previous research chapters, and presenting additional comments.

Elements of probability theory and statistics required for exposition of the results pre-
sented here are summarised in Appendix A. Appendix B contains a summary of results in
functional analysis required for the following two appendices. A short introduction to wavelet
theory is given in Appendix C, followed by the mathematical foundations of fractal coding
in Appendix D. Appendix E contains reproductions of the set of test images used in the
research.



Chapter 2

Data Compression and Signal

Coding

Data compression algorithms may be conveniently classified into two distinct types, described
as reversible or lossless compression if the original signal is exactly reconstructed on decoding,
and irreversible or lossy compression if it is not. The type of algorithm utilised is dependent
on the data to which it is applied. If the data consists of text, database files, program source
or executable code, reversible coding is clearly necessary. When the data is a digitisation of
inherently analog data such as speech or video, on the other hand, exact reconstruction may
not be necessary, and considerable compression gains are possible by taking advantage of this
additional freedom.

2.1 Reversible Coding

Digital data consists of a stream of discrete symbols over a finite alphabet1 (e.g. {0, 1} for
binary data), as opposed to analog data which is, in principle at least, continuous in both
time and amplitude. Each distinct string over this alphabet represents a separate “message”,
for example a piece of text, a segment of speech, or an image. An encoding system is a
function mapping source strings to strings over a code alphabet. The goal of digital data
compression is the construction of a code that minimises the average length of the encoded
strings. Information theory allows bounds on the compression achievable for a particular
source to be calculated from a statistical model of that source.

2.1.1 Information theory

Information theory is based on the work of Shannon, who formalised the notion of an infor-
mation source as a stochastic process [179] (original emphasis):

1The actual symbols are clearly irrelevant; only the cardinality of the alphabet is significant.

4
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The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning ; that is they refer to or are correlated according to
some system with certain physical or conceptual entities. These semantic aspects
of communication are irrelevant to the engineering problem. The significant aspect
is that the actual message is one selected from a set of possible messages. The
system must be designed to operate for each possible selection, not just the one
which will actually be chosen since this is unknown at the time of design.

The two main branches of information theory are concerned with source and channel
coding. Source coding deals with encoding data for efficient transmission (or storage) with
the shortest possible digital representation per message or data stream, whereas channel
coding is concerned with reducing transmission (or storage) errors by encoding for maximum
reliability. The joint source channel coding theorem [44, pp. 215-218] guarantees that, under
very broad conditions, optimal transmission over a channel may be achieved by separate
optimisation of the source and channel codes. Since channel coding is of secondary interest
in this dissertation, the term “coding” shall, when unqualified, denote source coding.

The simplest model of an information source is a Discrete Memoryless Source (DMS), for
which each symbol si of the source alphabet S = {s1, s2, . . . , sn} has an associated probability2

p(si), which is independent of the previously generated symbols [158, pg. 16]. In defining
the information content of a symbol generated by such a source, it is reasonable to expect an
unlikely symbol to convey more information than a likely one. If the measure of information
is also desired to be additive3 for independent symbols, the definition of the information
associated with symbol si is restricted (up to a multiplicative constant) [78, ch. 6] [179] to

Ib(si) = logb

1
p(si)

,

where the base of the logarithm is usually 2, in which case the information is measured in
bits (binary digits). The entropy4 of a DMS, which may be considered to be the average
information per source symbol, is5

Hb(S) = E[Ib(S)] = −
n∑

i=1

p(si) logb p(si)

where the subscript b is omitted for the base 2 entropy, which is denoted H(S) here. If S is
2Although this should be denoted as pS(si) in the notation established in Appendix A, a slightly different

notation contributes to clarity in this chapter.
3In the sense that the information conveyed by a number of symbols is the sum of the information conveyed

by each of them.
4The entropy as defined here is closely related to the entropy of thermodynamics, where the term originated.
5Adopting the convention that 0 log 0 = 0, a symbol of zero probability is excluded from the sum.
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a continuous valued memoryless source with pdf f(s), the differential entropy [99, pg. 624]

h(S) = −
∫ ∞

∞
f(s) log2 f(s) ds

may be defined, but does not have a simple interpretation corresponding to that for the
absolute entropy for a discrete source [44, ch. 9].

A DMS is a rather simplistic model for most digital data, since there is usually significant
dependence between neighbouring symbols (e.g. alphabetic characters in English text or pixel
values in a raster scanned image). A kth order Markov process (a 0th order Markov process is
simply a DMS) generates strings over a source alphabet S, where the probability of occurrence
of each symbol is contingent on the previous k symbols [78, pg. 80], and is specified by the
set of conditional probabilities p(si|sj1 , sj2 , . . . , sjk

). This Markov model may be viewed as a
non-deterministic state machine of nk states, where each state is specified by the immediate
k symbol history (sj1 , sj2 , . . . , sjk

) at each stage (see Figure 2.1).

p(s1|s2)

p(s2|s1)

p(s1|s1) p(s2|s2)s1 s2

Figure 2.1: An example of a first order Markov model (note that p(s1|s1)+p(s2|s1) = 1
and p(s2|s2) + p(s1|s2) = 1).

The mth extension of an order k Markov model is obtained by considering m symbol
blocks of the original model as a single symbol of the extension (see Figure 2.2) [1, pp. 29-30].
Any Markov model of order greater than one may be reduced to a first order model by using
an appropriate extension of the higher order model.

s2s3s2s1s4s1s1s3

s̃23s̃21s̃41s̃13

Figure 2.2: A source sequence and its second extension. The original sequence is over the
alphabet S = {s1, s2, s3, s4}, while the second extension is a sequence over the alphabet
S̃ = {s̃11, s̃12, s̃13, s̃14, s̃21, . . . , s̃44}.

Each state of an order k Markov model has associated entropy

H(S|sj1 , sj2 , . . . , sjk
) = −

n∑

i=1

p(si|sj1 , sj2 , . . . , sjk
) log p(si|sj1 , sj2 , . . . , sjk

).
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The entropy of the source is the average of the entropies for each state, weighted by the
probability p(sj1 , sj2 , . . . , sjk

) of that state

H(S) =
∑

Sk

p(sj1 , sj2 , . . . , sjk
)H(S|sj1 , sj2 , . . . , sjk

).

If the Markov process is ergodic [78, pp. 80-85], the state probabilities are expected to
reach an equilibrium distribution independent of the initial state, in which case the entropy
may be calculated. Ergodicity is necessary property for many types of statistical analysis,
implying that averages obtained from an ensemble of signals may be estimated from a single
signal of sufficient length [99, pg. 31] [151, pp. 245-251]. The importance of the source
entropy as a lower bound on the achievable compression is discussed in the following section.

2.1.2 Source coding

A code represents a rule for translating source strings into code strings. If the source alphabet
is S = {s1, s2, . . . , sn}, and the code alphabet is U = {u1, u2, . . . , um}, a code is a function
C : S∗ → U∗, where A∗ is the set of all finite length strings over alphabet A, including the
null sequence Λ.

A code translating individual source symbols into a sequence of code symbols is a block6

code [1, pg. 46], while that assigning a code sequence to the entire source sequence is a
non-block or tree code [158, pg. 28]. A code translating source symbols into strings of equal
length over the code alphabet (e.g. ASCII) is a fixed-length code, whereas the code is a
variable-length code if the code string length is variable (e.g. Morse code) [78, pg. 51]. The
expected length of a code7 is the expected encoded string length over all source symbols

L(C) =
n∑

i=1

p(si)l(C(si)),

where p(si) is the probability of si, C(si) is the code for si and l(x) is the length of the
string x. Clearly the block length is equal to L(C) for a fixed-length code. While here is no
advantage to be gained by employing a variable-length code if all source symbols have equal
probabilities, it may be profitable to assign shorter codes to the more likely symbols if the
probabilities are unequal, resulting in a smaller L(C) than obtainable by a fixed-length code.
The expected code length L(C) is often referred to as the code rate for a specific code and
source. In the case of a binary code, it represents the average number of bits required per
source symbol.

6Usage differs in the case of some authors [78, pg. 51], for whom a block code corresponds to a fixed-length
code here.

7The term “code” is used to indicate both the code as a function and the code as an encoded string; the
difference should be clear from the context.
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A number of constraints are required for a code to be useful. An important condition for
decodability is clearly that the function C is injective8, in which case the code is non-singular
[44, pg. 80]. This is unfortunately not a sufficient condition to ensure unique decodability of
a string unless a delimiting symbol is inserted between code symbols, which is inefficient. A
code is uniquely decodable if all possible concatenations of source symbols result in a unique
code sequence [78, pg. 53]. A condition of a slightly more practical nature is required in
addition to unique decodability, since a uniquely decodable code may still require parsing
of the entire code string before decoding is possible. A prefix or instantaneous code has no
codeword as a prefix to any other codeword [44, pg. 81], which guarantees that a codeword
in a string is recognisable as soon as that codeword has been completely scanned (see Table
2.1).

Table 2.1: An example of code taxonomy for a 3 symbol source S = {s1, s2, s3}.

Non-singular Uniquely decodable Instantaneous C(s1) C(s2) C(s3)
0 1 1

• 0 1 01
• • 0 01 011
• • • 0 10 110

The definition of a prefix code imposes restrictions on the minimum lengths of codewords,
since each code precludes the use of the same symbols as a prefix to any other code. The
Kraft inequality [78, pg. 57] specifies necessary and sufficient conditions for the existence
of an instantaneous code in terms of the codeword lengths; an instantaneous code C from
an alphabet of n symbols into an alphabet of m symbols with codeword lengths l1, l2, . . . , ln

exists if and only if
n∑

i=1

m−li ≤ 1.

The McMillan inequality [44, pg. 90], identical in form to the Kraft inequality, is valid for any
uniquely decodable code. This implies that no reduction of codeword lengths is achievable by
utilising a non-instantaneous code.

The Kraft inequality may be used to prove that the base m entropy of an information
source is a lower bound for the average length of any m symbol instantaneous code for that
source [78, pg. 112]

Hm(S) ≤ L(C).

This is an extremely important result; there is no point in attempting to design an instan-
taneous code with average length less than the entropy of the source to be encoded. This

8Also termed “one-to-one”, requiring in this context that no two source strings result in the same code
string.
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inequality suggests the definition of the efficiency η [1, pg. 86] of a code

η =
Hm(S)
L(C)

.

The redundancy of a code is 1− η.
It may be shown via the Kraft inequality that assigning a codeword length of − log p(si)

to each source symbol si of a DMS results in a code with average length equal to the en-
tropy bound [1, pp. 68-73] [44, pg. 85]. The actual codeword lengths must be chosen as9

d− log p(si)e (block codes have integer codeword lengths), resulting in a coding rate which
exceeds the entropy bound unless the − log p(si) values are integers. This integer codeword
length assignment results in a coding rate bounded above by Hm(S)+1 [44, pp. 87-89]. Since
this bound becomes Hm(S)+ 1

k for the kth extension of the source [1, pg. 20, 29], the average
codeword length may be made arbitrarily close to the entropy of the source by coding the
source symbols in sufficiently large blocks [1, pp. 72-73].

The performance improvement obtained by grouping source symbols, despite the absence
of any dependence between them, is due to the decreasing significance of non-integer symbol
probabilities with increasing block size. The same choice of codeword lengths for a Markov
source also results in an average codeword length approaching the source entropy with in-
creased block length [1, pg. 75]. In this case the grouping together of source symbols in blocks
allows the inter-symbol dependence to be utilised within each of the extension symbols.

2.1.3 Channel coding

While channel coding is not of direct interest in the study of data compression, a number of
concepts and definitions which are most easily introduced within this context are required for
rate distortion theory, which is introduced in the following section. Consider an information
channel with source symbols in A = {a1, . . . , an} (for simplicity, treatment is restricted to
the case of a DMS) which are transmitted across a channel, and received as output symbols
in B = {b1, . . . , bm}. A Discrete Memoryless Channel (DMC) [26, pg. 18] is completely
specified by the transition probabilities p(bj |ai) of symbol bj being received given that ai was
transmitted (see Figure 2.3).

The source (or a priori) entropy H(A) of A has already been introduced as

H(A) = −
n∑

i=1

p(ai) log p(ai).

Similarly, the entropy of the output B is

H(B) = −
m∑

j=1

p(bj) log p(bj),

9The ceiling dxe of x ∈ R is the smallest integer greater than or equal to x.
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a1

a2

a3

b1

b2

b3

p(b1|a1)

p(b3|a3)

p(b2|a1)

p(b3|a2)

A B

Figure 2.3: Transition probabilities for a channel between A and B.

where the probability of the output symbols is dependent on the source statistics as well as
the transition probabilities

p(bj) =
n∑

i=1

p(ai)p(bj |ai)

and hence so is H(B). The joint distribution [26, pg. 15]

p(ai, bj) = p(ai)p(bj |ai)

is the probability of joint occurrence ai and bj . The conditional (or a posteriori) entropy [1,
pg. 101] of A, given that symbol bj is received at the output is

H(A|bj) = −
n∑

i=1

p(ai|bj) log p(ai|bj),

which is the average number of bits required to represent a source symbol given that bj is
received. Averaging over all output symbols gives the equivocation of A with respect to B [1,
pg. 105]

H(A|B) = −
m∑

j=1

n∑

i=1

p(ai, bj) log p(ai|bj)

which is the average number of bits required to represent the input, given the output. On
average, then, an output symbol conveys

I(A; B) = H(A)−H(A|B)

bits of information, the mutual information10 of A and B.
10Note that I(A; B) = I(B; A).
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The channel capacity [78, pg. 146] of a channel with transition probabilities p(bj |ai) is

C = max
p(ai)

I(A; B)

where the maximum is taken over all possible source probabilities, and is therefore depen-
dent on the channel characteristics p(bj |ai) alone. Shannon [179] showed that data may be
transmitted, with arbitrarily small frequency of error, at rate R along a channel of capacity
C if R < C. Although this result is not of direct interest for the purposes of data compres-
sion, since source coding and channel coding may be considered as separate processes [26, pp.
71-75], the susceptibility of a particular source coding method to channel errors is often of
importance.

The mutual information of two continuous random variables is

I(A; B) = h(A)− h(A|B),

and has the same interpretation as the mutual information for two discrete random variables
[44, pg. 231].

2.1.4 Entropy coding

Although the theory of the preceding section links the entropy of a source to the minimum
achievable average codeword length (or maximum data compression), it is non-constructive11.
The entropy coding techniques presented here12 all require a priori knowledge (or estimates)
of the source statistics.

The Huffman coding algorithm [83] is capable of producing optimal instantaneous codes
for a given source. While Huffman codes may be designed for any code alphabet [44, pg. 93],
the description here is restricted to binary codes for simplicity. Due to the complexity13 of
Huffman coding of Markov sources of order higher than 0, the description is also limited to
coding of a DMS. The initial stage of the process entails sorting the source symbols in order
of probability. A tree is then constructed by combining the two least probable symbols at
each stage into a single symbol (which is assigned the sum of its parents’ probabilities) at
the next stage. The construction of the tree terminates when two symbols remain. The code
is generated by assigning a different code symbol to each of the top two symbols, followed
by descending the tree, assigning partial codewords at each level by concatenating a different
symbol at each branching to the partial codeword at the previous level. The process terminates
when the bottom of the tree is reached, at which stage a codeword has been assigned to each
of the source symbols (see Figure 2.4). Huffman codes may be shown to be optimal if the

11It does not provide an algorithm for constructing such an optimum code.
12Shannon-Fano coding [78] has been largely superseded by Huffman coding, and is not described here.
13A separate codebook is required for each state or context.
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source probabilities are negative powers of the code radix (e.g. 2 for a binary code). When
this is not the case, the restriction of codeword lengths to integer values prevents the entropy
bound from being achieved (see the discussion at the end of Section 2.1.1).

1011010001000

0 01 1

0 1

0

1

0.50((s1)(s2))((s3)(s4)) → 0

(((s1)(s2))((s3)(s4)))(s5) → Λ 1.00

s1 s2 s3 s4 s50.08 0.14 0.16 0.500.12

0.20(s1)(s2) → 00 (s3)(s4) → 01 0.30

Figure 2.4: An example of Huffman code construction. Source symbols are to the left,
probabilities to the right, and codeword assignments below the terminal nodes of the
tree. Partial codewords and combined probabilities are to the left and right respectively
of non-terminal nodes. Symbol assignments for each branch are to the left of that branch.

While Huffman coding is a block code, limiting its ability to match the source entropy
for all sources, arithmetic coding [25] is a non-block code, thereby avoiding this limitation
by assigning a code sequence to the source sequence as a whole. The precursor of arithmetic
coding is Shannon-Fano-Elias coding [1, pg. 61] [44, pg. 101]. Arithmetic coding preserves the
basic idea, but solves a number of problems of implementation. Assuming a DMS model of the
source, with probabilities p(si), clearly

∑n
i=1 p(si) = 1. The unit interval [0, 1) is partitioned

into subintervals of width corresponding to the probabilities of each source symbol, and the
initial subinterval is selected according to the initial source symbol. This subinterval is then
subdivided as before, and selection is performed on the next source symbol (see Figure 2.5).
The construction ensures that each source sequence is represented by a subinterval of [0, 1),
and that the probability of a source sequence is equal to the width of the interval representing
it. The lower bound of the interval may be represented by d− log2 p(x)e bits, where x ∈ S∗

and the interval width is equal to p(x) [158, pg. 29], resulting in a code with average length
close to the entropy bound.



Data Compression and Signal Coding 13

0.6 0.90.78 0.87

0.6 0.780.760.71

0 10.6 0.9

s1 s2 s3

s2s3

s2s1s1 s2s1s2 s2s1s3

s2s1 s2s2

Figure 2.5: An example of arithmetic code construction. Interval limits are demarcated
above the horizontal lines, and corresponding source strings are shown below.

2.1.5 Universal coding

The coding methods of the previous section require a statistical model of the information
source. In many circumstances, however, such a model is difficult or impractical to construct,
in which case universal coding provides an alternative. Universal coding methods include
adaptive entropy coding schemes (such as adaptive arithmetic coding [164]) which build up
a model of the source as a source sequence is scanned, and inherently universal schemes such
as Lempel-Ziv coding [25], which is based on a complexity measure for individual strings, and
does not directly involve estimation of source statistics.

The Kolmogorov complexity of a sequence is defined as the length of the shortest computer
program generating that sequence [44]. This complexity measure is of theoretical interest,
being in agreement with the entropy measure where comparison is possible. Aside from being
impractical however, it may be shown to be non-computable in general. A practical measure
proposed by Lempel and Ziv [111] depends on the rate of occurrence of novel subsequences
in a sequence. This measure forms the basis of the most common universal coding algorithm.
A sequence is parsed into previously un-encountered subsequences (see Figure 2.6), each of
which is represented by a pointer to a previous subsequence, and an additional symbol (e.g.
in Figure 2.6, sequence 011 would be represented by a pointer to the previous subsequence
01 and the additional symbol 1).

2.2 Irreversible Coding

In contrast with the symbol sources considered in the preceding sections, a waveform or signal
is considered to be inherently time- and amplitude-continuous [99, pp. 2-3], and generally
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Step Dictionary Contents Unparsed String
0 Λ 0011011001110101001
1 0 011011001110101001
2 0, 01 1011001110101001
3 0, 01, 1 011001110101001
4 0, 01, 1, 011 001110101001
5 0, 01, 1, 011, 00 1110101001
6 0, 01, 1, 011, 00, 11 10101001
7 0, 01, 1, 011, 00, 11, 10 101001
8 0, 01, 1, 011, 00, 11, 10, 101 001
9 0, 01, 1, 011, 00, 11, 10, 101, 001 Λ

Figure 2.6: An example of Lempel-Ziv sequence parsing.

represents some physically measurable quantity, such as sound amplitude, where the signal is
a function of time, or light intensity across an image, in which case the signal is a function of
spatial parameters. Discretisation in both time and amplitude is required in the construction
of a digital representation of such a signal, referred to as sampling and quantisation14 respec-
tively. The meaning of “signal coding” is restricted here to the coding or re-quantisation of
an existing digital representation. A consequence of the original sampling and quantisation
process is that any digital reconstruction of an analog signal is necessarily lossy with respect
to that signal. In many cases the fidelity of the digitised signal is sufficient to allow subsequent
lossy compression without introducing unacceptable distortion.

2.2.1 Rate distortion theory

The preceding sections have dealt with reversible coding, where the decoder is able to recon-
struct the original message exactly. In many circumstances, and in particular in the coding
of quantised analog signals, a certain degree of information loss is acceptable (or even in-
evitable), as measured by some fidelity criterion. Rate distortion theory is the branch of
information theory dealing with lossy encoding, subject to restrictions on the distortion be-
tween coded and reconstructed messages. The rate distortion function of a source is defined
as the minimum rate required to achieve a specified distortion for that source [180]. Since the
reconstruction alphabet of lossless coding is identical to the source, encoding and decoding
may be represented by functions

C : S∗ → U∗ and C−1 : U∗ → S∗ (2.1)
14Also referred to as analog-to-digital conversion.
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respectively, where S is the source alphabet and U is the code alphabet. The more general
case of lossy encoding and decoding may be represented by

C : S∗ → U∗ and Ĉ : U∗ → Ŝ∗ (2.2)

where C and Ĉ are the encoding and decoding functions respectively, the reconstruction
alphabet Ŝ is not necessarily equal to the source alphabet S, and in particular Ĉ is not
necessarily the inverse of C. Development here is restricted to the case of context free or single
letter [26, pg. 20] [70, pg. 443] distortion measures, involving only source and decoded symbols
in corresponding positions in their respective strings. A more general distortion measure is
more realistic for many applications, but is analytically less tractable. The distortion measure
is a function d : S × Ŝ → R, where d(s, ŝ) is a measure of the cost incurred, or distortion
produced, in representing s ∈ S by ŝ ∈ Ŝ. Common examples [44, pg. 339] are the Hamming
distance

d(s, ŝ) =

{
0 if s = ŝ

1 if s 6= ŝ

and the squared error15

d(s, ŝ) = (s− ŝ)2.

The definition of the rate distortion function presented here is further restricted to the simple
case of a DMS; sources with memory require a slightly more complicated definition, involving
the limit of mutual information for large block size.

The fundamental idea of rate distortion theory is to model the code-decode function by a
set of transition probabilities p(ŝj |si) on a test channel providing the connection from S∗ to Ŝ∗

in Equation (2.2). In most practical situations this mapping is deterministic, corresponding to
transition probabilities of 0 or 1 only, but the additional flexibility provided by a stochastic
mapping is important in optimising over all possible mappings. Since the rate distortion
function is a property of the source, the optimisation required in its definition is over all
possible transition probabilities (representing all possible code-decode schemes), in contrast
to the optimisation in the calculation of channel capacity, which is over all possible sources,
the channel characteristics being fixed.

The average distortion [70, pg. 445] introduced by the process associated with Equa-
tion (2.2) is

E[d(S, Ŝ)] =
∑

i

∑

j

p(si, ŝj)d(si, ŝj)

=
∑

i

∑

j

p(si)p(ŝj |si)d(si, ŝj),

15Clearly the subtraction operation must be defined between elements of S and Ŝ.
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where p(si, ŝj) = p(si)p(ŝj |si) is the joint probability of si. The rate distortion function of
the source S relative to distortion d is [26, pg. 23]

R(D) = min
{p(ŝj |si) | E[d(S,Ŝ)]≤D}

I(S; Ŝ)

where the minimisation is over all transition probabilities p(ŝj |si) resulting in an average
distortion less than D. The source coding theorem states that R(D) of a source is the
minimum coding rate required to code the source with a distortion of less than or equal to
D, and its converse that D is the minimum distortion achievable for a coding rate of R [44,
ch. 13]. The rate distortion function R(D) may be proved to be a decreasing and convex
function of D (see Figure 2.7). If the distortion measure assigns a zero distortion to perfect
reconstruction, then R(0) = H(S), the source entropy [26, pg. 8]. As in the case of lossless
coding, it may be shown that the theoretical rate distortion limit may be approached in
practice by jointly encoding sufficiently large blocks of symbols [26, pp. 66-71].

D

R
(D

)

1.00.90.80.70.60.50.40.30.20.10.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2.7: Rate distortion function (with Hamming distortion measure) for a source of
two equiprobable symbols [44, pp. 342-344].

An alternative, and often more useful approach is to consider the distortion rate function
D(R) [99, app. D]

D(R) = min
{p(ŝj |si) | I(S;Ŝ)≤R}

E[d(S, Ŝ)],

which represents the minimum distortion D possible by representing source S at rate R. The
distortion rate function, with MSE distortion measure, for a memoryless Gaussian source X

with µX = 0 is (see Figure 2.8)16 [99, app. D]

D(R) = 2−2Rσ2
X .

16Log scaled plots are convenient in comparing the rate distortion functions of other sources with those of
Gaussian sources, for which log D is linear in R.
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This function constitutes an upper bound for any other memoryless source. The Shannon
lower bound is [99, app. D]

D(R) =
2−2(R−h(X))

2πe
.
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Figure 2.8: Distortion rate function (with MSE distortion measure) for a memoryless
Gaussian source with µ = 0 and σ2 = 1.

Calculation of R(D) or D(R) is analytically intractable for all but a few simple cases,
but the results available, as well as numerical algorithms for more complex cases, are useful
for providing estimates of achievable rate distortion curves for practical situations. It is
important to distinguish between distortion rate curves D(R), which are calculated for a
particular source, and the experimental distortion versus rate curves D′(R) often calculated
for coding of an image or set of images by a specific algorithm [99, app. D].

2.2.2 Scalar quantisation

Lossless compression of a single discrete random variable is achieved on average by variable
length coding, assigning the shortest codes to the most likely values of the random variable.
An obvious requirement is that the original and reproduction alphabets are the same, as in
Equation (2.1). In lossy coding of a discrete or continuous random variable, on the other
hand, insufficient bits are available to represent the full range of the source alphabet in the
reconstruction alphabet, as in Equation (2.2). The reconstruction alphabet is usually referred
to as the set of reconstruction levels or codebook; the encoder represents each source sample
by the index of the closest reconstruction level, while the decoder reconstructs the sample as
the value of the specified reconstruction level. The decision boundaries determined by this
procedure are known as Voronoi cells. If there are L reconstruction levels in the codebook,
the bit rate of the code is

R = log2 L.



18 Chapter 2

The full encode-decode operation may be represented as a single function y = Q(x) where x

is the source value and y is the quantiser output value.

r8r7r6r5r4r3r2r1
x

f X
(x
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Figure 2.9: Optimal (with mean-square distortion) scalar quantisation reconstruction
levels ri and decision boundaries for scalar quantisation of a Gaussian pdf (µ = 0, σ = 1)
at a rate of 3 bits per sample.
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Figure 2.10: Scalar quantisation function Q(x) corresponding to the reconstruction lev-
els and decision boundaries in Figure 2.9.

Uniform quantisation is the simplest solution, assigning equally spaced reconstruction
levels on a fixed interval [99, ch. 4]. An optimum quantiser [131] is achieved by ensuring that
the reconstruction levels are denser in regions of high probability (see Figures 2.9 and 2.10).
The centroid condition, which states that the optimum reconstruction level for a Voronoi
cell is at the centroid (with respect to the source probability distribution) of the cell, forms
the basis of the Lloyd [120] algorithm for quantiser optimisation [73, ch. 6]. Conditions for
optimal decision boundaries bi (b1 = −∞, bL+1 = ∞) and reconstruction levels ri are [99,
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pp. 131-132]
bi = ri−1+ri

2 i ∈ {2, 3, . . . , L}
ri =

R bi+1
bi

xfX(x) dxR bi+1
bi

fX(x) dx
i ∈ {1, 2, . . . , L}.

Given an initial estimate of the ri, improved estimates of bi and ri may be calculated by
iteratively applying the above relations; this procedure converges to a global optimum for the
Uniform, Gaussian and Laplacian pdfs [99, pp. 131-132].

2.2.3 Vector quantisation

Vector Quantisation (VQ) is a generalisation of scalar quantisation to the joint quantisation
of a vector of scalar values. Each reconstruction level or codebook entry is a vector, and the
bit rate for an L-entry codebook of n-vectors is

R =
log2 L

n
.

The advantages of VQ over scalar quantisation are obvious where dependence exists between
the scalar elements of a vector. The Voronoi regions for the distribution depicted in Figure
2.11 are displayed in Figure 2.12, illustrating how the codebook vector distribution takes
advantage of the non-uniform distribution of the points in Figure 2.11.

x

y

1000-100

100

0

-100

Figure 2.11: Scatter plot of (x, y) points distributed according to a correlated multi-
variate Gaussian distribution.

The distribution depicted in Figure 2.11 may be decorrelated by an appropriate linear
transform (see Section 2.5.2), which in this case results in coefficients that are not only uncor-
related but also independent, suggesting that scalar quantisation of the transform coefficients
is as efficient as VQ of the original samples. VQ is, however, more efficient than scalar
quantisation even for independent scalars. This is illustrated in Figure 2.13; the hexagonal
arrangement of Voronoi cells covers the plane more efficiently, resulting in a small decrease in



20 Chapter 2

�����
����	

��
�
����������

Figure 2.12: Voronoi regions and corresponding reconstruction levels for correlated mul-
tivariate Gaussian distribution as in Figure 2.11.

average distortion. The efficiency improvement of VQ over scalar quantisation increases with
increasing vector dimensionality.

x2 x2

x1 x1

Figure 2.13: Voronoi regions for scalar and vector quantisation of uncorrelated scalars.

An optimum codebook for a given rate R is obtained by optimising the locations of the
L reconstruction levels by minimising the expected distortion with respect to a known or
estimated probability distribution. The codebook is usually constructed by the Generalised
Lloyd Algorithm17 (GLA) [73, ch. 11] described in Table 2.2. An initial codebook is generated
by one of a variety of procedures [73, ch. 11], which include a randomly generated codebook,
one generated by “splitting” a smaller codebook (starting from a single vector), or based on

17Also known as the Linde-Buzo-Gray (LBG) or k-means algorithm [115, pg. 607].
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a merging procedure in a cluster of training vectors [59]. The GLA, which iteratively adjusts
this codebook to minimise the average distortion in representing a set of training vectors,
converges to a local optimum dependent on the initial codebook.

Table 2.2: The Generalised Lloyd Algorithm

Start with: Vector space X
Training set T = {t1, . . . , tm} ⊂ X
Initial codebook C = {c1, . . . , cn} ⊂ X
Distortion measure d(u,v) u,v ∈ X

1. Determine the Voronoi regions by assigning each training
vector ti to the nearest codebook vector cj .

2. Construct a new codebook consisting of the centroid vectors
of the training vectors in each Voronoi region (the centroid
for the MSE distortion measure is the arithmetic mean vec-
tor of the training vectors in a Voronoi region).

3. Calculate the average distortion

D =
1
m

m∑

i=1

min
j

d(ti, cj).

Halt if the fractional change in the distortion is below a
predetermined threshold, otherwise repeat the process.

The simplest application of VQ to signal coding entails forming separate vectors from
consecutive non-overlapping blocks of fixed size within the signal. While VQ is theoretically
optimal according to rate distortion theory, the complexity necessary to approach the theo-
retical limit, which requires large vector sizes, is often prohibitive in practice, since codebook
storage requirements, and the computation required in codebook construction and searching,
grow exponentially with the number of codebook entries [115, pp. 608-609]. A wide variety
of VQ techniques [73] other than the simple form described here are utilised for this reason.

2.3 Image Compression

Data compression theory has thus far been introduced in a very general context, without
concentrating on specific applications. There are, however, requirements peculiar to image
compression which must be taken into account when designing image compression systems.
The characteristics of images, as opposed to other commonly compressed signals, such as
recorded speech, are also important in designing efficient coding algorithms.

Images are subjected to both lossless and lossy compression, depending on the application.
Lossless compression is used where any degradation is unacceptable, as in the transmission
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of reference images. This form of compression is often applied to medical images, since the
effect of lossy coding artifacts on diagnostic accuracy is an important consideration. Since
images are reproduced exactly, the primary goal of a lossless coding system is to maximise
the achievable compression, specified either in terms of the compression ratio, which is the
ratio of the original representation size to the encoded size, or the rate (bits per pixel) for a
particular image (or an average over an ensemble of images). Lossy coding, which is the type
of primary interest in this dissertation, offers significantly greater gains in compression ratio.

The three main criteria in the design of a lossy image compression algorithm are desired
bit rate (or compression ratio), acceptable distortion, and restrictions on code and decode
time. While different algorithms produce different types of distortion, the acceptability of
which is often application dependent, there is clearly an increase in distortion with decreasing
bit rate. Certain applications may require restricted code and decode times, which place an
additional burden on the designer of a coding algorithm. An algorithm with similar code and
decode times is called symmetric; in many cases the decode time is far more critical than the
encode time and a symmetric algorithm is not required. Additional requirements are often
imposed, such as the ability to perform progressive transmission, in which progressively more
accurate reconstructions of the original image may be produced as the encoded representation
is achieved.

2.3.1 Image acquisition

Images are most commonly formed by the measurement of electro-magnetic radiation18 fo-
cussed onto a detector unit, resulting in a discrete function on a two dimensional support,
either by mechanical translation of the detector or focusing arrangement, or by an array
of detectors within the composite unit. The sample points may be scalars, as in the case
of monochrome (greyscale) images, or vectors as in the case of colour images with separate
values for red, green and blue at each sample point.

Discretisation of the image support is determined by the composition of the sensor array
(or by the mechanical means of simulating such an array), and necessarily involves integration
of the measured radiation over the finite sensor element area. The individual discrete elements
of the image support are referred to as picture elements or pixels19, and are usually arranged in
a regular rectangular array. Digitisation of individual pixel values may include a logarithmic
scaling to improve dynamic range.

18Exceptions include Scanning Tunnelling Electron Microscopy and Magnetic Resonance Imaging.
19An alternative term is pels.
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2.3.2 Image data representation

The storage of an image within computer memory is dependent on the type of image and the
required image size (the width and height are often powers of 2 for practical reasons20) and
resolution. Although pixels often take on floating point values during processing, unsigned
integer valued pixels are standard for storage and display; an image with pixel values between
0 and 2k − 1 requires k bits per pixel, and the image is said to be of depth k.

Documents are usually digitised as binary images (1 bit per pixel) for facsimile trans-
mission or storage since the only distinction necessary is between black and white pixels.
Monochrome images are commonly represented at 8 bits/pixel, although 12 bits/pixel are
often utilised for X-ray images, which have a high dynamic range. Colour images may be
represented by three image planes (one each for red, green and blue) of 8 bits/pixel each,
resulting in a total of 24 bits/pixel, or by 8 bits/pixel for an index into a colour lookup table.
It is important to emphasise that all of these quantities refer to memory allocation for images
in uncompressed or canonical form, rather than the rate for coded images.

2.3.3 Statistical properties of images

A measure of the redundancy present in a particular signal source is useful in signal coding,
providing an estimate of the potential coding gains from lossless coding, or an appropriate
lower bound for these gains in lossy coding. Kersten [102] performed experiments on images
(comparable to those performed by Shannon to estimate the entropy of the English language
[44, pp. 138-140]), in which a certain fraction of pixels in a set of images (128 × 128 pixel,
depth of 4 bits/pixel) were deleted, and an observer was required to guess the original value.
Although valid for a reasonably small set of images, the resultant redundancy estimate of
46% to 74% provides a rough estimate of the compression ratios to be expected for lossless
coding.

The complete characterisation of image statistics by a discrete Markov model would im-
pose intractable computational and storage requirements for the transition probabilities for
most image sets. Nevertheless, results are available for low order Markov models and images
of limited depth [116] [177]; the measured decrease in entropy reduction with increasing order
of Markov model suggesting that there are rapidly diminishing returns involved in utilising
models of order higher than 3 or 4.

In the face of these practical difficulties the usual approach in signal coding is to partially
characterise the signal by statistics such as the mean, variance and autocorrelation. Although
this is vastly more practical than the previous approach, simplifying assumptions are usually
required. In particular, since it is difficult in many cases to assemble a sufficiently large
ensemble of images from which ensemble statistics may be calculated, it is common to assume
at least wide-sense stationarity and ergodicity so that the required statistics may be estimated

20Transforms such as the Fast Fourier Transform (FFT) are simpler to implement for dimensions equal to a
power of 2.
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by averaging within individual images in the ensemble.
Although Higher Order Statistics (HOS) [132] may be considered, image models are usu-

ally specified in terms of the correlation structure. A one-dimensional simplification is possi-
ble by considering each scan-line of an image individually, in which case a first order Markov
model with ρ(k) = ρ|k| is often a reasonable approximation to measured image statistics
for ρ ≈ 0.95 [37, ch. 2]. The simplest extension to two dimensions is the separable model
ρ(k, l) = ρH(k)ρV (l) in terms of separate horizontal and vertical correlations, where the one-
step correlation is again typically in the region of 0.95 [96]. A more complicated non-separable
“isotropic” model [37, ch. 2] [99, ch. 2] [129] provides a considerably better fit to measured
correlations.

2.4 Lossless Image Compression

Lossless image compression is required in a variety of situations, including the storage of
standard test images, where exact duplication is required, and medical images, where the
effect of degradation on diagnostic utility is difficult to quantify21, and legal issues may be of
concern.

2.4.1 Run length coding

One of the most common applications of image compression is in facsimile transmission, where
a standard compression algorithm has been adopted [97, pp. 540-551] [99, ch. 10]. Since
binary images of documents consist of alternating runs of zeroes and ones, it is profitable
to represent each scan line by the lengths of these runs (see Figure 2.14). The resulting run
length code is often compressed using Huffman coding, with separate code tables for runs of
zeroes and runs of ones. Extension of run length coding to two dimensions is also possible
[75, pp. 355-356].

2.4.2 Predictive coding

The first widely used signal coding technique was Pulse Code Modulation (PCM) [99, ch. 5],
consisting of the independent digitisation and coding of signal samples. Limited compression
is achievable, however, since inter-sample dependence is completely ignored.

The dependence between pixels may be taken into account by coding the prediction error
for each pixel, using a prediction based on the values of previously encountered pixels in each
scan line22. The optimum prediction of sample XN given previous samples X0, X1, . . . , XN−1

requires the conditional probabilities p(XN |X0, X1, . . . , XN−1), the computation of which is
usually infeasible [99, pg. 254] [158, ch. 7]. Linear prediction provides a practical alternative,

21These effects have been investigated [42] due to the considerable compression gains possible by utilising
lossy compression.

22Two-dimensional prediction is also possible by consideration of previously encountered scan lines [99, ch. 6].
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Figure 2.14: Run length representation of first and last scan lines in a subregion of a
binary image of a facsimile document.

only requiring knowledge of the autocorrelation function RX(k) of the scan lines [73, ch. 4]
[99, pp. 267-270] [197, pp. 454-456]. The coding of the resulting linear prediction errors is
known as Differential PCM (DPCM).

Since DPCM prediction errors are often accurately modelled by the Laplacian distribution
(see Appendix A) [158, pg. 62], it is possible to construct an adaptive Huffman code requiring
only the measured variance, rather than the entire codebook, as side information [158, pg. 62].
The Rice Code [196] is an adaptive algorithm based on a set of predefined Huffman codes
designed for this distribution.

2.5 Lossy Image Compression

Lossy coding is necessary when the desired bit rate is insufficient to support lossless coding.
The degradation due to lossy coding is often considered insignificant if it is either visually
imperceptible (in which case the coding is termed perceptually lossless), or if the lost infor-
mation corresponds to the image noise (there is no point in attempting to preserve the bits
representing noise, which by their random nature, are immune to compression).

2.5.1 Fidelity measures

The appropriate measure of image fidelity is application dependent, based either on a subjec-
tive measure such as perceived distortion [99, app. F], or on some more objective but complex
measure such as diagnostic accuracy in the case of medical images. These measures are im-
practical in many circumstances, where an objectively determined and computable measure
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is required [99, app. E].
The most widely utilised distortion measures are the mean-squared error

MSE(u,u′) =
1
n

n−1∑

j=0

(
uj − u′j

)2

and derived measures, where u = (u0, u1, . . . , un−1)T and u′ = (u′0, u
′
1, . . . , u

′
n−1)

T are n-vector
representations23 of the original and reconstructed images respectively. Measures derived from
the MSE are the root-mean-squared error

RMSE(u,u′) =
√

MSE(u,u′),

the signal-to-noise ratio [97, pg. 59]

SNR(u,u′) = 10 log10

σ2
u

MSE(u,u′)
,

where σ2
u is the deterministic variance24 of the original image u, and the peak signal-to-noise

ratio [158, pg. 77]

PSNR(u,u′) = 10 log10

∆2
u

MSE(u,u′)
,

where ∆u is the difference between maximum and minimum pixel values25 of image u. The
SNR and PSNR are both measured in decibels (dB).

The MSE and its derived measures do not accurately reflect subjective or perceived distor-
tion, but are frequently utilised since they are easily computed, and provide an approximate26

basis for comparison between images. Improved measures, based on the properties of the Hu-
man Visual System (HVS) [142, ch. 4] [178, ch. 3] have been proposed [117], but as yet no
numerically computable distortion measures which accurately model subjective evaluations
are known. The HVS is known to have a non-uniform spatial-frequency27 response, with a
peak between 4 and 8 cycles per degree of viewing angle [37, ch. 6], and distortion measures
utilising this response in the frequency domain [127] have achieved improved performance
over the MSE error.

23In many contexts an object with two indices, such as an image, may be represented as a vector by collapsing
it to an object with one index [156].

24That is, the variance over the ensemble consisting of the values of all the pixels in the image.
25A k bit image with pixel values taking on the entire range of possible values has ∆u = 2k − 1.
26Although two different reconstructions of the same original image and with similar MSE values may differ

considerably in perceived distortion, a large difference in MSE is likely to correspond to a significant perceptual
difference.

27That is, the frequency of a spatially periodic pattern.
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2.5.2 Transform coding

The aim of transform coding is to reduce, or ideally remove, inter-pixel correlations in an
image by the application of a linear transform to the image, or individually to subblocks
of the image. Consider the representation of blocks of two28 adjacent pixels in Figure 2.15,
where the values of the first and second pixel in each block are represented by x1 and x2

respectively. High inter-pixel correlation implies that most of the points in this space lie near
the line x2 = x1, with coordinates x1 and x2 having similar variances. Transforming to a new
basis, however, results in coordinate x′1 having considerably greater variance than coordinate
x′2. This is referred to as energy packing [37, pg. 72], allowing the data to be compactly
represented with minimal error by discarding, or representing at reduced accuracy, the least
important coefficients.

x2

x1

x′2

x′1

Figure 2.15: Change of basis by rotation of axes.

The coordinates u′ of a vector u represented in some basis are obtained by the linear
transform u′ = Au, where the rows of matrix A are the basis vectors. If A−1 = AT , the
transform is orthogonal , and the original vector may be reconstructed from the transform
coefficients as u = ATu′. The signal “energy” represented by the Euclidean norm ‖u‖ is
preserved by an orthogonal transform, since ‖u‖ = ‖Au‖ for any norm if A−1 = AT .

The optimum transform in the energy packing sense is the Karhunen-Loève Transform
(KLT) [37, pp. 91-97] [97, pp. 163-168], which diagonalises the autocovariance matrix CX

of source X. The KLT is, however, unsuitable for image coding purposes, since there are, in
general, no fast algorithms (such as the FFT) for its computation, and there are practical
difficulties in computing the basis vectors for vectors of high dimensionality.

Many fixed basis orthogonal transforms, such as the Hadamard, Haar, Discrete Fourier,
Sine and Discrete Cosine transforms [75, ch. 3] exhibit the energy packing property. The
Discrete Cosine Transform (DCT) is the most effective [97, pp. 150-154] for normal image
characteristics, having the theoretical advantage that the KLT of a first order stationary
Markov model with correlation coefficient close to unity is very similar to the DCT [2]. The

28While considerably larger blocks, of size 8 × 8 or larger are used in practice, such a visual representation
becomes impossible for these sizes.
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basis vectors {e0, e1, . . . , en−1} of the DCT for n-vectors are

ek = {ek,0, ek,1, . . . , ek,n−1}

where29 [73, pg. 245] [99, pg. 558]

ek,l =

√
2− δ0,k

n
cos

[
kπ

n

(
l +

1
2

)]
.

The Fourier coefficient (see Appendix B) of basis vector e0 is commonly referred to as the
“DC” coefficient30, since the corresponding basis vector has constant entries, while the other
coefficients are the “AC” coefficients.

A separable linear transform of an image is achieved by separately transforming the rows
and then the columns of the image. The DCT of an image represented by the n× n matrix
U is computed as U ′ = AUAT , where A is the DCT transform for n-vectors defined above.

Compression is not actually achieved by an orthogonal transform itself, but by the sub-
sequent quantisation of the transform coefficients. Since the reconstruction error is equal to
the average quantisation error of the transform coefficients [99, pp. 524-535], the optimum
bit allocation may be determined by minimising the average quantisation error over all of the
n coefficients, which results in

Rk = R + log2 σk − 1
n

log2

(
n−1∏

i=0

σi

)
, (2.3)

where σ2
k and Rk are the variance and bit allocation for coefficient k respectively, and R is

the total available bit allocation [37, ch. 4]. Some modification is necessary for practical
application since this procedure may allocate a negative or non-integer number of bits; these
adaptations range from simple heuristic procedures to efficient optimisations [183] [206].

An alternative bit allocation strategy is threshold sampling where any coefficient with a
value below a predetermined threshold is discarded [99, pp. 565-566]. Bit allocation may be
uniform, or dependent on the coefficient position [158, pg. 113], and run length coding is
often utilised to represent the values of the retained coefficients separated by the zero-valued
(discarded) coefficients.

Since the HVS has been shown to have a non-uniform spatial-frequency response, it is
reasonable, at least in the case of the Discrete Fourier Transform (DFT), to improve perceived
image fidelity by weighting bit allocation for a transform coefficient according to its perceptual
importance. This perceptual or psycho-visual coding has been tested in conjunction with a

29There are in fact four different DCT transforms [189, pp. 276-281], the most effective for image coding
being defined here.

30Since all of the AC basis vectors are zero-mean, the DC coefficient determines, using analog terminology,
the “DC offset” of a signal.
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number of orthogonal transforms, with varying results [37, ch. 6]. The applicability of
frequency domain HVS response to DCT coefficients has been shown analytically [143], and
may be utilised to improve perceived reconstruction quality [77].

63

0

Figure 2.16: Zig-zag ordering of DCT coefficients for an 8 × 8 pixel image block, as
applied in the JPEG system.

The JPEG31 [153] lossy compression standard is based on DCT coding of 8×8 image blocks
in a tiling of the full image. To simplify somewhat, a form of threshold sampling is applied
by dividing each DCT coefficient by the corresponding entry in a quantisation table (based
on measured HVS response) before rounding to the nearest integer. The normalised values
are then scanned in zig-zag order (see Figure 2.16) before Huffman or arithmetic coding [158,
pp. 113-128].

2.5.3 Subband and wavelet coding

A subband decomposition and reconstruction of a signal is generated by passing it through a
multichannel filter bank (a two-channel filter bank is illustrated in Figure 2.17; the extension
to a higher number of channels is obvious) in which the initial analysis filters are followed by
a downsampling operation, and an upsampling operation precedes the final synthesis filters
[4] [189] [197]. The analysis filters are selected so that each channel represents a separate
frequency subband, while the synthesis filters are selected such that, in the absence of any
processing of the output of the analysis stage, the original signal is reconstructed exactly by
the synthesis stage.

The filter with coefficients {hi} is implemented by the usual convolution operation yi =∑
j hjxi−j , where the the input and output signals are represented by the sequences {xi} and

{yi} respectively. Downsampling of {xi} by a factor of 2 to give sequence {yi} is defined such
that yi = x2i, while the corresponding upsampling operation is defined such that y2i = xi and
y2i+1 = 0.

Since a subband decomposition is computed by linear operations, it is in fact the result of
31Joint Photographic Experts Group
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Figure 2.17: A two-channel filter bank. The analysis filter coefficients are {hi} and {gi},
the synthesis filter coefficients are {h̃i} and {g̃i}, and downsampling and upsampling by
a factor of 2 are denoted by ↓ 2 and ↑ 2 respectively.

a linear transform. Given a blocked orthogonal transform, an equivalent subband decompo-
sition may be found which differs only in the organisation of the data, with spatially related
coefficients grouped together in blocks for blocked linear transforms, and coefficients related
in frequency grouped together in subbands for a subband decomposition [4, pp. 4-5] [158, pg.
181] [197, pp. 401-402].

g

h

g

h

g

h↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

Figure 2.18: The analysis part of a uniform tree-structured filter bank.

Tree-structured filter banks [3, pp. 127-134] [197, pp. 142-156], which are constructed by
cascading two-channel (or higher) filter banks, provide a convenient means of designing mul-
tichannel filter banks. A balanced tree corresponds to a uniform tree-structured filter bank
(see Figure 2.18), while a maximally unbalanced tree corresponds to an octave-band tree-
structured filter bank (see Figure 2.19). Multiresolution analysis (see Appendix C) presents
an interpretation of a discrete wavelet decomposition as an octave-band subband decomposi-
tions [189] [197], the detail coefficients at a particular level of the tree of wavelet coefficients
corresponding to the output of a single channel of a subband decomposition.

The simplest construction of two-dimensional filter banks [4, pp. 18-23] [197, pp. 176-
184], for application to images, involves separate application of one-dimensional filter banks
to image rows and the columns; the resulting two-dimensional filter banks are known as
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Figure 2.19: The analysis part of an octave-band tree-structured filter bank.

separable filter banks. The construction of non-separable filter banks is a considerably more
complicated task.

Subband coding is, as the name suggest, the coding of a subband decomposition. The
motivation for subband coding is the possibility of separately adapting the coding procedure
to the statistics of each subband; in the simplest system different scalar quantisation is applied
to each subband [99, ch. 11]. More complex coding techniques include VQ [43] of vectors
taken from within each subband [7], where a separate codebook may be designed for each
subband, or vectors taken across each subband [200].

c0,0

d1,·

d0,0

d2,·

d3,·

d4,·

Figure 2.20: Zerotrees in a multiresolution decomposition. The intensity (increasing
from dark to light) of each block is proportional to coefficient magnitude, and the filled
circles indicate zerotree subtrees.

An alternative to inter- or intra-band coding is to consider the combined spatial and
frequency localisation provided by the tree structure of coefficients in an octave-band de-
composition such as a discrete wavelet decomposition. It is reasonable, under very general
assumptions about the image model (e.g. decaying spectrum), to expect the magnitude of a
wavelet coefficient to be less than that of its parent [182]. A simple coding method taking
advantage of this fact recursively codes the wavelet coefficient tree of an image by represent-
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ing an entire subtree with root coefficient magnitude less than some threshold as a zerotree
(see Figure 2.20), scalar quantising the rest of the coefficients [114]. A more complex scheme,
the Embedded32 Zerotree Wavelet (EZW) algorithm [181] [182] [197, pp. 423-425] avoids the
quantisation to zero of significant coefficients within a zerotree by an iterative coding process.
A significance map indicates the position of detail coefficients of magnitude greater than a
significance threshold, the threshold being halved at each iteration. The resulting code is
conceptually similar to coding the detail coefficients in bit planes, with zerotrees coding the
significance maps in each bit plane. This algorithm is highly effective33, and its performance
is often used as a benchmark in the recent literature.

2.5.4 Vector quantisation

Vector quantisation is used in image compression both as the primary coding mechanism and
as secondary quantisation following some other method such as transform or subband coding.
In its primary form the simplest scheme involves tiling the image by subblocks (e.g. 4 × 4
pixels), each of which is considered a separate vector. A codebook is constructed based on
a large number of these vectors extracted from a training set of images, and the encoding
consists of representing each block by the index of the closest codebook vector.

Since rate distortion theory implies that VQ becomes more efficient with increased vector
size, the individual image subblocks should be as large as possible. The practical block size is
severely limited however, by the rapid increase in codebooks size with increasing block size.
The large codebook required for coding at a reasonably high bit rate involves considerable
computation effort in the search for the nearest code vector for each image vector. Tree Struc-
tured VQ (TSVQ), which requires an enlarged codebook, achieves a significant improvement
in search time (at the expense of selecting a sub-optimum codebook vector [73, pp. 410-423])
by imposing a tree structure on the codebook. Efficient nearest neighbour search techniques
reduce the encoding search time while giving optimum or nearly optimum distortion [8].

Lattice VQ (LVQ) [73, ch. 10, 12] deals with the difficulties associated with large vectors
by designing a codebook based on a lattice of vectors arranged according to some regular
structure. The regular spacing of the vectors removes the necessity of storing a codebook, and
introduces the possibility of finding the nearest codebook vector without the usual codebook
search. Efficient quantisation of large vectors with a variety of distributions is possible using
Lattice VQ techniques [61].

A practical solution to the unmanageable complexity of large codebooks is product code
VQ [73, pp. 430-451]. A vector x ∈ X from a vector space X is decomposed into component

32An embedded code is a code for which each code string contains all lower rate representations of the same
signal as a prefix.

33The importance of the quantisation strategy in image compression is indicated by the construction of a
DCT based compression algorithm which achieves similar performance to the EZW algorithm by employing a
similar quantisation strategy [207].
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vectors ci where i ∈ {1, 2, . . . , p} such that x may be recovered from (c1, c2 . . . , cp). The
codebook is then composed of the Cartesian product C1 × C2 × · · · × Cp of the individual
codebooks Ci, resulting in a considerable reduction in storage requirements for the codebook
C, as well as a reduction in computational complexity if each “sub-codebook” Ci is searched
independently. Product codes often involve removing the mean or scaling by the standard
deviation of each vector (Mean-Removed VQ and Shape-Gain VQ respectively). Murakami,
Asai, and Yamazaki [139] subtracted the mean from 4 × 4 vectors and normalised by the
standard deviation. The product code was then composed of separate codebooks for the
mean, standard deviation and the normalised vectors.

There is usually considerable statistical dependence between image subblocks, resulting
in blocking artifacts and a reduction in coding efficiency for simple blocked VQ treating each
block independently. This deficiency may be alleviated by arranging the codebook used for
each block to depend on its neighbouring blocks in a modification known as Finite-State VQ
[73, ch. 14] [105].

2.5.5 Fractal compression

The fundamental principle of fractal coding is the representation of a signal by the param-
eters of a transform under which the signal is approximately invariant. This transform is
constructed so that it is contractive (see Appendix D); Banach’s fixed point theorem (see
Appendix D) guarantees that an approximation to the original signal, called the fixed point
of the transform, may be recovered by iterated application of the transform to an arbitrary
initial signal. Although a more accurate description would be “fixed point coding”34 this form
of coding is termed “fractal” since the iterative decoding process creates detail at finer scales
on each iteration, with the result that the fixed point signal is, in principle at least, a fractal
[65, ch. 1].

���
������

Figure 2.21: The Sierpinski Gasket.

The origins of fractal coding may be traced to Barnsley’s work with Iterated Function
Systems (IFS) for image modelling. An IFS is, to simplify somewhat, a collection of con-

34“Attractor coding” has been proposed, but has not been widely used.
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Figure 2.22: IFS for the Sierpinski Gasket [152, pg. 294].

traction mappings which are all applied to the same objects in a metric space (see Appendix
B). The collection of mappings taken together constitute a “super-mapping”, which being
contractive, has a unique fixed point. In the simplest examples, a binary image is represented
by the set of all pixel coordinates of non-zero pixels, and the individual mappings are affine35

mappings in the Euclidean plane. The Sierpinski Gasket [152] shown in Figure 2.21 is the
fixed point of an IFS consisting of the three mappings illustrated in Figure 2.22, illustrating
the composition of the image as a “collage” of transformed versions of itself. The Sierpinski
Gasket is in fact a fractal, since every iteration of its generating IFS adds smaller triangles
as a finer scale; the image in Figure 2.21 is only a finite-resolution approximation to the real
Sierpinski Gasket.

An IFS generating a desired image may be found by “covering” sections of the image by
transformed version of the entire image, resulting in a set of transforms which leave the image
approximately invariant. The collage theorem [15, pp. 95, 102-103] (see Appendix D) implies
that the fixed point of the IFS composed of these transforms will be close to the original
image. Another well known example of an IFS-generated image is Barnsley’s fern, displayed
in Figure 2.23, which is the fixed point of an IFS consisting of four affine mappings [152, pg.
295].

The success of IFS modelling of natural images (e.g. Barnsley’s fern) in conjunction with
the compactness of the resulting image representation prompted Barnsley to investigate the
use of IFSs for image coding. Despite claims of 10000:1 compression ratios [17], the decoded
images in question are more appropriately described as the result of image modelling than
image coding. In addition, all of the images were “coded” by a human operator assisted
process, with no known automatic procedure for the “inverse problem”.

Most current fractal coding schemes are based on representation by a Partitioned IFS
(PIFS) [65], a solution to the inverse problem of which was first published by Jacquin [93],

35An affine transform on a vector x may be expressed as Ax + b, where A is a linear transform and b is a
vector in the same space as x.
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Figure 2.23: Barnsley’s fern.

and subsequently patented by Barnsley. A PIFS differs from an IFS in that the individual
mappings operate on a subset of the image, rather than the entire image. Instead of each
iteration of the transform copying transformed version of the entire image to a new image,
each transform operates only on a subregion of the image, commonly referred to as “domain
blocks” due to their role in the mappings. The image subregions to which the domain blocks
are mapped are called “range blocks” for similar reasons36. In coding of greyscale (as opposed
to binary) images, the image is represented as function on the Euclidean plane, where the
height of the surface at each point represents the local pixel intensity. In this representation
a transform on a domain block may separately transform the block support and the block
intensities37.

The first step in a simple implementation is to tile the image (see Figure 2.24) by non-
overlapping range blocks (e.g. 8× 8) and larger (e.g. 16× 16), possibly overlapping domain
blocks. A set of admissible block transforms is defined, consisting of a contraction of the
block support by a factor of two on each side by averaging neighbouring pixels (see Figure
2.26), followed by the application of one of the eight rotations and reflections (see Figure
2.27) making up the isometries of a square (see Figure 2.25), and finally an affine transform
on the pixel intensities (see Figure 2.28).

The encoding phase (once again utilising the collage theorem) consist of finding for each
36The range/domain labels are reversed by Barnsley [16, pg. 181] for reasons which are too obscure to

explain at this stage.
37For example, a rotation of a block is an operation on its support, whereas multiplying each of the pixels

in the block by some value is an operation on its intensities.
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Partition Scheme
(Range Blocks)

Virtual Codebook
(Domain Blocks)

Figure 2.24: Domain and range blocks in PIFS coding.

Figure 2.25: The square isometries.

Domain block

Spatial contraction

Contracted domain block

Figure 2.26: Spatial contraction of a domain block.

Rotation

Reflection

Contracted domain block

Isometry operation

Rotated and contracted domain block

Figure 2.27: An isometry applied to a domain block.
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Rotated and contracted
domain block

Add constant blockIntensity scaling

Figure 2.28: An affine transform applied to a domain block.

range block a domain block for which the pixel values can be made close to those of the
range block by the application of an admissible transform. Care must be taken in selecting
these transforms so that their union is a contractive transform on the image as a whole.
The pool of domain blocks is often referred to as the self- or virtual codebook, since collage
theorem based encoding is equivalent to Mean Removed Gain Shape VQ [139] encoding with a
codebook consisting of domain blocks extracted from the image to be encoded. The distortion
measured during VQ encoding, resulting from the errors in covering the image with codebook
blocks, is the same as the actual distortion obtained on decoding. This is not the case for
fractal coding, since any error in covering a particular range block modifies the domain blocks
with which it intersects, which is not taken into account during the usual encoding process.
The collage theorem nevertheless guarantees that the actual error on decoding may be made
arbitrarily small, by making the collage error in covering each range by a transformed domain
sufficiently small.

Once encoding is complete, the image is represented by a list containing the selected
domain block and transform parameters for each range block. The image is decoded by
iteratively transforming an arbitrary initial image using the transform consisting of the union
of the transforms for each range block.

Fractal image compression is described in considerably greater detail in the following
chapter, in which a broad overview of the fractal compression literature is presented.



Chapter 3

A Review of the Fractal Coding

Literature

The fundamental principle of fractal coding, which consists of the representation of a signal
by a transform of which it is the fixed point, clearly leaves considerable latitude in the design
of a particular implementation. Within this broad framework, the differences between the
majority of existing fractal coding schemes may be classified into the following categories:

• The partition imposed on the image by the range blocks.

• The composition of the pool of domain blocks, which is restricted to some extent by the
range partition.

• The class of transforms applied to the domain blocks.

• The type of search used in locating suitable domain blocks.

• The quantisation of the transform parameters and any subsequent entropy coding.

There are unfortunately very few theoretical results on which design decisions in any of these
aspects may be based, and choices are often made on a rather ad hoc basis. In addition,
these categories are not independent, in the sense that any comparative analysis of coding
performance between different options in one of these categories is usually contingent on the
corresponding choices in the other categories. A comparison between the relative merits of
particular choices in each category is consequently very difficult. This review is therefore
intended primarily as an overview of the variety of schemes that have been investigated,
although brief comparisons are made where possible. Since the research in this dissertation is
restricted to greyscale images, a similar restriction is made in this chapter1, and publications
concerned with colour image or video coding are intentionally excluded.

1Unless otherwise stated results pertain to 8 bit/pixel greyscale images.

38
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The survey of design choices is followed by a review of some of the more theoretical
aspects of fractal compression, such as the collage theorem and convergence conditions. The
chapter is concluded with a wavelet based analysis of fractal compression and a comparison
of the performance of the most effective fractal coding based compression algorithms in the
literature.

3.1 Partition Schemes

The first decision to be made when designing a fractal coding scheme is in the choice of the
type of image partition used for the range blocks. Since domain blocks must be transformed
to cover range blocks, this decision, together with the choice of block transformation described
later, restricts the possible sizes and shapes of the domain blocks. A wide variety of partitions
have been investigated, although the majority of coding systems are based on a square or
rectangular partition.

3.1.1 Fixed square blocks

The simplest possible range partition consists of the fixed square blocks [16] [62] [64] [149]
depicted in Figure 3.1. The most prominent example of a fractal compression system based
on this partition was developed by Monro et al. [133] [134] [135].

This type of block partition is successful in transform coding of individual image blocks2

since an adaptive quantisation mechanism is able to compensate for the varying “activity”
levels of different blocks, allocating few bits to blocks with little detail and many to “active”
blocks. Fractal coding based on the usual block transforms, in contrast, is not capable of such
adaptation, representing a significant disadvantage of this type of block partition for fractal
coding (this deficiency may, however, be addressed by introducing adaptivity to the available
block transforms [18] [19] [20] as described in Section 3.2.2).

The usual solution is to introduce an adaptive partition with large blocks in low detail
regions and small blocks where there is significant detail.

3.1.2 Quadtree

The quadtree [168, ch. 1] partition (see Figure 3.1) employs the well-known image processing
technique based on a recursive splitting of selected image quadrants, enabling the resulting
partition to be represented by a tree structure in which each non-terminal node has four de-
scendents. The partition is constructed by selecting an initial level in the tree (corresponding
to some maximum range block size) and recursively partitioning any block for which a match
better than some preselected threshold is not found. Quadtree partitions are described in

2Such as implemented in the JPEG standard.
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Fixed block size Horizontal-VerticalQuadtree

Figure 3.1: Rectangular range partition schemes.

considerable detail by Fisher [65, ch. 3] and Lu and Yew [121] [122]. Compact coding of
partition details is possible by taking advantage of the tree structure of the partition.

Jacquin [92] [93] [94] used a variant of the quadtree partition in which the block splitting
was restricted to two levels. Instead of automatically discarding the larger block prior to
splitting it into four subblocks if an error threshold was exceeded, it was retained if additional
transforms on up to two subblocks were sufficient to reduce the error below the threshold.

Reusens [160] implemented a quadtree scheme in which the range blocks were overlapped3

in order to reduce blocking artifacts. A significant reduction in blocking artifacts was ob-
served, but without corresponding improvement in SNR. This technique, while promising,
has been overtaken to a large extent by developments in wavelet domain fractal coding, re-
viewed in Section 3.9.

3.1.3 Horizontal-vertical

The Horizontal-Vertical (HV) partition [62] [64] [65, ch. 6] (see Figure 3.1), like the quadtree,
produces a tree-structured partition of the image. Instead of recursively splitting quadrants,
however, each image block is split into two by a horizontal or vertical line. A heuristic
algorithm [65, pg. 120] is used to create horizontal or vertical partitions along prominent
edges, but avoiding the creation of narrow rectangles. Compact coding of the partition
details, similar to that utilised for the quadtree partition, is possible.

3.1.4 Triangular

There are a number of different ways of generating a triangular partition. Fisher [64] pro-
posed a triangular partition generated by splitting the image into two triangles, followed by

3The areas of overlap may be considered to be generated by the weighted sum of multiple transformations,
which may be made contractive.
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a recursive splitting of triangles into four sub-triangles by inserting lines between split point
on each side of the original triangle (see Figure 3.2). Novak [144] [145] employed a similar
recursive scheme, but split each triangle into two by inserting a line from a vertex of the
triangle to a point on the opposite side (see Figure 3.2).

3-side split 1-side split Delaunay triangulation

Figure 3.2: Triangular range partition schemes.

An alternative triangular partition is based on a Delaunay triangulation [157] of the image
(see Figure 3.2), which is constructed on an initial set of “seed points”, and is adapted to the
image by adding extra seed points in regions of high image variance [48] [49] [50].

3.1.5 Polygonal

Reusens [161] constructed a polygonal partition (see Figure 3.3) by recursively subdividing
an initial coarse4 grid. Each polygon was allowed to be subdivided at an arbitrary position
in the polygon by the insertion of a line segment at one of a restricted set of angles, thus
reducing the information required in coding the partition details.

Figure 3.3: A polygonal range partition.

4Presumably rectangular, since details are not provided.
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A generalisation of the Delaunay triangulation based partition [51] may be generated by
merging suitable triangles to form quadrilaterals. An irregular partition based on a region-
growing approach has also been investigated [176] [192].

3.1.6 Comparison

In designing an adaptive partition there is always a trade-off between the lower distortion
expected by adapting the partition to the image content, and the additional bits required to
specify the partition details.

Reusens compared rate distortion results obtained for the polygonal partition with those
for the HV and quadtree partitions, concluding that the simplest partition (quadtree) provided
the best results. This conclusion is not in agreement with the comparison [63] of the quadtree
and HV partitions by Fisher, in which the HV partition was found to be superior. An irregular
partition [192] was found to offer superior performance to a fixed square block partition, but
was not compared with other adaptive partitions. Saupe and Ruhl found that a similar
irregular partition outperformed a quadtree partition [176].

A significant disadvantage of the non-rectangular partitions is the additional computation
involved in the block transformations (since there is often no pixel-to-pixel correspondence
between domain and range blocks, interpolation is required in the block transforms). Com-
parisons based on published results are difficult, but the performance of non-rectangular
partition based coders does not appear to justify the additional complexity. In particular,
the best algorithms in the comparison of Section 3.10 are all based on rectangular partitions
or their wavelet domain generalisations.

3.2 Block Transforms

The type of block transform selected is a critical element of a fractal coding scheme since not
only does it determine the convergence properties on decoding, but its quantised parameters
also comprise the majority of the information in the compressed representation.

A distinction is made here between transforms operating on the block support (“geo-
metric” transforms in Jacquin’s terminology5 [94]) and those operating on the pixel values
(termed “massic” transforms by Jacquin).

3.2.1 Block support

The permissible transforms on the block support are restricted by the block partition scheme,
since domain block supports are required to be mapped onto range block supports.

5The block isometries are considered to be block support transforms here, in contrast to Jacquin’s usage.
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Rectangular blocks

The block support transform for rectangular blocks may be separated into an initial spatial
contraction followed by one of the square isometry operations.

The spatial contraction of domains as introduced by Jacquin [93] is almost universally
applied, despite being inessential for the contractivity of the image map as a whole [24] [62].
While contraction by a factor of two in width and height is standard, increasing this to a
factor of three has been found to improve decoder convergence [23]. Contraction is usually
achieved by the averaging of neighbouring pixels, which may be improved by the addition of an
anti-aliasing filter [20]. The alternative of decimating by discarding pixels in both directions
[123, pg. 141] is slightly faster, but results are inferior to those obtained by averaging [62].

The symmetry operations utilised by Jacquin are widely used as a means of enlarging the
domain pool. Although Jacquin found some of the isometry operations were used more than
others, other researchers found these operations were all used to a similar extent [69] [138].
These conflicting results are possibly due to the sensitivity to design choices in each of the
categories introduced at the beginning of this chapter. Despite their widespread usage, there
is evidence that their application is counter-productive in a rate distortion sense [138] [172]
[203].

Triangular blocks

An affine mapping on the image support is sufficiently general to transform domain triangles to
range triangles in a triangular partition. These affine transforms are determined by requiring
that the transformed vertices of the domain blocks match those of the range blocks. The
affine mappings required in this case are considerably more computationally expensive than
those applied to square blocks, since interpolation of the image support is required.

Polygonal blocks

Depending on their structure, polygonal blocks may require transforms more general than
affine in transforming domain to range blocks [51].

3.2.2 Block intensity

The simplest6 intensity transform in common use is that introduced by Jacquin

Tu = su + o1, (3.1)

where s and o are variable scaling and offset coefficients and 1 is a vector of unit components.
6An even simpler transform, with a fixed scaling coefficient s is utilised by Barnsley in a tutorial example

[16, ch. 6].
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Modified affine transform

Barthel and Voyé [20] achieved improved decoder convergence using the transform7

Tu = su + (α− s)
〈u,1〉
‖1‖2

1 + o1 α ∈ [0, 1]

which avoids full scaling of the range block mean. Minimum transform coefficient variance
was obtained for α = 1, whereas optimum decoder convergence was achieved for α = 0, and
a compromise of α = 0.5 provided the best results.

Øien et al. [147] [148] proposed removing the DC component of the domain block prior
to scaling

Tu = s

(
u− 〈u,1〉

‖1‖2
1
)

+ o1,

corresponding to the transform above with α = 0. The removal of the DC part of the vectors
creates transformed domains which are orthogonal to the fixed block 1, with the desirable
effect of decorrelating the s and o coefficients. In addition, given a few other restrictions
on the coder parameters, convergence at the decoder is guaranteed within a fixed number of
iterations.

Frequency domain transforms

Barthel et al. [18] [19] [20] experimented with a block transform allowing selective manipula-
tion of the block spectral contents8

Tu = A−1


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where A is the DCT matrix. Adaptivity to block detail levels was achieved by varying
the number of si and oi that were individually specified. This hybrid scheme constitutes a
transition between conventional fractal coding and transform coding, with the exact nature
depending on whether the majority of information is represented by the si or oi respectively.

Although discussion of the recent wavelet domain fractal coders is also appropriate here,
7A better choice would probably have been

Tu = s

�
u− α

〈u,1〉
‖1‖2 1

�
+ o1,

which may be continuously varied between the original transform of Jacquin and the orthogonalised version
of Øien et al. by varying α between 0 and 1.

8The si and oi here should not be confused with the usual usage in which the subscript identifies the range
to which the transform is assigned.
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it is deferred until Section 3.9 for more detailed analysis.

Multiple fixed blocks

A more general transform is possible by utilising multiple fixed blocks ei

Tu = su +
∑

i

oiei,

as opposed to the usual single fixed block 1 of unit entries. Orthogonalisation of the domain
block term with respect to the fixed block term is possible by projecting the domain block
perpendicular to the subspace spanned by the fixed domain blocks [148].

Monro and Dudbridge [134] [135] used three fixed blocks, the usual constant block and
two with constant gradient in the x and y directions [199, pg. 202], referring to the transform
as an “order 1 polynomial transform.” In later work [133] [137] [138] this transform was
extended to “order 2” by including constant blocks with quadratic form in x and y directions,
and to “order 3” with the addition of cubic form blocks. In experiments with limited domain
searching the “order 2” transform was found to be best in a rate distortion sense [204].

If all of the si are equal in the frequency domain transform of Barthel et al., it becomes
equivalent to the transform with multiple fixed blocks, with the DCT basis vectors as the
fixed blocks. Although no explicit comparison has been made between the use of polynomial
or DCT basis fixed blocks, in the absence of experimental evidence the DCT basis blocks are
likely to be superior, since they are known to form an efficient basis for image blocks and,
unlike the polynomial bases, are mutually orthogonal.

Multiple domains

Vines [199] utilised a transform consisting of a scaling of multiple domain blocks. Compu-
tational tractability was achieved by creating an orthogonal basis of the domain block set,
representing each range by a scaling of as few basis vectors as possible. A variety of mappings
using multiple fixed blocks as well as multiple domain blocks, including domain blocks with
no spatial contractivity, was investigated by Gharavi-Alkhansari and Huang [74].

3.3 Domain Pool Selection

The domain pool used in fractal compression is often referred to as a virtual codebook, in
comparison with the codebook of VQ [95]. It should be clear from this comparison that a
suitable domain pool is crucial to efficient representation since, although increased fidelity
may be obtained by allowing searching over a larger set of domains, there is a corresponding
increase in the number of bits required to specify the selected domain.
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A bound |s| < smax is usually placed on the block intensity transform scaling coefficients
in order to guarantee contractivity. The selection of the optimum domain for a particular
range is influenced by this bound, since any domain for which the optimum scaling coefficient
exceeds this bound is required to be rejected as a possible match.

Repeated references are made in this section to the spatial distances between domain and
range blocks; it should be emphasised that this is the distance (measured in pixels) in the
image support between the range and domain block centres, and not the distortion resulting
from representing the range block by that particular domain block (the collage error for that
range block).

3.3.1 Global codebook

The simplest domain pool design provides a fixed domain pool for all range blocks in the
image, or for a particular class of range blocks distributed throughout the image (e.g. range
blocks of one size in a quadtree partition). This design choice is motivated by experiments
indicating that the best domain for a particular range is not expected to be spatially close to
that range to any significant degree [62, pp. 56-57] [65, pp. 69-71] [69].

In the fixed square block or quadtree partitions domain blocks may be placed at intervals
as small as one pixel. Since this results in an enormous domain pool which is slow to search9,
larger domain increments are usually selected, typically equal to the domain block width [62]
[65, ch. 3] [149] or half the domain block width [31] [65, ch.3] [92] [146]. Improved convergence
is also obtained with either of these increments [148]. The larger of the two corresponding
domain pools was found to be superior in fidelity and compression ratio [62].

In adaptive partitions such as HV or triangular, the domain pool usually consists of
the larger blocks in the range pool [62] or larger blocks created by the same partitioning
mechanism [51].

3.3.2 Local codebook

A number of researchers have noticed a tendency for a range block to be spatially close to the
matching domain block [20] [23], based on the observed tendency for distributions of spatial
distances between range and matching domain blocks to be highly peaked at zero [91] [95]
[204].

Motivated by this observation, the domain pool for each range block may be restricted to
a region about the range block [92], or a spiral search path may be followed outwards from the
range block position [20] [23]. More complicated alternatives include using a domain position
mask centred at each range block, with positions in the mask dense near to the range and

9In addition, since domains selected at small increments are likely to be similar, it is difficult to justify the
expenditure of extra bits to code their positions in a larger domain pool.
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progressively less dense further away [91], and using widely spaced domain blocks together
with a fine lattice in the vicinity of the best match in the coarse lattice [91].

The domain search may also be dispensed with entirely [134] [135], or restricted to a very
small set about the range block [133]. Experimental evidence for the case of the “quadratic”
transform suggests that any domain searching is counter-productive in a rate distortion sense
[204].

3.3.3 Synthetic codebook

A significant variation on the usual domain pool of fractal coding is achieved by the creation
of an initial low resolution image approximation from which the domain pool is extracted
[103] [104]. Although these domain blocks are not likely to be as effective in matching range
blocks as those derived in the usual fashion, decoding does not require iteration, and the
coding error may be determined immediately at the encoder.

3.3.4 Comparison

The question of domain locality (the tendency for a range and matching domain to be spatially
close) plays an important role in the design of an efficient domain pool. While the degree
to which this effect is present my be dependent on the particular fractal coding scheme for
which it is evaluated, this does not adequately explain the extent of the disagreement in the
literature. This issue is explored in greater detail in subsequent chapters.

3.4 Search Strategies

The significant computational requirements of the domain search resulted in lengthy coding
times for early fractal compression algorithms. The design of efficient domain search tech-
niques has consequently been one the most active areas of research in fractal coding, resulting
in a wide variety of solutions. The survey presented here is rather brief, since a detailed
review of these techniques is available [174].

3.4.1 Invariant representation

The search for the best domain block for a particular range block is complicated by the
requirement that the range matches a transformed version of a domain block; the problem
is in fact to find for each range block, the domain block that can be made the closest by an
admissible transform. Given a range block r, a set of domain blocks di and the admissible
transforms Tn parameterised by n, the optimum domain block results in a collage error of

min
n,i

d(r, Tndi),
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where d(u,v) is an appropriate distance measure.
The problem is simplified by constructing, for each image block u, a relative distance

preserving invariant representation ξ(u) with the properties:

Invariance: ξ(Tn(u)) = ξ(Tm(u)) ∀n,m

Order: d(ξ(u), ξ(v)) ≤ d(ξ(u), ξ(w)) ⇒ min
n

d(u, Tn(v)) ≤ min
n

d(u, Tn(w)).

Transforming range and contracted domain blocks to this representation allows direct distance
comparisons between them to determine the best possible match.

The “standard” invariant representation for the block intensity transform10 projects each
vector perpendicular to the space spanned by the fixed block terms, followed by normalisation;
the invariant representation of u for transforms as in Equation (3.1) is

ξ(u) =
‖1‖2u− 〈u,1〉1
‖1‖2‖u‖2 − 〈u,1〉2 .

An alternative representation for the single constant block case utilises the DCT (or other
orthogonal transform) of the vector, followed by zeroing of the DC term and normalisation.
An advantage of the orthogonal transform representation is the possibility of utilising an HVS
adapted distance measure [19] [23] [201].

Many of the features used in the classification techniques described below are also invariant
under the transforms applied. The distinction between an invariant representation and an
invariant feature is that there exists a transform making two blocks with the same invariant
representation exactly equal, whereas such a transform is not guaranteed to exist for two
blocks with the same invariant feature vector; they are merely likely to be similar.

3.4.2 Domain pool reduction

One of the simplest ways of decreasing coding time is to decrease the size of the domain
pool in order to decrease the number of domains to be searched, which is often achieved
by a spatial constraint on the domain pool for each range, as described in Section 3.3.2.
Noting that a contractive transform requires a domain with a higher magnitude invariant
representation than the range to which it is mapped, domains with low magnitude invariant
representation may be excluded from the domain pool [173]. Alternatively, the domain pool
may be pruned in order to exclude domains which have similar invariant representations [184]
to other domains in the pool. The classification and clustering schemes discussed below also
fit, to a certain extent, within the framework of domain pool reduction.

10A relative distance preserving invariant representation with respect to the block isometries is not possible.



A Review of the Fractal Coding Literature 49

3.4.3 Classification

Classification based search techniques often do not explicitly utilise an invariant representation
as formalised above, but rely instead on features which are at least approximately invariant
to the transforms applied. These techniques may be separated into classification based on
non-metric and metric features11.

Non-metric features

The algorithm introduced by Jacquin [92] [93] employed a block classification scheme designed
for VQ [159] in reducing the domain search. Domain and range blocks were separately clas-
sified as “Shade”, “Midrange” or “Edge” blocks, and a matching domain for each range was
only sought within the same class. Fisher designed a classification into 72 classes [65, ch. 3]
based on relative averages12 of the quadrants of each block.

Metric features

Frigaard et al. [69] computed features in a space with a metric, searching blocks with features
within some distance threshold of the range block features. The features utilised were the
block standard deviation13 and the number of “dominant grey levels” which is the number of
distinct pixel values for which the number of pixels with that value exceed some threshold.
Novak [144] classified blocks according to a set of invariant features based on the moments of
the block pixel values in a triangular partition.

An alternative set of features may be defined by calculating inner products with a fixed
set of vectors [24]. These inner products provide lower bounds on distances between domain
and range blocks, allowing many of the domains to be excluded from the actual distance
calculation.

Götting and Ibenthal [76] transformed the standard invariant representation into a set of
features which were also invariant to the block isometries, arranging them in a tree structure
to speed up the search. A tree search has also been applied to a pyramid of progressively
coarser resolution domains, with the search progressing at each level in the region of the best
match in the previous level [101] [119].

3.4.4 Clustering

Lepsøy [112] [113] reduced the search effort by identifying clusters of domain blocks in the
domain pool, the cluster centres being located by applying the GLA to the domain blocks
using a distortion measure based on an invariant representation equivalent to the cosines of

11Often respectively called discrete and continuous features, but the important distinction is really whether
a useful metric exists in the feature space.

12It is interesting to note that the distribution of these feature as observed by Hürtgen and Stiller [91, pg.
405] confirms the importance of horizontal and vertical edges in images.

13The utility of this feature is unclear, since it is anything but invariant to the transform applied.
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the angles between vectors. The optimum domain for each range was located by a comparison
of the range with each cluster centre, followed by a comparison with all cluster members of the
best cluster. A similar clustering approach, but using the standard invariant representation
was evaluated by Hamzaoui [79]. A clustering approach based on the GLA has also been
applied to domain blocks in a triangular partition [48].

Boss and Jacobs [31] avoided the computational cost of clustering during encoding by
designing the clusters on an initial training set rather than determining them adaptively for
each image.

3.4.5 Convolution

The collage error between a domain and range block14 may be expressed in terms of the
magnitudes of the domain and range blocks, the inner products of domain and range blocks
with a constant block, and the inner product of the domain and range blocks [175]. All except
the last of these values are used repeatedly in finding a best match for each range block; the
computational cost of the domain search is consequently dominated by the calculation of
the inner products between domain and range blocks. These inner product calculations may
be efficiently performed in the frequency domain by considering the calculation of the inner
products between a particular range and all domains as a convolution of the image with
that range block [175]. A comparison with the computational required for the usual inner
product calculations revealed a considerable advantage for the frequency domain technique
when applied to range blocks larger than 4× 4 in size.

3.4.6 Nearest neighbour search

The nearest neighbour search techniques described in this section are all designed for an
efficient search for nearest neighbours (subject to a predetermined distance measure) in a
high dimensional space. The set of vectors from which neighbours are selected is referred to
as the set of records (or file), and the vector for which neighbours are sought is the query
record. Application of these techniques to fractal coding is achieved by using the invariant
representations of the domains as records, and the invariant representation of each range as
a query record.

A simple technique for decreasing search time is the partial distance [73, pp. 479-480]
method used in VQ, which in conjunction with a running minimum, compares the query
record with each record, terminating the comparison for a particular record if the partial
sum of initial record elements exceeds the running minimum. Beaumont [23] constructed an
invariant representation using the Hadamard transform, applying the zig-zag scan order to
create an ordered list of coefficients. The transform improved the efficiency of the partial

14In this context the collage error is the distance between the range block and optimally transformed domain
block.
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distance search since its energy packing property shifted most of the variance to the initial
elements of the vector.

More complex nearest neighbour search algorithms utilise a preprocessing stage to arrange
the records in a data structure, usually a tree, enabling efficient access. The records are placed
in the tree so as to minimise the number of nodes to be “visited” during the search.

Saupe [169] [170] [171] used the standard invariant representation15 in a k-d tree search
[68] [168, ch. 2]. A faster approximate nearest neighbour search algorithm [8] [9] was also
tested, resulting in a considerable decrease in search time together with a small decrease in
image fidelity. The same invariant representation has been applied [106] in an R-tree [168,
ch. 3] based search algorithm, which is expected to be less efficient than the k-d tree search
[171, pg. 18]. Wohlberg and de Jager [201] found a number of advantages in utilising the
DCT representation for the k-d tree search16.

Bani-Eqbal [11] [12] arranged the standard invariant representations of domain blocks in
a tree structure similar to the k-d tree. A fast search was effected by applying distance lower
bounds at each node of the tree, allowing branches of the tree to be excluded from the search
process.

3.4.7 Comparison

An objective comparison of the various rapid search techniques is difficult, as results are
strongly dependent on the images used (including the sizes thereof) as well as the other
parameters of the coding scheme. As a further complicating factor, classification methods
may be used in conjunction with nearest neighbour methods to achieve further improvements
in search efficiency [174, pp. 15-16]. Some tentative conclusions may however, be drawn
from the survey by Saupe and Hamzaoui [174], in that the fast nearest neighbour method
introduced by Saupe appears to have an edge over classification methods, especially for large
images and large domain pools, while there are problems in utilising the adaptive clustering
method for a quadtree codebook [174].

3.5 Quantisation

Domain positions, and any additional partition information required in an adaptive partition,
are represented by discrete values and are not subjected to quantisation. There are usually
compact methods of representing the range partition details in adaptive partitions such as
quadtree or HV [65, ch. 3, 6]. Efficient representation of the domain positions is achieved by

15If low resolution versions of image blocks are used as records to conserve memory, the representation is
really a metric feature vector.

16It was discovered in additional unpublished research that the reduction in search time due to the energy
packing property of the DCT did not justify the additional time required for DCT computation when a
sufficiently loose error threshold was applied for the approximate nearest neighbour search.
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techniques such as the spiral search described in Section 3.3.2.
Although the distributions for the scaling and offset coefficients have been observed to

be non-uniform, quantisation is usually uniform [65, ch. 3] [149] (with the possibility of
compensation for inefficiency by subsequent entropy coding). Bit allocations for the scaling
and offset coefficients have been respectively 2 and 6 [95], 5 and 8 [146], and between 2 and
4 for the scaling and between 3 and 8 for the offset [88]. Fisher compared performances for a
number of bit allocations [65, pp. 61-65], observing the best performance for an allocation of
5 and 7 bits to the scaling and offset coefficients respectively.

Since both scaling and offset are usually non-uniformly distributed, with a peak or peaks
around the origin, non-uniform quantisation is indicated. Øien investigated pdf optimised
quantisation for the scaling coefficients [146], but no comparison with uniform quantisation
was performed17. Signes [184] suggests that finer quantisation is required for the higher
values of the scaling coefficients, which is somewhat at odds with the requirements for a pdf
optimised quantiser for the distribution observed by Øien [146] and others.

It has been observed that the usual block transform (without DC removal18) results in
correlated scaling and offset coefficients [21] [88]. Alternative responses to this observation
have been VQ of combined scaling and offset coefficients [21], and linear prediction of the
offset from the scaling [88]. Since there is usually also some correlation between the offset
coefficients for neighbouring blocks, some form of predictive coding is indicated, but presents
practical difficulties for some range partitions [146].

Quantisation optimisation for polynomial fixed block transforms is discussed by Monro and
Woolley [137] [138], and VQ of the transform coefficients for the frequency domain transform
is referred to by Barthel and Voyé [20].

A global bit allocation optimisation was implemented by Barthel et al. [19] for the fre-
quency domain block transform. All range blocks were initially coded with the simplest block
transform, requiring the least bits to specify, and a subsequent iterative procedure allocated
additional bits to selected range blocks, allowing a fidelity gain by using the more adaptable
block transforms. At each stage the additional bits were allocated to the range for which they
resulted in the maximum fidelity gain.

Since the scaling coefficients are often rather coarsely quantised there is a significant
advantage in calculating collage errors for each domain block using quantised transform co-
efficients [62, pg. 45] [146]. This may however, be difficult to achieve for some of the fast
domain search methods [171, pg. 17].

17Fisher [65, pg. 63] found no improvement over uniform quantisation for logarithmic quantisation of the
scaling coefficients.

18The same transform with DC removal does not result in a significant correlation between these coefficients
[146].
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3.6 Reconstruction

Reconstruction of the encoded image is achieved by computing the fixed point of the image
transform T from its encoded coefficients. Since the encoded representation of a transform
may be independent of the size of the encoded image, a form of interpolation is possible by
reconstructing the fixed point at a higher resolution than the encoded image.

3.6.1 Decoding

Reconstruction of the fractal coded approximation of a signal is usually based on Banach’s
fixed point theorem (see Appendix D) which guarantees that the sequence constructed by the
iterative application of a contractive transform to an arbitrary initial element of a complete
metric space converges to the fixed point of that transform. Denoting the arbitrary initial
element of the sequence by x0, the elements of the sequence are

xn = Tnx0

and the fixed point xT is
xT = lim

n→∞Tnx0.

The majority of existing fractal coding schemes restrict T to be an affine transform

Tx = Ax + b,

where A is a linear transform and b is an offset vector, in which case the elements of the
decoding sequence become

xn = Anx0 +
n−1∑

i=0

Aib.

Reconstruction of the fixed point by matrix inversion

xT = (I −A)−1b,

is possible if |I −A| 6= 0; equivalent to requiring that A has no eigenvalues equal to 1. If the
spectral radius19 r(A) < 1, a Taylor series expansion [53, pp. 171-172] [195, pp. 82-83] yields

(I −A)−1 = I + A + A2 + A3 + . . .

giving
xT = b + Ab + A2b + . . . (3.2)

Imposing a few restrictions allows the fixed point to be expressed exactly by a finite number
19The spectral radius r(A) of A is the maximum absolute value of the eigenvalues of A.
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of the terms above [148].
Postprocessing in the form of smoothing along block boundaries has been found to be

beneficial in reducing blocking artifacts [65, pg. 59].

3.6.2 Resolution independence

“Resolution independence” has been cited in the popular technical press as one of the main
advantages of fractal compression [6] [54], but image interpolation by fractal decoding has
not been subjected to a detailed comparison with classical interpolation techniques (although
it has been discussed briefly [65] [76]). Subsampling an image to a reduced size, fractal
encoding it, and decoding at a larger size has been found to produce results comparable to
fractal coding of the original image [121], although there is no indication that replacing the
fractal interpolation stage by another form of interpolation would not produce comparable
results.

3.7 The Collage Theorem

Fractal coding is achieved by representing a signal x by a quantised representation of a
contractive transform T which is chosen such that Tx ≈ x. Although an approximation to
x may be recovered from T by the iterative process described previously, there is usually no
simple expression for the fixed point xT of T in terms of its quantised coefficients. As a result,
and given the constraints on T imposed by its dependence on its constituent coefficients, it is
not usually possible to optimise those coefficients to make the fixed point as close as possible
to a given signal x.

Since the the distortion d(x,xT ) introduced by the fractal approximation can usually not
be directly optimised for these reasons, the standard approach is to optimise T to minimise
the collage error d(x, Tx), which is usually computationally tractable. The collage theorem
guarantees that d(x,xT ) may be made small by finding T such that d(x, Tx) is sufficiently
small20.

3.7.1 Contractive transforms

The simplest form of the collage theorem states that for a contractive transform T with
Lipschitz factor α (i.e. d(Tx, Ty) ≤ αd(x,y)) and with fixed point xT ,

d(x,xT ) ≤ d(x, Tx)
1− α

.

20It is important to note that the collage error d(x,xT ) is usually smaller than the actual distortion [47],
whereas the various forms of the collage theorem provide an upper bound in terms of the collage error.
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In image coding terms this implies that a transform T , for which the fixed point xT is close to
an original image x, may be found by designing the transform T such that Tx (the “collage”)
is close to x.

3.7.2 Eventually contractive transforms

Convergence to a fixed point is also guaranteed by the less restrictive condition of eventual
contractivity. In this case, T (with Lipschitz factor α) is not contractive, but some power k

of T (with Lipschitz factor β) is. The collage theorem may then be stated as [65, ch.2 ]

d(x,xT ) ≤ 1− αk

1− α

d(x, Tx)
1− β

.

A tighter collage bound is possible by imposing certain restrictions, consisting primarily of
requiring DC removal in the block transform and setting the domain increment to be equal to
the range block size [147] [148]. Despite the considerable improvement over the usual collage
theorem bound, this bound is still rather pessimistic [147].

3.7.3 Optimal encoding

Although the collage theorem currently forms the basis of virtually all fractal coders, it
does not result in an optimal image representation given the constraints imposed on the
transform. Suboptimality is, amongst others, a result of optimisation of individual block
transforms with respect to the domains in the original image, whereas only the fixed point
domains are available during decoding. Collage based encoding may however be shown to be
optimal under certain restrictions [112] [148].

Updating the scaling and offset coefficients after coding, by re-optimising them with re-
spect to domains extracted from the coded image, was found to result in reduced distortion on
reconstruction [20]. Hürtgen [85] found that optimising the transform subsequent to collage
coding resulted in an SNR improvement of approximately 1.5dB for test images, which is in
agreement with results of Domaszewicz and Vaishampayan [56].

3.8 Convergence

One of the most problematic areas of fractal coding is the convergence of the image transform.
Convergence may be guaranteed by setting smax = 1; while this choice of the scaling coefficient
bound results in more rapid convergence on decoding [65, pg. 62], it has also been shown to
degrade image quality [62]. This restriction is sufficient, but not necessary for convergence,
and although appropriate contractivity criteria are known, their computation during coding
is not feasible, posing a significant problem for a practical encoder implementation, since
sufficient convergence at the decoder should be guaranteed during encoding.
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3.8.1 Orthogonalisation

The introduction of an orthogonalisation operator to each domain block, making it orthogonal
to the constant blocks, results in a transform which may be shown to converge exactly within
a fixed number of iterations (given additional constraints on the domain block spacing) [148].

3.8.2 Mapping cycles

The interdependence between ranges at one iteration of decoding and domains at the next
may be analysed in terms of “mapping cycles”, each of which consists of an independent set
of domain to range mappings [86] [107]. The full image transform is convergent if each of its
independent cycles is convergent.

3.8.3 Transform eigenvalues

Hürtgen [84] [86] [87] [90] showed that when the image transform is affine, a necessary and
sufficient condition for convergence of the transform sequence on decoding is that the spec-
tral radius of the linear part be less than unity (equivalent to eventual contractivity). The
spectral radius was determined in terms of the transform parameters for a few simple cases,
allowing analytic determination of convergence requirements on the transform coefficients for
these cases. Since the computation of the spectral radius for the general case is difficult, a
statistical distribution for the eigenvalues, based on a probability distribution for the trans-
form parameters, allowed the determination of the probability of contractivity based on these
distributions [89].

3.9 Wavelet Analysis

The most significant recent development in fractal coding theory is undoubtedly the inde-
pendent discovery by a number of researchers of a multiresolution analysis (see Appendix
C) description of certain classes of fractal coding. This discovery has not only resulted in
improved fractal coders, but a better understanding of the mechanism underlying standard
fractal coding.

3.9.1 Notation

The following notation is adopted to simplify the presentation of the mathematical results of
this section. The range block width is denoted by b, the domain block width is assumed to
be 2b, and the number of domain and range blocks are Nd and Nr respectively. The domain
increment (the number of pixels between successive domain blocks) is ∆d, and the scaling and
offset coefficients for range block i (where 0 ≤ i < Nr) are si and oi respectively, while the
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index of the domain block selected for range block i is denoted by pi (where 0 ≤ pi < Nd).
Domain and range blocks are indexed from the start of the signal, with an initial index of 0.

3.9.2 Hierarchical decoding

One of the first applications of a multiresolution analysis view of fractal coding was in the
construction of a hierarchical decoding method [13], intended to decrease the computational
requirements of decoding the fractal representation of an image. Noting that a PIFS repre-
sentation of a function is not explicitly linked to a particular vector size in a sampled repre-
sentation, the notion of function f at resolution i was formalised, although no reference was
made to the correspondence between this construction and the scaling function coefficients in
an unnormalised Haar basis.

A PIFS may be decoded iteratively at a vector size corresponding to b = 1 if ∆d = b.
Since the projection operator Pj (see Appendix C) in the Haar basis is equivalent to the
usual averaging spatial contraction operator, functions in the approximation space Vj contain
the pre-contracted domains of functions in Vj+1, allowing functions at progressively higher
resolutions to be built up hierarchically from the initial vector [14].

The description presented here is restricted to one-dimensional signals for notational sim-
plicity, but the extension to two dimensions follows easily. At resolution i the affine transform
may be represented in terms of the Haar basis scaling function coefficients ci,j as21

ci,j = sbj/bc
1
2

(
ci,pbj/bcb+2(j mod b) + ci,pbj/bcb+2(j mod b)+1

)
+ obj/bc.

Since for the Haar basis
ci,j =

1√
2

(ci+1,2j + ci+1,2j+1) ,

ci,j may be written as

ci,j = sbj/bc

√
2

2
ci−1,pbj/bcb/2+(j mod b) + obj/bc, (3.3)

which describes the hierarchical decoding process. The entire decoding process is detailed in
Table 3.1.

A similar algorithm for hierarchical decoding of images coded with multiple fixed blocks
is described by Monro and Dudbridge [136].

3.9.3 Fractal coding as wavelet detail extrapolation

The possibility of simple wavelet domain interpretation of a class of fractal coding schemes has
been described independently by a number of authors [47] [109] [185] [193], each describing

21If m, n ∈ Z, then m mod n is the remainder on dividing m by n. The floor bxc of x ∈ R is the largest
integer less than or equal to x.
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Table 3.1: Hierarchical Fractal Decoding

Start with: Range partition of Nr = 2α blocks
Domain partition with ∆d = b
Signal is to be decoded to size n = 2β

Set of Nr transform coefficients (oi, si, pi)

1. Iteratively apply PIFS to decode signal at resolution α,
resulting in cα,0, cα,1, . . . , cα,2α−1.

2. Iterate through resolutions α < i ≤ β
Iterate through positions 0 ≤ j < 2i

ci,j = sbj/bc

√
2

2
ci−1,pbj/bcb/2+(j mod b) + obj/bc

equivalent results but utilising a variety of notations.
If ∆d = 2b the Haar wavelet transform of a signal contains the wavelet transform coeffi-

cients of the individual domain and range blocks, and the mapping process may be described
as an extrapolation of fine resolution from coarse resolution coefficients in a fashion similar
that described by Equation (3.3). A subtree in the Haar basis corresponds to an image block
after subtraction of the DC component; the initial iteration required in [13] may be dispensed
with if DC orthogonalisation is applied, as the range block averages immediately supply the
values of cα,0, cα,1, . . . , cα,2α−1. The full decoding process is described in Table 3.2.

Table 3.2: Wavelet Domain Fractal Decoding

Start with: Range partition of Nr = 2α blocks
Non-overlapping domain partition (∆d = 2b)
Signal is to be decoded to size n = 2β

Block affine transforms remove DC component
Set of Nr fractal coefficients (oi, si, pi)

1. Create offset vector o = (o0, o1, . . . oNr−1) and apply wavelet
transform to calculate c0,0 and detail coefficients d0,0 to
dα−1,2α−1.

2. Iterate through resolutions α ≤ j < β
Iterate through positions 0 ≤ k < 2j

Define m = 2j−α

dj,k =
1√
2
sbk/mcdj−1,mpbk/mc+k mod m

3. Perform inverse wavelet transform to calculate final signal

Davis [47] explicitly introduced the view of the process as mappings on subtrees, depicted
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in Figures 3.4 and 3.5. Encoding in the wavelet transform domain is achieved by locating
the best matching domain subtree for each range subtree, in the sense that the MSE dis-
tance between the range subtree and appropriately scaled domain subtree is a minimum. An
analysis of error propagation in the extrapolation of coarse to fine resolution coefficients indi-
cates a similar propagation of quantisation errors, suggesting higher weighting for the coarse
resolution coefficients when matching subtrees [47].

d4,4 d4,5 d4,6 d4,7d4,0 d4,3d4,1 d4,2

R1 subtree

D1 subtree

Ranges

Domains

R0 R1 R2 R3

D0 D1

c0,0

d0,0

d1,1

d2,3d2,1 d2,2d2,0

d1,0

d4,12d4,13d4,14d4,15d4,8 d4,11d4,9d4,10

d3,2 d3,3 d3,4 d3,5 d3,6 d3,7d3,0 d3,1

Figure 3.4: Domain and range blocks as wavelet detail coefficient subtrees.

The notion of an α-scale-extending operator was introduced by Davis [46] as an operator
on the wavelet signal decomposition for which di,j depends only on detail coefficients at the
same or coarser resolution when i ≥ α. Only α iterations of an α-scale-extending operator,
applied to a signal initialised with the known low resolution i > α coefficients, are required
on decoding, and contractivity is not required for convergence (although it is required for
coding utilising the collage theorem). In matrix notation, this type of linear operator is
strictly lower triangular for all rows other than the initial α. Convergence problems for
finer domain partitions may be seen as a result of dependency loops from fine to coarse
coefficients; a consequence of representation by operators which are not α-scale-extending for
the appropriate value of α.

The wavelet framework may be extended to images using the non-standard decomposition
(see Appendix C). In this extension a subtree rooted at a particular position and resolution
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Figure 3.5: Detail coefficient extrapolation by subtree mappings.

contains the three directional subtrees22 rooted at the same position and resolution. The
block isometries may be applied in the wavelet domain and correspond to operations on the
horizontal, vertical and diagonal directional subbands. A generalisation of the usual fractal
coder is possible by applying the extrapolation process described above to detail coefficients of
a signal with respect to a smooth wavelet basis. This significantly reduces the usual blocking
artifacts and improves the reconstruction PSNR [47].

Van de Walle [194] [193] described a coder implementing a quadtree partition in the wavelet
domain. Any range subtree which could not be acceptably approximated by a mapping from
a domain subtree was split into separate subtrees, with scalar quantisation of the parent node.
This scheme allows for a continuous transition between fractal coding and wavelet coefficient
scalar quantisation.

The smooth wavelet basis coder described by Krupnik et al. showed significant advantages
over the usual Haar basis, but the algorithm did not compare favourably with EZW [109].
Davis [46] described an advanced implementation with results very close to those of EZW, with
an improvement of 1dB in PSNR over the other fractal coders with which it was compared.
This coder utilised an advanced bit allocation algorithm, and explicitly included zerotrees in
the coding.

3.9.4 Subband block prediction

In contrast to the generalisation of the usual subtree prediction described above, Rinaldo
and Calvagno [162] [163] proposed a subband prediction scheme in the non-standard image
decomposition. Each image subband was covered by range blocks which were mapped from
domain blocks of the same size from the next lower resolution subband (see Figure 3.6).

22The subtrees in each of the directional subbands are combined to form a composite subtree.
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Figure 3.6: Subband prediction in the coding scheme of Rinaldo and Calvagno.

This form of prediction23 is justified by the similarity between the psds of different signal
subbands, suggesting that the spectral content of blocks used for domains should be similar to
that of the range blocks. The use of domain and range blocks of the same size is motivated by
the observation that the effects of an event such as an edge in a signal have similar durations
in different subbands [163].

Maximum range block size was increased with increasing resolution, applying a quadtree
splitting if a match threshold was not met. The block mappings consisted of a scaling factor
and one of four rotations, and the domain search region was considerably reduced by restrict-
ing it to a small region within the previous subband. A considerable advantage of this method
is that contractivity is not required, and the decoding error may be evaluated at coding time
since each subband is predicted from the coded version of the previous subband24.

In the initial system [163], the lowest resolution subbands, and any other subbands for
which an adequate match was not found were scalar quantised using a Laplacian quantiser
and the standard optimum bit allocation method. This method reduces to scalar quantisation
of wavelet coefficients when block prediction is poor. The PSNR was significantly better than
that for JPEG, with no visible blocking artifacts.

A subsequent system [162] employed a sophisticated Lattice Vector Quantisation technique
called Pyramid Vector Quantisation (PVQ) [61] for coding of low resolution subbands (after
application of a DCT) and residual errors after block prediction. This scheme reduces to
PVQ when block prediction is poor. Results were improved over those in [163], and appear
to compare well with those reported by Davis [46].

23This compression scheme differs substantially from Predictive VQ [73, ch. 13] where a vector is predicted
based on a fixed predecessor.

24As a result, it is strictly speaking not fractal coding, despite the considerable similarities.
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3.9.5 Fractal multiresolution analysis

Cheng and Zhu [35] defined a multiresolution-like analysis based on the “fractal transform”,
with finer resolution corresponding to a finer range block partition in a PIFS representation.
The multiresolution properties achieved were

1. Vj ⊂ Vj+1

2. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

3. ∪j∈ZVj = L2(R)

for “approximation spaces” Vj , where item 3 is the important representation property.
Bogdan [27] [28] [29] [30] presented an idea very similar in spirit, but corresponding to a

decomposition into detail signals. This decomposition of a function f is initialised by creating
a low resolution representation25 [30, pg. 74] fN , after which a detail function fN−1 is created
by standard fractal encoding of the original function f , with range blocks of size 2N−1 and
the function fN as affine part. This process is repeated [30, pg. 112], encoding fN as

fi−1 = Ai−1fi−1 + fi

with range block sides of 2i until f0 is reached, which provides an exact representation since
range blocks correspond to one sample each. The low resolution signal fN , together with
the Ai comprise the function decomposition. The decomposition is however, not orthogonal
[29] [30, pp. 79-82]. A compression system based on this decomposition produced similar
performance to the JPEG standard in terms of PSNR, but superior subjective quality was
claimed for low bit rates [29].

3.10 Performance comparisons

The greatest difficulty in comparing results of different lossy coding algorithms is the absence
of an objective distortion measure which accurately reflects perceived distortion. A further
complication in the comparison of fractal coding algorithms is the scarcity of theoretical
results to support design choices. As a result, virtually every stage of coder design is based
on empirical studies, and the lack of consensus on important issues is probably largely a result
of the dependence between different aspects of fractal coder referred to in the introduction
to this chapter. A “greedy algorithm” for coder optimisation which optimises each stage
separately is therefore doomed to failure.

Since the most widely used test image is the 512×512 8 bit/pixel Lena image26 (see Figure
25The index ordering is reversed from the order established here for wavelet decompositions.
26There are, unfortunately, slightly different versions of the same image in common use, which should be

considered when making this type of comparison.
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E.4), a comparison of published PSNR results is possible for a variety of coding schemes. A
comparison27 of published coding results for this image is displayed in Figure 3.7.

Performances vary considerably, but four different coders appear to offer comparable per-
formance to the EZW algorithm. The first of these [21] is based on the original coder of
Jacquin [92], but with VQ of transform coefficients and three levels of block splitting instead
of two. The significantly superior performance of this system in comparison with that from
which it was derived [92] is difficult to explain, but the most significant contributing factor
is probably the additional attention paid to quantisation and representation of transform pa-
rameters. The second of these coders [20] is similar to the first, but is based on the adaptive
frequency domain transform described in Section 3.2, with the addition of a transform opti-
misation procedure as described in Section 3.7. The third of these coders is a smooth wavelet
transform domain fractal coder with globally optimised bit allocation [46], while the fourth
is based on a form of vector prediction from one subband to the next of a smooth wavelet
image decomposition [162].

Although the difference in performance between these four coders and the rest is large
enough to suggest some common basis, this is difficult to isolate. Significant common features
of the best four coders appear to be that they all use a quadtree28 or multiresolution equivalent
range partition, as well as including mechanisms for improved quantisation or bit allocation.
The significance of the operation in the transform domain of three of these algorithms is
highlighted by the absence of any transform domain coders in the less effective class of coders.

3.11 Conclusions

The absence of any solid theoretical foundation for making design decisions for a fractal coder
is illustrated by the rather ad hoc nature of many of the wide variety of options that have been
evaluated in each of the main categories of this survey. Although the recent wavelet domain
analysis of fractal coding has contributed to an improved understanding of its operation, as
well as resulting in a new generation of more effective fractal coding algorithms, the theoretical
foundation remains tenuous. Nevertheless, the performance comparisons presented here imply
that the better fractal coders offer rate distortion performance at least comparable with the
current state of the art.

Despite the recent growth in research activity in the area of fractal image compression,
a comprehensive explanation of the relationship between the assumptions made and the sta-
tistical properties of “natural” images remains to be presented (for example, neither of the
two currently available books [16] [65] on the subject contain such an explanation). The

27Only those publications presenting actual PSNR and bit rate figures have been included; where these
results are only displayed in graph form, they have been omitted.

28This is clearly not sufficient in itself for superior performance, since one of the poorest coders in this
comparison is also based on a quadtree partition.
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a) Jacquin-type coder with 3 level range block sizes (16 × 16,
8 × 8, 4 × 4), spiral domain search and VQ of transform
coefficients [21].

b) Codera as for a), but with DCT domain block transform [20].

c) Hybrid Self-Quantisation of Subtrees (SQS) coder with smooth
wavelet basis [46].

d) Triangular partition coder [51].

e) HV partition coder [62].

f) Original Jacquinb 2-level coder [92].

g) Quadtree partition coder[121].

h) Fixed square block partition coder [149].

i) Subband block prediction with PVQ [162].

EZW EZW coder results [182].

aSuperior results are achieved for a subsequent algorithm [19], but
no actual PSNR values are given.

bIn a later publication [95] Jacquin reports on a similar coder for
which a PSNR of 31.4dB is achieved at a rate of 0.06 b/p; since the
coder described is very similar to the earlier one [92], it is likely that a
typographical error transformed 0.6 b/p into 0.06 b/p.

Figure 3.7: Comparison of the performance of fractal coding and EZW for the 512×512
8 b/p Lena image.
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underlying assumption of fractal coding, which is presumably that each subblock in an image
may be closely approximated by an affine transform on another subblock, has been described
as affine redundancy [6], piecewise self-similarity [95], self-affinity [38] and a host of similar
terms. Self-affinity is necessary, but not sufficient, for effective fractal coding since the union
of the individual transforms is also required to be a contraction mapping in the space of
images.

Exact self-affinity, in which each image subblock is exactly equal to an affine transform on
another subblock corresponds to the type of deterministic fractal represented by the Sierpinski
triangle (see Section 2.5.5) rather than form of stochastic fractal represented by fractional
Brownian motion (fBm) [60]. Unfortunately, while stochastic fractals do find application
in modelling properties of images, there is no evidence that images are effectively modelled
as deterministic fractals [38]. Given the lack of evidence for the fundamental assumption
of fractal image compression, it is certainly not clear why it is capable of effective image
compression. Although the actual rate distortion performance of a compression scheme is not
a perfect indicator of the soundness of the underlying signal model29, performance observed to
be comparable with other state of the art techniques suggests strongly that the fundamental
assumptions are at least approximately accurate.

Three main questions are posed in evaluating the validity of the self-affinity assumption,
namely

1. Is self-affinity a natural consequence of more common, or weak, statistical conditions?

2. What are the consequences of self-affinity on signals exhibiting this property?

3. To what extent do “natural” images exhibit this property?

These are the primary questions addressed in the research chapters of this dissertation.

29In transform coding, for example, some compensation for an inappropriate decorrelating transform may
be achieved by the use of more effective quantisation and entropy coding stages.



Chapter 4

Self-Affinity of First Order

Gauss-Markov Models

Since the statistical properties required for the existence of self-affinity are not well under-
stood, it is not obvious whether self-affinity is a natural consequence of some weak statistical
constraints, such as decaying autocorrelation, or whether it is dependent on the existence of
a strongly restrictive set of conditions. This question was addressed by evaluating aspects of
the performance of fractal compression, and hence the degree of self-affinity, for a standard
class of signal models.

Despite their simplicity, first order Gauss-Markov models offer a number of advantages
for application in this context:

• They often provide a reasonable approximation to measured image characteristics [37,
ch. 2], and have been used with considerable success in modelling textured regions [115,
pp. 656-658].

• Convenient performance benchmarks are available since the distortion rate function is
known analytically [99, app. D], and transform coding is capable of close to optimum
coding for this model [99, ch. 12].

• If the maximum correlation of ρ = 1 is selected the model generates Brownian motion
signals, which are stochastic fractals [152].

A number of restrictions were, from practical necessity, imposed on the scope of evaluation
for these models. First, although the main focus of this dissertation is fractal compression of
images, all evaluations were performed on one-dimensional signals in order to reduce the com-
putation required in Monte Carlo simulations, as well as to avoid the additional complications
in two dimensions of the issue of the separability and the additional difficulty of presentation
of results in graph form. While introducing additional complexity, there is no reason to expect
(although this is not proved here) that qualitatively different behaviour would be observed for

66
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an extension to two dimensions. Second, the set of fractal schemes investigated was restricted
to a fixed block size partition, with domain blocks twice the width of range blocks, and block
transforms as in Equation (3.1), with spatial contraction by a factor of two by averaging.
Since only one-dimensional signals were considered, the square isometry operations are not
applicable1. Finally, it should be emphasised that the meaning of self-affinity in a particular
context is dependent on the structure of the fractal coding scheme in question.

4.1 The Signal Model

A Gaussian first-order Markov (also called first-order autoregressive, or AR(1)) process Xi is
generated [99, ch. 2] by

Xi = Zi + ρXi−1,

where ρ is the correlation between consecutive samples and the Zi, often referred to as the
innovations process, are independently distributed Gaussian random variables with zero mean
and variance σ2

Z . The autocorrelation function of this process is

RX(k) = σ2
Xρ|k|

where

σ2
X =

σ2
Z

1− ρ2
.

A variety of aspects of fractal coding were investigated, in each case by an evaluation
performed over an ensemble of signals generated by an AR(1) model with a particular cor-
relation ρ. The variance σ2

Z was held constant at a value of 1.0 for all values of ρ so that
identical distortion rate curves are associated with all correlation values (see Section 4.5.5).
Evaluation was focussed primarily on the collage error and the efficiency of the domain pool
as a codebook, although more practical signal coding issues such as transform parameter dis-
tributions were also investigated. The majority of the statistical evaluations described here
are too complex for analytic evaluation, and were consequently performed by Monte Carlo
simulation2.

Given range and (spatially contracted) domain blocks r and d respectively, the collage3

1Block reflection, which remains an option in the one-dimensional case, was not utilised.
2The Gaussian innovations process values were generated by the Normal class, using the ACG random

number generator class (with seed 94280 and size parameter 98), of the libg++ class library supplied with the
g++ C++ compiler.

3The term collage error is used to describe three related but distinct quantities. The first, as used in this
section, is the distance (in terms of the vector norm, not the spatial distance) between a range block and a
particular transformed domain block. The second remains applicable to a particular range block, describing
the minimum of the first type of collage error between that range and a pool of domain blocks, while the third
usage corresponds to the sum of the second type over all range blocks in a signal.
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error vector eC for range r and domain d is

eC = r− sd− o1,

where s and o are the scaling and offset coefficients respectively. The square of the magnitude
of the collage error vector is

‖eC‖2 = ‖r‖2 − 2s〈r,d〉 − 2o〈r,1〉+ 2so〈d,1〉+ s2‖d‖2 + o2‖1‖2,

where ‖1‖2 = b is the range block width and 1
b‖eC‖2 is the collage error in terms of the MSE

measure. The scaling factor and offset minimising ‖eC‖2 for fixed domain and range block
are

s∗ =
‖1‖2〈d, r〉 − 〈d,1〉〈r,1〉
‖1‖2‖d‖2 − 〈d,1〉2 o∗ =

‖d‖2〈r,1〉 − 〈d,1〉〈r,d〉
‖1‖2‖d‖2 − 〈d,1〉2 ,

where the offset may also be expressed as

o∗ =
〈r,1〉 − s〈d,1〉

‖1‖2
.

The collage error vector for o = o∗ is

eC = r− sd− o∗1

=
(
r− 〈r,1〉

‖1‖2

)
− s

(
d− 〈d,1〉

‖1‖2

)

and the square of the magnitude in this case is

‖eC‖2 = ‖r‖2 − 2s〈r,d〉+ s2‖d‖2 − 1
‖1‖2

〈r,1〉2 +
2s

‖1‖2
〈r,1〉〈d,1〉 − s2

‖1‖2
〈d,1〉2.
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Domain blockRange block

b 2b

X

Figure 4.1: Domain and range blocks in a random signal X.

If range and domain blocks are extracted from a random signal as in Figure 4.1, the terms
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in the collage error expression become4

〈r,d〉 =
1
2

b−1∑

i=0

Xr+iXd+2i +
1
2

b−1∑

i=0

Xr+iXd+2i+1

〈r,1〉 =
b−1∑

i=0

Xr+i 〈d,1〉 =
1
2

2b−1∑

i=0

Xd+i ‖r‖2 =
b−1∑

i=0

X2
r+i

‖d‖2 =
1
4

2b−1∑

i=0

X2
d+i +

1
2

b−1∑

i=0

Xd+2iXd+2i+1

where r and d are the positions of the range and domain blocks respectively, and where spatial
contraction of domain blocks is achieved by averaging of adjacent pixels. Where necessary,
the number of domain and range blocks are denoted by Nd and Nr respectively, and the
domain increment is denoted by ∆d.

4.2 Deterministic Correlation

If s = s∗ the collage error may be simplified to

‖eC‖2 =
(
‖r‖2 − 1

‖1‖2
〈r,1〉2

)
− (s∗)2

(
‖d‖2 − 1

‖1‖2
〈d,1〉2

)

=
(
‖r‖2 − 1

‖1‖2
〈r,1〉2

)
(1− %2(d, r)), (4.1)

where

%(d, r) =
〈d, r〉 − 〈d,1〉〈r,1〉

‖1‖2√
‖d‖2 − 〈d,1〉2

‖1‖2
√
‖r‖2 − 〈r,1〉2

‖1‖2

is the angle between vectors d and r after subtraction of their deterministic mean values, and
may be interpreted as the deterministic5 correlation coefficient by comparison with the usual
definition of the statistical correlation coefficient. Equation (4.1) reveals that the collage error
between a range and spatially contracted domain depends on the angle between the AC parts
of the domain and range vectors, represented by %(d, r), and the magnitude of the AC part
of the range. Note that the optimum scaling factor may be expressed as

s∗ =
‖r− 〈r,1〉

‖1‖2 ‖
‖d− 〈d,1〉

‖1‖2 ‖
%(d, r),

which implies that the sign of % indicates the sign of s∗.
Since the collage error ‖eC‖2 may be expressed as the product of a function of the range

4The range and domain vectors are random variables, but the bold lower case notation is retained for
notational simplicity.

5This description is in analogy with the deterministic autocorrelation of a function [197, pg. 48].
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vector and (1 − %2), it may be minimised over a domain pool by maximising %2 (that is,
given range vector r, the best domain vector d in the domain pool is the one resulting in the
largest value of %2(d, r)). The square of the deterministic correlation represents the similarity
between domain and range vectors dependent only on their “shape”, and is invariant to their
DC offsets and magnitudes; the larger this value the more similar the shapes. An exactly
self-affine signal is one in which there is, for each range block, a corresponding domain block
such that the square of their mutual deterministic correlation is unity (i.e. %2 = 1). Since
the correlation is bounded (0 ≤ %2 ≤ 1) the maximum value of %2 over a set of domain
vectors provides a convenient measure of the effectiveness of a particular domain pool in
providing vectors of the appropriate shape. This measure of domain pool effectiveness clearly
corresponds to a measure of its performance as a codebook.

An alternative measure of domain pool effectiveness may be based on the minimum collage
error for each range, which is zero for exactly self-affine signals. If the %2 are independent6 of
the magnitude of the AC part of the range blocks this measure of self-affinity is equivalent to
the %2 based measure.

4.2.1 Variation with positional offset between range and domains

The expected7 deterministic correlation between a range block with its centre at the centre of
a signal and each domain extracted8 from the same signal is graphed in Figure 4.2 for b = 16,
with slices at various ρ values graphed in Figure 4.3. Note that positive scaling coefficients
are likely for domains near the range centre, while negative scaling coefficients become likely
further away as a result of the negative expected deterministic correlation9. The expected
deterministic correlation falls to zero within a small distance of the range block for all values
of ρ, the greatest distance being required for ρ ≈ 0.95, and there is a significant increase in
the expected value of % at the position of the range block as the signal correlation increases.

Figures 4.4 and 4.5 display the expected square of the deterministic correlation for b = 8
and b = 16 respectively, while slices at various ρ values are graphed in Figure 4.6. There is a
small trough to either side of the peak for larger values of ρ, and the squared deterministic
correlation approaches a constant within a short spatial distance of the peak. The magnitude
of the central peak increases with increasing signal correlation. These observations reveal
that there is a general improvement in the shape match between the range and domain blocks
with increasing signal correlation, with the best expected match for the domain block with

6This would not be the case if, for example, a particularly poor match in terms of %2 were more probable
for range blocks of particularly high magnitude.

7Expectations were calculated for an ensemble of 100000 signals generated by the appropriate AR(1) model.
The deterministic correlation was calculated between the range block at the centre and all domains for each
signal.

8The location of a domain block is determined by the position of its centre in this section.
9The quantisation of the scaling coefficient should therefore depend on the spatial distance between the

range block and selected domain block.
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Figure 4.2: Expected deterministic correlation for b = 16. The domain and range block
centres coincide at the line of symmetry.
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Figure 4.3: Expected deterministic correlation for b = 16. The domain and range block
centres coincide at the line of symmetry.
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centre coinciding with that of the range block. This is not surprising, since domain blocks
become progressively less statistically connected to the range block as their spatial distance
from it is increased.
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0.0
Domain location

454035302520151050

Figure 4.4: Expected squared deterministic correlation for b = 8. The domain and range
block centres coincide at the line of symmetry.

Since the collage construction process entails locating the optimum domain for each range,
the significant value in this context is the maximum deterministic correlation over a set of
domain blocks, rather than for a single domain block. It is unfortunately not possible to
determine the expected maximum %2 over a domain pool directly from the expectations for
each domain. Since E[maxi{Xi}] ≥ maxi{E[Xi]} the peak value of the expected %2 is a lower
bound for the maximum over a domain pool. While this lower bound is higher for a domain
pool including the central domain than one excluding it, this does not necessarily guarantee
a higher expected maximum.

4.2.2 Maximisation over a domain pool

The running maximum deterministic correlations encountered while visiting domain blocks,
starting at the range position (range centres are at the start of the displayed signal for these
results) and moving forwards in the signal, are displayed in Figure 4.7. Values are the lowest
for ρ = 0.0, and increase with increasing ρ and domain pool size.

One might expect, particularly for high correlation signals, that neighbouring domain
blocks would be very similar, resulting in a domain pool with a small domain increment
forming an inefficient codebook. The comparison, presented in Figure 4.8, of maximum %2

values achieved over a domain pool of 64 domains, confirms this suspicion, with significantly
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Figure 4.5: Expected squared deterministic correlation for b = 16. The domain and
range block centres coincide at the line of symmetry.
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Figure 4.6: Expected squared deterministic correlation for b = 16. The domain and
range block centres coincide at the line of symmetry.
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Figure 4.7: Expected running maximum squared deterministic correlation for b = 16.

improved performance for larger domain increments, although no significant improvement is
observed for ∆d > 4 in this case.

4.2.3 Comparison with random codebooks

It is clear from the definition of self-affinity as the ability of each subblock in a signal to be
approximated by an affine transform on another subblock, that the presence of this property
to any significant extent requires some “special relationship” between subblocks in the same
signal, leading to an unusual degree of affine similarity between them. The existence of such a
relationship was determined by comparing the performance of the domain pool codebook with
that of a random codebook [73, pg. 359] consisting of blocks with the same distribution as the
domain blocks10, but not extracted from the same signal as the range blocks (see Figure 4.9),
and consequently independent of them. Comparisons were also made between “forward” and
“reverse” running maxima, as depicted in Figure 4.9, to determine the significance of the
central peak in expected %2 (described in Section 4.2.1).

Results of such a comparison for ∆d = 1 and ρ = 1.0 are displayed in Figure 4.10. The
initial separation between “forward” and “reverse” curves, a result of the initial peak in
expected %2, decreases rapidly with increasing domain pool size, reaching zero where the two
domain pools coincide exactly. This suggests that although the central peak in expected %2

does increase the expected maximum over a domain pool in which it is included, it does not
have a particularly significant effect in a large domain pool, and one would therefore not expect

10That is, the same intra-domain distribution, not the inter-domain distribution, since these blocks are
independent of each other.
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Figure 4.8: Comparison of expected maximum squared deterministic correlations for
different domain increments (b = 16 and Nd = 64).
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Figure 4.9: “Forward”, “reverse” and “separate” domain sets. The range block is se-
lected at the fixed position indicated in signal x, which is a member of the ensemble
of randomly generated signals. The “forward” domain set is searched from the initial
domain block, while the “reverse” domain set is searched in reverse order. The domain
blocks in the “separate” set are each extracted from separate signals x′j , generated by
the same random process as x.
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significant domain locality11 for a large domain pool. Such an effect may partially explain the
disagreement in the literature over the existence of domain locality, since its significance is
dependent on the size of the domain pool. The change in gradient of the “forward” curve in
the region of the domain at location 10 is attributable to the corresponding %2 trough in that
vicinity. The superior performance of the “separate” random codebook in this case is largely
a result of the domain pool inefficiency related to the small domain increment. The “forward”
and “reverse” curves are virtually indistinguishable in similar comparisons for ρ = 0.0, while
the “separate” curve is slightly superior. The curves diverge slowly as ρ is increased, reaching
the positions depicted in Figure 4.10 when ρ = 1.0.
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Figure 4.10: Comparison of expected running maximum squared deterministic correla-
tions for “forward”, “reverse” and “separate” codebooks (b = 16, ∆d = 1 and ρ = 1.0).

A similar comparison for ∆d = 16 resulted in very similar “forward”, “reverse” and
“separate” curves for all values of ρ, but with the curves diverging slightly with increasing ρ.
The “forward” curve contained the highest values and the “separate” curve the lowest for ρ

near unity, with the “reverse” curve sandwiched between them, equal to the “separate” curve
to the left of the graph and ending with the same value as the “forward curve”. The domain
pool codebook is therefore slightly better than the “separate” form of random codebook for
large domain increments, but with the significance of the difference decreasing with increasing
domain pool size. The similarity between “forward” and “separate” curves is to be expected;
since the AR(1) models are stationary and ergodic, a domain sufficiently far away from a
range in the same signal might as well have been extracted from a separate signal. One may
conjecture that the slight superiority of the domain pool codebook is a residual effect of the
central %2 peak, which was the only form of “special relationship” or statistical dependence

11In the sense that the best domain for a range is likely to be found spatially close to it.
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observed between domain and range blocks in a signal.
An interesting phenomenon was observed in comparing performances of the “separate”

random domain codebook as above and a similar “separate” codebook constructed with ran-
dom range block sized signals which were not spatially contracted. The resulting curves
were indistinguishable for ρ = 0.0, with the random codebook without spatial contraction
improving relative to the random codebook with spatial contraction until ρ ≈ 0.6, returning
to similar curves for ρ ≈ 0.85 and the positions reversing thereafter. The relevant model
statistics are therefore approximately invariant under spatial contraction, justifying to some
extent the use of contracted domains as a form of random codebook for quantisation of range
blocks.

4.2.4 Maximisation analysis

As noted in Section 4.2.1, the expected maximum %2 over a set of domains can not be deter-
mined from the individual expectations of %2 for each of the domains, and is dependent on the
multivariate probability distribution of all the %2 involved12. The marginal distributions of %2

for the two domains closest to the range are compared with the marginal distribution13 of %2

for the “separate” random domains in Figure 4.11. Although there is a significant difference
between the distributions corresponding to domains 0 and 1, distributions corresponding to
the subsequent domains are virtually identical to the “separate” distribution. This obser-
vation is consistent with the conjecture that there is no significant statistical relationship,
resulting from their extraction from the same signal, between a range block and spatially
removed domains.

The distribution of a random variable Y defined as the maximum of k independent iden-
tically distributed random variables, with the same distribution as a random variable X, is
[110, pg. 245]

fY (y) = kfX(y)[FX(y)]k−1.

Since the distributions of the %2 are not all identical or exactly independent, this model does
not describe the observed distributions of the maxima very accurately, although there are
strong qualitative similarities. The observed distributions of the maxima of %2 over a set of
domain blocks are displayed in Figure 4.12.

4.2.5 Vector quantisation

Although the domain pool performance was found to be similar to that of a random codebook,
fractal compression can only be truly effective if the domain pool codebook is at least of com-
parable efficiency to that of an equivalent fixed and optimised codebook. A comparison with

12That is, the %2 between the range and each of the domain positions in the domain pool.
13As expected the %2 for “separate” random domains are identically distributed.
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Figure 4.11: Marginal distributions of squared deterministic correlation for b = 16,
∆d = 8 and ρ = 1.0. Domains are labelled from left to right, starting with 0 for the
domain with centre coinciding with that of the range block.
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the performance of an optimised codebook was achieved by generating initial codebook and
training vectors according to the appropriate AR(1) model. The Mean Removed Shape Gain
VQ [139] codebooks appropriate for comparison with the domain pool were constructed using
the SGVQ GLA maximising squared deterministic correlation (described in Section 6.4.1), by
applying mean removal to each of the initial vectors14. The comparison between the perfor-
mance of a domain pool codebook, a random “separate” codebook and a fixed and optimised
VQ codebook, presented in Figure 4.13, shows a significant advantage to the VQ codebook
over the other two, which are virtually indistinguishable. The general improvement in per-
formance with increasing ρ may be attributed to the concomitant narrowing of the variety of
block “shapes”, resulting in a more clustered distribution of the “shape” vectors. Although
the domain pool is as effective as a random codebook, it is substantially outperformed by an
optimised codebook, especially for the higher signal correlations.

VQ
Random
Domains

Signal correlation ρ

E
[m

ax
%
2
]

1.00.80.60.40.20.0

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Figure 4.13: Comparison of expected maximum squared deterministic correlations for
self, random and optimised codebooks (b = 16, ∆d = 8 and Nd = 64).

4.3 Collage Error

Since the factors
(
‖r‖2 − 1

‖1‖2 〈r,1〉2
)

and (1 − %2(d, r)) in the expression for ‖eC‖2 are not
necessarily independent, it is not certain that the rankings in terms of %2 of the previous
section are to be observed for an evaluation in terms of the expected collage error. An
analytic evaluation of this expectation is shown to be possible for a restriction of the usual
block transforms, while Monte Carlo simulation is required for the more general case.

14Since the centroid of a set of zero deterministic mean vectors is itself zero mean, the GLA as described
locates an optimal mean-removed codebook.
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4.3.1 Affine transforms with fixed scaling

Analytic evaluation of E[‖eC‖2] is complicated by the factors of s in the expansion in terms
of inner products and magnitudes of the domain, range and constant vectors. If s is fixed15

however, E[‖eC‖2] may be expressed in terms of the autocorrelation function of X. The
expectations of the required terms for wide-sense stationary X are

E[‖r‖2] = bRX(0)

E[〈r,d〉] =
1
2
RX(d− r) +

b−1∑

i=1

RX(d− r + i) +
1
2
RX(b + d− r)

E[‖d‖2] =
b

2
(RX(0) + RX(1))

E[〈r,1〉2] = bRX(0) + 2
b−1∑

i=1

iRX(b− i)

E[〈r,1〉〈d,1〉] =
1
2

b−1∑

i=1

iRX(d + 2b− r − i) +
b

2

b∑

i=0

RX(d− r + i) +

1
2

b−1∑

i=1

iRX(d− b− r + i)

E[〈d,1〉2] =
b

2
RX(0) +

1
2

2b−1∑

i=1

iRX(2b− i),

resulting in an expression for the expected collage error between the range block at r and the
domain block at d (as in Figure 4.1) as

E[‖eC‖2] = bRX(0)−

2s

(
1
2
RX(d− r) +

b−1∑

i=1

RX(d− r + i) +
1
2
RX(b + d− r)

)
+

bs2

2
(RX(0) + RX(1))−

1
b

(
bRX(0) + 2

b−1∑

i=1

iRX(b− i)

)
+

s

b

(
b−1∑

i=1

iRX(d + 2b− r − i) + b
b∑

i=0

RX(d− r + i) +
b−1∑

i=1

iRX(d− r − b + i)

)
−

s2

b

(
b

2
RX(0) +

1
2

2b−1∑

i=0

iRX(2b− i)

)
.

15Barnsley [16, pp. 188-215] utilises such a scheme as an example.
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Utilising the identities [186, pg. 107]

n−1∑

i=0

ari =
a(1− rn)

1− r
r 6= 1

and
n−1∑

i=0

(a + id)ri =
a(1− rn)

1− r
+

rd{1− nrn−1 + (n− 1)rn}
(1− r)2

r 6= 1,

and substituting in RX(k) = σ2
Xρ|k|, gives the expected squared distortion for an AR(1)

model (with the restriction d ≥ r + b + 1 required to avoid additional complication stemming
from the absolute value in the expression for RX(k)) as

E[‖eC‖2] =
σ2

Z

1− ρ2

(
b− sρd−r − 2sρd−r ρ− ρb

1− ρ
− sρb+d−r+

bs2

2
+ ρ

bs2

2
− 1− 2

b

bρ(1− ρ) + ρ(ρb − 1)
(1− ρ)2

+

s

b
ρb+d−r bρ(1− ρ) + ρ(ρb − 1)

(1− ρ)2
+ sρd−r 1− ρb+1

1− ρ
+

s

b
ρd−r−b ρ(1− bρb−1 + (b− 1)ρb)

(1− ρ)2
− s2

2
−

s2

2b

2bρ(1− ρ) + ρ(ρ2b − 1)
(1− ρ)2

)
.

The complexity of this expression for such a simple case illustrates the difficulty inherent in
an analysis of more general cases. In particular, the complex dependence on parameters ρ, b

and s suggests that similar calculations for a more general case are unlikely to be fruitful. As
one might expect, however, the above expression is linear in σ2

Z and the only dependence on
d and r is on the term d− r.

The restriction d ≥ r+b+1 unfortunately excludes the validity of the expression from the
“interesting” region in the immediate vicinity of the range block. The behaviour within the
region of validity is qualitatively similar to that resulting from the more general transform
applied in the following section. In particular, it is interesting to note that for b = 4 the
expected collage error decreases with increasing ρ, while the response is reversed for b ≥ 6.

4.3.2 Affine transforms with variable scaling

Expected collage error results for optimal scaling as in Equation (4.1) are displayed in Figures
4.14 through 4.17. The general dependence on domain location is approximately what one
might expect from the deterministic correlation results, with the most significant features
being a minimum where the domain and range centres coincide, followed to either side of
the centre by a maximum which decays to an approximately constant level as the domain
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Figure 4.14: Expected mean square collage error for b = 8.
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becomes further away from the range.
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Figure 4.16: Expected mean square collage error for b = 16.

Comparisons of expected minimum collage error for the “forward”, “reverse” and “sep-
arate” codebooks revealed the same rankings16, for both ∆d = 1 and ∆d = 16, as those
observed in terms of %2 in Section 4.2.3.

The expected maximum collage error for the domain pool, a separate random codebook
and a fixed optimised codebook are compared in Figure 4.18. The performance of the opti-
mised VQ codebook is significantly superior at high signal correlations, while the other two
are very similar for all signal correlations. The complex shape of the curves for the domain
pool and separate random codebooks is likely to be a consequence of the dependence of ‖eC‖2

on the magnitude of the AC part of the range as well as on %2, which each have different
responses to increasing signal correlation17.

There is an obvious improvement in performance of the VQ codebook with increasing
signal correlation, despite the invariance of the distortion rate function to changing correlation.
This observation should be considered in the light of the suboptimality of the VQ codebook,
resulting both from the restricted block sizes and its product code structure.

4.4 Self-Affinity

Since most signal models are clearly not exactly self-affine, a means of quantifying the degree of
approximate self-affinity is required. Although one could base such a measure on a comparison
between the performance of fractal compression and some benchmark algorithm for the signal
model of interest, it would be extremely complex and subject to the vagaries of representation,
quantisation, and entropy coding, and consequently dependent on factors other than the

16The best performance corresponds to the largest %2 values and the smallest collage errors.
17Note that the signal variance increases with increasing ρ since σ2

Z was held constant.
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Figure 4.17: Expected mean square collage error for b = 16.
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accuracy of the underlying assumptions of fractal compression. The measure proposed here
is based on the performance of the domain pool as a Mean Removed Shape Gain codebook
[73, ch. 12] [139], which may be conveniently quantified as

S = E[max %2]

since 0 ≤ S ≤ 1. The effectiveness of a codebook of fixed size increases with increasing S,
and for a domain pool codebook S = 1 corresponds to exact self-affinity18.

Consider, however, constructing a fixed codebook, of the same size as the domain pool, by
arranging the vectors to maximise the minimum %2 between any pair of code vectors. There
is clearly a minimum %2 between a range vector and any of these vectors, increasing with
increasing codebook size and decreasing with increasing vector dimensionality (this minimal
value is a variant of the minimal angle for spherical codes [41, ch. 1]). A domain pool effi-
ciency of S close to unity therefore does not necessarily indicate the presence of any “special
relationship” between domain and range blocks, since a similar value might be obtained for
a fixed codebook. The self-affinity should thus be determined by a comparison of Sself cal-
culated for the usual domain pool with suitable reference values, such as Srandom for a set of
random domains with the same distribution as the signal, or SVQ for a fixed codebook opti-
mised for that pdf. The classification suggested here is as “strongly self-affine” if Sself > SVQ

and “weakly self-affine” if Sself > Srandom. Weak self-affinity indicates the presence of the
required statistical dependence between range and domain blocks, whereas strong self-affinity
indicates that this dependence is sufficiently strong for fractal coding to be able to compete
with an equivalent form of VQ. Strong self-affinity, as defined in terms of the performance
of the domain pool codebook, provides a necessary but not sufficient condition for the ef-
fective operation of fractal coding, since practical signal coding issues such as contractivity
requirements are not considered.

A variety of alternative measures of self-affinity are possible, including one based on a
comparison of the minimum expected distortion for a domain pool codebook and reference
codebooks. Reference distortion values might reasonably be for Mean Removed Shape Gain
codebooks, or for unrestricted codebooks of vectors of the same block size. Since the influ-
ence of the observed local dependence between domains and ranges is significant but small
(especially for large domain pools), AR(1) models are only weakly self-affine to a marginal
extent, and are certainly not strongly self-affine19.

18This measure of self-affinity is related to the minimum attainable collage error rather than the minimum
attainable distortion on decoding (see Section 3.7), and thus does not correspond exactly to the suitability
of signals for fractal representation, particularly when collage optimisation is allowed. The correspondence is
exact, however, for exact self-affinity, and may be expected to increase in accuracy with increasing self-affinity
since the collage theorem provides an upper bound for the distortion in terms of the collage error.

19Since the performance of an appropriate random codebook asymptotically approaches that of an optimum
codebook with increasing codebook size [210], the reference values converge, making the distinction between
weak and strong self-affinity progressively less significant.
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4.5 Signal Coding Issues

The preceding evaluation of the effectiveness of the domain pool as a codebook did not take
into account some of the more practical issues involved in fractal signal coding, the most
important of which are the restrictions required to guarantee contractivity of the signal rep-
resentation. These issues were investigated by performing the fractal coding process (scaling
coefficients were subjected to the restriction |s| ≤ smax) for an ensemble of 1000 signals (signal
length is denoted by n where required) for each value of ρ, which was varied from 0 to 1 in
step sizes of 0.05. These simulations allowed an evaluation20 of the actual performance of
fractal coding of AR(1) signals and the dependence of this performance on the parameters
of the coding algorithm such as smax. Since repeating the fractal coding process for a large
ensemble of signals is, even for relatively small signals, very computationally expensive, a fast
nearest neighbour search21 [8] was used in the search for an optimum domain for each range.
Unless otherwise stated, all distortions are measured in terms of the MSE.

4.5.1 Real and collage errors

The relationship between real and collage errors is discussed in Section 3.7. The differences
between these errors for three different block sizes are displayed in Figure 4.19, in which the
dependence of the shapes of the curves on block size may be explained in terms of the different
dependence of %2 and range block magnitude on block size. In these and all other cases the
real error was significantly greater than the collage error, with a decrease in the difference
with increasing ρ. The collage error consequently provides a rather optimistic measure of
fractal coding performance in the absence of collage optimisation (see Section 3.7.3). Since
the collage error may be calculated more rapidly than the real error, it is used as a lower
bound for the real error in many subsequent comparisons.

A tentative explanation for the tendency of the collage error to be a lower bound on the
real error is presented here. Consider representing signal x by xT where xT = AxT +b and A

is contractive. The collage signal generated during encoding is xC = Ax + b, and the collage
and real errors are eC = xC − x and eR = xT − x respectively. It is easily shown, since
xT = (I −A)−1b, that

eR = (I −A)−1eC

= eC + AeC + A2eC + . . . .

Since A is not necessarily positive definite [53] it is not obvious that A does not “reverse” the
direction of eC in the series expansion, enabling the magnitude of eR to be smaller than that
of eC . A tendency for 〈AeC , eC〉 ≥ 0, together with a similar tendency for higher powers of

20Part of the research described in this section has been published previously [202].
21Thanks to David Mount for supplying the source code written by himself and Sunil Arya.
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Figure 4.19: Comparison of real and collage errors for different block sizes (n = 4096
and smax = 1.0).

A, would be sufficient to expect ‖eR‖ > ‖eC‖.
Consider the action of A on eC for a range block at some fixed position. If A maps a

spatially distant domain to this range, the inner product between this range block in eC

and in AeC may be positive or negative, and it is reasonable to assume that the average
is approximately zero. Alternatively, if the range is mapped from a domain with which it
overlaps significantly, the scaling coefficient is likely to be positive (see Section 4.2.1), and
therefore so is the appropriate inner product. Since there are a large number of ranges mapped
from nearby domains, this effect may be expected to lead to a positive 〈AeC , eC〉 on average.

4.5.2 Contractivity

The restriction smax < 1 is often relaxed since it is sufficient, but not necessary, for contrac-
tivity [84]. It is clear from Figure 4.20 that the significant differences in collage error for
different values of smax are considerably reduced with increasing signal correlation. Conver-
gence on decoding of signals encoded with an increased smax was found not to be consistently
reliable for all values of ρ, with the minimum ρ for which convergence was reliable (tabulated
in Table 4.1) increasing with increasing smax. The real error, in the region of convergence,
also decreased with increasing smax. Since the imposition of bounds on the scaling coefficients
necessitates excluding as a match for a particular range all domains for which the optimum
scaling factor exceeds these bounds, there is an associated reduction in the effectiveness of
the domain pool as a codebook.
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Figure 4.20: Comparison of collage errors for different scaling coefficient bounds (n =
4096, b = 8 and ∆d = 2).

Table 4.1: Minimum correlation at which reliable contractivity occurred for different
values of smax (for n = 4096 and b = 8). Contractivity with smax = 2.0 was not reliable
for any signal correlation.

smax 1.0 1.2 1.4 1.6 1.8 2.0
ρmin 0.0 0.3 0.5 0.6 0.8
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4.5.3 Affine transform coefficient distributions

Figure 4.21 illustrates the distributions of scaling values for smax = 1 and a variety of signal
correlations. The distribution is highly symmetrical about 0, and the modes decrease with
increasing correlation. A comparison with Figure 4.22, which displays the same curves for
smax = 100, illustrates the effect of the bound on s. The decreased collage error resulting
from increased correlation in the case of smax = 1 (see Figure 4.20) may be explained by the
increased proportion of scaling coefficients lying within the required range.
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Figure 4.21: Scaling coefficient distributions for different signal correlations (n = 4096,
b = 8, smax = 1.0 and ∆d = 2).

The offset coefficients have close to zero-mean Gaussian distributions (see Figure 4.23).
The increasing variance with increasing signal correlation may be explained in terms of the
increasing signal variance σ2

X with increasing ρ and constant σ2
Z .

4.5.4 Spatial offsets between domains and ranges

The distribution of spatial distances between ranges and best matching domains for large
domain pools is very close to that resulting from the assumption that best matching domains
are uniformly distributed across the signal, with the exception of a significant excess in the
immediate neighbourhood of the matching range block. This excess may be attributed to the
trough in expected collage error when the domain and range centres coincide, resulting in a
raised probability of a match very close to the range. It is clear from Section 4.2.3 that the
significance of this effect is rapidly diminished with increasing domain pool size.
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Figure 4.22: Scaling coefficient distributions for different signal correlations (n = 4096,
b = 8, smax = 100 and ∆d = 2).
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4.5.5 Distortion rate comparisons

A comparison with the theoretically optimum coding performance is possible for Gaussian
AR(1) models since the distortion rate function is known. The distortion rate function for a
first order Gauss-Markov model is [99, app. D]

D(R) = (1− ρ2)2−2Rσ2
X = σ2

Z2−2R (4.2)

in the small distortion region, where R ≥ log2(1 + ρ). This small distortion requirement is
met for all 0 ≤ ρ ≤ 1 if R ≥ 1. The D(R) curves are identical for all values of ρ used here
since the variance of the innovations process was fixed at σ2

Z = 1.
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Figure 4.24: Comparison of collage errors for different block sizes (n = 4096, smax = 1.0
and ∆d = 2).

The lowest rate at which the small distortion requirement is satisfied for all ρ is R = 1, for
which D = 0.25. On inspection of Figure 4.24 it is clear that for block sizes larger than 12,
the collage error with unquantised coefficients is considerably greater than the distortion limit
at this rate for all ρ. In addition, since domain blocks are chosen from a pool of more than
2000 blocks, insufficient bits are available to code just the domain positions (neglecting the
scaling and offset values) for range block sizes less than 12. Reducing the size of the domain
pool by considering only neighbouring domain blocks for each range block, or by increasing
the domain increment reduces the number of bits required to specify domain position, but
simultaneously increases the collage error beyond the distortion limit for unquantised scaling
and offset coefficients.

Similar arguments hold for rates below 1 bit/sample. At higher rates the actual distortions
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after quantisation of the coefficients were evaluated. An ensemble of signals was generated
according to the model for each of several different values of ρ. Each signal was fractal coded,
the scaling and offset coefficients were quantised and the signal was reconstructed in order to
calculate distortions22. The offset was quantised by an optimum Gaussian quantiser for the
offset variance, while the absolute value of the scaling was quantised by an optimum Gaussian
quantiser for the variance of the scaling absolute value, with an extra bit specifying the sign.
Bit allocations for each range block were calculated by multiplying the bit rate by the range
block size. Subtracting the number of bits required to specify the domain block position
provided the number of bits available for the offset and scaling coefficients. Given Rso bits
for both coefficients, the scaling bits Rs and offset bits Ro were allocated according to the
experimentally derived heuristic

Ro =
⌊

2
3
Rso

⌋
Rs = Rso −Ro.

In each case all other reasonable values of Rs and Ro were compared with the allocation
above; other allocations always resulted in a higher distortion, or in a few cases comparable
or very slightly lower distortion. Two additional quantisation strategies were tested - to a
limited extent, as they required a computationally expensive exhaustive domain search. In
the first, identical quantisation to the original scheme was applied, with the exception that
the scaling and offset coefficients were quantised prior to collage error calculations. The
second additional strategy also quantised prior to collage error calculations, but uniform
quantisation was applied to the scaling coefficient on the interval [−smax, smax]. The latter of
these strategies resulted in superior performance for ρ > 0.8 (with an optimum at ρ ≈ 0.9), and
both avoided the enormous distortions at ρ = 1.0 resulting from the original strategy. Other
than at ρ = 1.0, results were not significantly superior to the original strategy, which was used
for all of the results presented here in graph form. Although performance at ρ = 1.0, which
generates stochastic fractal signals, was massively improved by the alternative quantisation
strategies, it remained significantly worse than the minimum distortion at ρ = 0.9.

Figure 4.25 illustrates distortions obtained for fractal coding at a rate of R = 1, for which
the optimum distortion from Equation (4.2) is D = 0.25. Bit allocation is as in Table 4.2 (for
∆d = 32 allocating Rs = 4 and Ro = 5 resulted in a very small improvement for some values
of ρ).

Figure 4.26 illustrates distortions obtained for fractal coding at a rate of R = 2, for which
the optimum rate from Equation (4.2) is D = 0.06. Bit allocation is as in Table 4.3 (for
∆d = 8 allocating Rs = 2 and Ro = 5 resulted in a very small improvement for some values
of ρ).

The best fractal coding performance in these experiments was obtained for ρ ≈ 0.8 for the
22Although improved performance is achieved by quantising prior to calculating collage errors (see Section

3.5), this was not feasible because of the fast domain search used.
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Figure 4.25: Fractal coding distortion at a rate of 1 bit/sample (n = 4096, b = 16,
smax = 1.0). The optimum distortion is 0.25.

Table 4.2: Transform coefficient bit allocations at a rate of 1 bit/sample (n = 4096,
b = 16, smax = 1.0).

Bits Allocated
∆d Domain Position Scaling Offset
8 9 3 4
16 8 3 5
32 7 3 6

Table 4.3: Transform coefficient bit allocations at a rate of 2 bits/sample (n = 4096,
b = 8, smax = 1.0).

Bits Allocated
∆d Domain Position Scaling Offset
4 10 2 4
8 9 3 4
16 8 3 5
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Figure 4.26: Fractal coding distortion at a rate of 2 bits/sample (n = 4096, b = 8,
smax = 1.0). The optimum distortion is 0.06.

original quantisation strategy and ρ ≈ 0.9 for the alternatives, since the variance of the offset
coefficient grows with increasing correlation, making it more expensive to code. In particular,
performance was extremely poor (as a result of very high offset variance) for the AR(1)
model with ρ = 1, which generates stochastic fractal (Brownian motion) signals. In general
the actual distortions obtained after quantising the fractal code coefficients were greater than
the distortion rate optimum by more than a factor of 2 for the cases investigated, including
the stochastic fractal signals generated when ρ = 1.0.

4.6 Conclusions

Any conclusions drawn from the results of this chapter are subject to a number of limitations.
Most importantly, only a small variety of fractal coding schemes has been examined, which
reflects on the precise forms of self-affinity examined. Evaluations of actual signal coding
distortion were subject to additional limitations in the form of suboptimal parameter quan-
tisation and the absence of collage optimisation [85]. Finally, these results are clearly only
valid for signal generated by Gaussian AR(1) models.

Self-affinity may be considered to be significant when there is statistical dependence be-
tween range and domain blocks in a signal resulting in the domain blocks providing a par-
ticularly effective match to the range blocks under affine transforms. The existence of such
dependence may be determined by a comparison of the domain pool efficiency measure with
a suitable reference measure calculated for a random codebook of domains of the same distri-
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bution, but independent of the signal from which the ranges are extracted. It is proposed here
that signals for which the domain pool efficiency exceeds this reference be termed “weakly
self-affine”.

Inter-sample correlations in AR(1) models were found to result in a raised similarity
between neighbouring domain and range blocks, in the sense that they are considerably more
likely to have the same “shape” than two completely independent blocks with the same
distribution. The influence of this form of “special relationship” within each signal is however,
sufficiently small in codebooks of more than a few code vectors for AR(1) models to be weakly
self-affine to a marginal extent only. It is reasonable to expect this borderline weak self-affinity
to be a property of a broad range of signal models, since it depends only on the existence of
correlations between neighbouring signal samples.

A similar reference value computed for an optimised fixed codebook was proposed in defin-
ing “strong self-affinity”. The domain pool codebook efficiency was found to be significantly
inferior to that of optimised codebooks - AR(1) models are not strongly self-affine. Clearly a
considerably stronger relationship is required between domain and range blocks in the same
signal for the presence of strong self-affinity. The performance of actual fractal coding of
AR(1) signals was found to be significantly suboptimal in distortion rate terms. This may
be ascribed to the absence of strong self-affinity in conjunction with the additional practical
difficulties in using a domain pool as a codebook. The most significant of these is the contrac-
tivity requirement, which further degrades domain pool effectiveness by disallowing a match
by any domain with a corresponding scaling coefficient exceeding the imposed bounds.

It is not clear how strongly self-affine a signal model may be without requiring statistics
differing significantly from those usually measured for natural images. An indication of this
compatibility is provided in the following chapter by the examination of the consequences of
exact self-affinity on commonly measured signal statistics.



Chapter 5

Self-Affine Signal Models

An evaluation of the degree of self-affinity of a standard class of signal models is described
in the preceding chapter. The opposite approach is adopted in this chapter, in which the
consequences of exact self-affinity on signal statistics are examined. This is achieved by
defining a class of signal models exhibiting exact self-affinity, and examining the statistical
consequences of this construction. These exactly self-affine models may be considered the
implicit signal models on which fractal compression is based, in the sense that there are no
other models for which fractal coding is more appropriate.

The exactly self-affine models were constructed by considering the fractal code coefficients1

as suitably distributed random variables driving the iterative decoding process, just as a
random innovations process is passed through a linear filter to generate an AR model2 [99,
ch. 2]. There is considerable freedom in constructing these models, both in terms of the
structural constraints of the fractal coding scheme used in their construction as well as in the
statistical distributions of the associated fractal representation coefficients. The former reflect
the particular form of self-affinity desired, and are restricted here to the same range partitions
and block transforms evaluated in the previous chapter. As before, only one dimensional signal
models are considered in this chapter, both to limit the model complexity and to reduce
the computational requirements of Monte Carlo simulations where these are necessary. The
choice of appropriate probability distributions for the transform coefficients is somewhat more
arbitrary, but is guided as far as possible by practices prevalent in the literature, as well as
by practical requirements.

5.1 A Generalised Lattice Vector Quantisation Interpretation

Despite the frequent comparison of the domain pool in fractal coding with the codebook
of Mean Removed SGVQ, a theoretical analysis of fractal coding based on asymptotic VQ

1The set of domain block positions and scaling and offset coefficients for each range block.
2Since every signal decoded from a fractal representation is exactly self-affine, any signal which is not could

not have been generated by an exactly self-affine model. In contrast, a signal may only be unlikely to be the
product of a particular AR model.

96
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results [72] [73] [210] is impossible since the domain pool “codebook” is not fixed for all
signals. Although fractal coding is clearly unable to outperform optimum VQ on vectors of
the size of each signal (i.e. in the large block limit), it is difficult to compare with VQ based
on range block sized vectors3. A viable analysis in terms of VQ is achieved by a shift of
perspective from VQ operating at the range block level to VQ operating on the signal as a
whole, in which case the fractal coding mechanism may be viewed as a form of generalised
Lattice4 VQ on the signal as a whole (i.e. in the large block limit). Consider a metric space
(X, d) with a set of parametrised5 transforms

T = {Ta : X → X | a ∈ A}

where the set of allowed parameters A is usually chosen such that Ta is eventually contractive
for all a ∈ A. A set of code vectors may then be defined as

C = {x ∈ X | ∃T ∈ T Tx = x}

which induces a nearest neighbour quantisation6

Q(x) = min
x′∈C

−1d(x,x′).

Even if A is a continuous set, the structural constraints [85] induce a partial quantisation
on X, which becomes a full quantisation after quantisation of A (see Figure 5.1). The final
generalised lattice is thus determined by the structural constraints in conjunction with the
selected transform parameter quantisation.

The results of Cheng and Zhu [35] (see Section 3.9.5) imply that the lattice points may be
made arbitrarily dense in any region by using sufficiently small range blocks. It is certainly
not clear however, why the lattice point densities would be arranged so as to form an efficient
codebook for compression purposes. In the high resolution case [73, pp. 338-340] optimal
reconstruction vectors for a source fX(x) of vectors of dimension k have distribution

f
k

k+2

X (x)

3There is, however, clearly no advantage to the “virtual codebook”, when compared with VQ at the same
block size, for mutually independent range blocks, since in this case each range block has no “special relation-
ship” with the rest of the signal from which it is extracted.

4The structure described here is not strictly speaking a lattice, but is similar in that the reconstruction
vectors are determined by a mathematical construction rather than simply as a list of vectors.

5This is an exception to the usual usage in this dissertation, where the form of a particular fractal coding
scheme is described by its “parameters”, whereas the actual values coded are referred to as the representation
“coefficients”.

6The function min−1 is often written as arg min, and denotes the set element minimising the set of values
to which is is applied, rather than the minimum value of that set, which is denoted by min.
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Figure 5.1: Abstract diagram of the generalised Lattice VQ view of fractal coding.
Each individual “thread” corresponds to a different set of domain block choices for the
range blocks, while the “threads” themselves are produced by continuous variation of
the scaling and offset coefficients of the block transforms. The “threads” represent the
partial quantisation due to the structural constraints, with full quantisation imposed by
quantisation of the parameters varying along the length of the “threads”. The diagram
is highly abstract in that the “threads” represent surfaces in multidimensional space.
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for the MSE distortion measure [73, pg. 471]. Therefore, for large k, the density of recon-
struction points in an optimal codebook should correspond approximately to the probability
density of the source. One may consequently evaluate the effectiveness of the lattice codebook
by comparing its structure with that of the probability density of the source it is intended to
quantise. There is a strong similarity between such an evaluation and the evaluation of the
properties of the exactly self-affine models performed here, since the probability density of
a self-affine model corresponds to the lattice density of a generalised lattice codebook in the
limit of very high resolution quantisation of the transform parameters.

5.2 Autocorrelation

The autocorrelation (or autocovariance) is the most widely used statistic in characterising
random signals. It is particularly important in transform coding, which specifically depends
on the correlation properties, and in the case of a multivariate Gaussian it completely char-
acterises the signal model. In addition, an upper bound on the rate distortion function is
available in terms of the autocorrelation [99, app. D], and for a stationary model the ex-
pected signal spectral content (the power spectral density) is the Fourier transform of the
autocorrelation.

An analytic estimate of the model autocorrelation may be obtained by utilising the closed
form series expansion of Equation (3.2) for random vector X in terms of random matrix A

and random vector7 b. The expansion results in

XXT = (I + A + A2 + . . .)bbT (I + AT + (A2)T + . . .),

implying

RX = E[XXT ]

= E[bbT ] +

E[AbbT ] + E[bbT AT ] +

E[A2bbT ] + E[AbbT AT ] + E[bbT (A2)T ] +

E[A3bbT ] + E[A2bbT AT ] + E[AbbT (A2)T ] + E[bbT (A3)T ] +

E[A4bbT ] + . . . (5.1)

where the terms are arranged8 according to increasing order in A.
7The bold lower case symbol for the deterministic vector b is retained for the corresponding random vector

for notational simplicity.
8Truncating the expansion in Equation (3.2) prior to calculating the autocorrelation results in a different

ordering.
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All self-affine models evaluated in this chapter are based on fixed block size partitions
with range blocks of width b and domain blocks of width 2b. A signal of n samples therefore
has Nr = n/b range blocks and Nd = b(n − 2b)/∆dc + 1 domain blocks, where ∆d is the
domain block increment. The index of the domain block selected for range block i (where
0 ≤ i < Nr) is denoted by pi (where 0 ≤ pi < Nd), and the scaling and offset coefficients for
range block i are si and oi respectively.

Unless otherwise stated, all scaling and offset coefficients are considered to be independent
random variables (although this is a considerable simplification, it is an assumption commonly
made for the quantisation of fractal code coefficients). In most of the experiments the offset
coefficients were assigned a Gaussian distribution, since this is at least approximately the
measured distribution for real signals. The scaling coefficients were assigned a uniform dis-
tribution on the interval (-1,1) since this choice avoided convergence problems, and uniform
quantisation, which may in a weak sense be considered an implicit assumption of uniformity,
is often applied to the scaling coefficients [65, ch. 3]. Monte Carlo simulation9 was utilised
where analytic derivation was intractable.

5.2.1 Analytic derivation of the autocorrelation

The n× n matrix A of Equation (3.2) may be expressed as A = ((SP )⊗ Ib)D, where D (an
bNd × bNr matrix) extracts each domain from the signal, spatially contracts each of them,
and then concatenates them into a single vector, Ib is the b×b identity matrix, P (an Nr×Nd

matrix) is a domain selection matrix (since domain and range indices begin at zero, matrix
entries are indexed similarly, the top left entry of any matrix having zero as the row and
column index)

P =




δ0,p0 δ1,p0 . . . δNd−1,p0

δ0,p1 δ1,p1 . . . δNd−1,p1

...
...

. . .
...

δ0,pNr−1 δ1,pNr−1 . . . δNd−1,pNr−1




,

and S (Nr × Nr) is a diagonal scaling matrix assigning a scaling coefficient to the selected
domain for each range

S =




s0 0 . . . 0
0 s1 . . . 0
...

...
. . .

...
0 0 . . . sNr−1




.

9Random values with a Gaussian distribution were generated as in Chapter 4. Uniformly distributed values
and discrete random numbers were generated using the same C++ class library.



Self-Affine Signal Models 101

The bNr × bNd matrix ((SP )⊗ Ib) may be expressed in terms of submatrix Ib as

((SP )⊗ Ib) =




δ0,p0s0Ib δ1,p0s0Ib . . . δNd−1,p0s0Ib

δ0,p1s1Ib δ1,p1s1Ib . . . δNd−1,p1s1Ib

...
...

. . .
...

δ0,pNr−1sNr−1Ib δ1,pNr−1sNr−1Ib . . . δNd−1,pNr−1
sNr−1Ib




. (5.2)

The structure of D is determined by the fractal coding scheme parameters, such as domain
increment, block size and the use of mean removal. As an example

D =




1
2

1
2 0 0 . . . 0 0 0 . . .

0 0 1
2

1
2 . . . 0 0 0 . . .

...
...

...
...

. . .
...

...
... . . .

0 0 0 0 . . . 1
2

1
2 0 . . .

0 1
2

1
2 0 . . . 0 0 0 . . .

0 0 0 1
2

1
2 . . . 0 0 . . .

...
...

...
...

...
. . .

...
... . . .

0 0 0 0 0 . . . 1
2

1
2 . . .

...
...

...
...

...
...

...
...

. . .




for ∆d = 1 and spatial contraction by averaging, with no mean removal.
The offset b may be written as

b = o⊗




1
1
...
1




= o⊗ 1

where 1 is a column b-vector with unit entries.

Expectation Terms

Evaluation of the individual terms of Equation (5.1) was simplified by the assumptions

∀i, j ∈ {0, 1, . . . , Nr − 1} :
µsi = µs = 0 σsi = σs E[sisj ] = δi,jσs

µoi = µo = 0 σoi = σo E[oioj ] = δi,jσo

E[sioj ] = 0

and pi was assumed to take on all values in {0, 1, . . . , Nd − 1} with equal probability.
The individual terms in Equation (5.1) may be evaluated by utilising the expansion of A

in terms of Equation (5.2), and the following results [82, pp. 243-244]:
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1. If x,y ∈ Rn then xyT = x⊗ yT

2. If A and B are arbitrary matrices then (A⊗B)T = AT ⊗BT

3. If products AC and BD of matrices A, B,C, and D exist then
(A⊗B)(C ⊗D) = AC ⊗BD

Order 0 term

The initial term

bbT =




o⊗




1
1
...
1







(
oT ⊗ (1, 1, . . . , 1)

)

= ooT ⊗




1 1 . . .

1 1 . . .
...

...
. . .




= ooT ⊗ 1bb,

and therefore

E[bbT ] = E[ooT ]⊗ 1bb

= σ2
o




1bb 0bb . . .

0bb 1bb . . .
...

...
. . .


 ,

where

0bb =




0 0 . . .

0 0 . . .
...

...
. . .


 and 1bb =




1 1 . . .

1 1 . . .
...

...
. . .


 .
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Order 1 terms

The matrix A may be expressed as

A = ((SP )⊗ Ib)D

=




δ0,p0s0Ib δ1,p0s0Ib δ2,p0s0Ib . . .

δ0,p1s1Ib δ1,p1s1Ib δ2,p1s1Ib . . .

δ0,p2s2Ib δ1,p2s2Ib δ2,p2s2Ib . . .
...

...
...

. . .







D00 D01 D02 . . .

D10 D11 D12 . . .

D20 D21 D22 . . .
...

...
...

. . .




=




s0Dp00 s0Dp01 s0Dp02 . . .

s1Dp10 s1Dp11 s1Dp12 . . .

s2Dp20 s2Dp21 s2Dp22 . . .
...

...
...

. . .




,

where the Dij are b× b submatrices of D with upper left entry having coordinates (bi, bj) in
D. The expectation of AbbT is consequently

E[AbbT ] = E[A]E[bbT ]

= µsσ
2
o




E[Dp00] E[Dp01] . . .

E[Dp10] E[Dp11] . . .
...

...
. . .







1bb 0bb . . .

0bb 1bb . . .
...

...
. . .




= 0nn,

since µs = 0. A similar derivation results in E[bbT AT ] = 0nn.
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Order 2 terms

The square of the matrix A may be expressed as

A2 = ((SP )⊗ Ib)D((SP )⊗ Ib)D

=




s0Dp00 s0Dp01 s0Dp02 . . .

s1Dp10 s1Dp11 s1Dp12 . . .

s2Dp20 s2Dp21 s2Dp22 . . .
...

...
...

. . .







s0Dp00 s0Dp01 s0Dp02 . . .

s1Dp10 s1Dp11 s1Dp12 . . .

s2Dp20 s2Dp21 s2Dp22 . . .
...

...
...

. . .




=




s0

Nr−1∑

k=0

skDp0kDpk0 s0

Nr−1∑

k=0

skDp0kDpk1 s0

Nr−1∑

k=0

skDp0kDpk2 . . .

s1

Nr−1∑

k=0

skDp1kDpk0 s1

Nr−1∑

k=0

skDp1kDpk1 s1

Nr−1∑

k=0

skDp1kDpk2 . . .

s2

Nr−1∑

k=0

skDp2kDpk0 s2

Nr−1∑

k=0

skDp2kDpk1 s2

Nr−1∑

k=0

skDp2kDpk2 . . .

...
...

...
. . .




.

Since µs = 0 and E[sisj ] = δi,jσ
2
s ,

E[A2] =




E[s2
0]E[Dp00Dp00] E[s2

0]E[Dp00Dp01] E[s2
0]E[Dp00Dp02] . . .

E[s2
1]E[Dp11Dp10] E[s2

1]E[Dp11Dp11] E[s2
1]E[Dp11Dp12] . . .

E[s2
2]E[Dp22Dp20] E[s2

2]E[Dp22Dp21] E[s2
2]E[Dp22Dp22] . . .

...
...

...
. . .




= σ2
s




E[Dp00Dp00] E[Dp00Dp01] E[Dp00Dp02] . . .

E[Dp11Dp10] E[Dp11Dp11] E[Dp11Dp12] . . .

E[Dp22Dp20] E[Dp22Dp21] E[Dp22Dp22] . . .
...

...
...

. . .




,

and

E[A2bbT ] = E[A2]E[bbT ]

= σ2
sσ

2
o




E[Dp00Dp00] E[Dp00Dp01] . . .

E[Dp11Dp10] E[Dp11Dp11] . . .
...

...
. . .







1bb 0bb . . .

0bb 1bb . . .
...

...
. . .




=
σ2

sσ
2
o

Nd




∑Nd−1
i=0 D2

i01bb
∑Nd−1

i=0 Di0Di11bb . . .∑Nd−1
i=0 Di1Di01bb

∑Nd−1
i=0 D2

i11bb . . .
...

...
. . .


 .
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Similarly

E[bbT (A2)T ] =
σ2

sσ
2
o

Nd




∑Nd−1
i=0 1bb(DT

i0)
2

∑Nd−1
i=0 1bbD

T
i0D

T
i1 . . .∑Nd−1

i=0 1bbD
T
i1D

T
i0

∑Nd−1
i=0 1bb(DT

i1)
2 . . .

...
...

. . .




= E[A2bbT ]T .

The following expression, in terms of an arbitrary bNd × bNd matrix Q, is helpful in
determining E[AbbT AT ]:

((SP )⊗ Ib)Q((SP )T ⊗ IT
b ) =




δ0,p0s0Ib δ1,p0s0Ib . . .

δ0,p1s1Ib δ1,p1s1Ib . . .
...

...
. . .







Q00 Q01 . . .

Q10 Q11 . . .
...

...
. . .







δ0,p0s0Ib δ0,p1s1Ib . . .

δ1,p0s0Ib δ1,p1s1Ib . . .
...

...
. . .




=




s2
0Qp0p0 s0s1Qp0p1 . . .

s1s0Qp1p0 s2
1Qp1p1 . . .

...
...

. . .


 . (5.3)

Setting

Q = DbbT DT

=




D00 D01 . . .

D10 D11 . . .
...

...
. . .







o2
01bb o0o11bb . . .

o1o01bb o2
11bb . . .

...
...

. . .







DT
00 DT

10 . . .

DT
01 DT

11 . . .
...

...
. . .




=




∑Nr−1
j=0

∑Nr−1
i=0 ojoiD0i1bbD

T
0j

∑Nr−1
j=0

∑Nr−1
i=0 ojoiD0i1bbD

T
1j . . .∑Nr−1

j=0

∑Nr−1
i=0 ojoiD1i1bbD

T
0j

∑Nr−1
j=0

∑Nr−1
i=0 ojoiD1i1bbD

T
1j . . .

...
...

. . .


 ,

and substituting into Equation (5.3) gives

E[AbbT AT ] =
σ2

sσ
2
o

Nd




∑Nd−1
j=0

∑Nr−1
i=0 Dji1bbD

T
ji 0bb . . .

0bb
∑Nd−1

j=0

∑Nr−1
i=0 Dji1bbD

T
ji . . .

...
...

. . . .


 .

Images representing the contributions of the individual terms for model parameters as in
Table 5.1 are displayed in Figure 5.2. Note that the inter-block correlations resulting from the
term E[AbbT ]+E[bbT AT ] are sufficiently small in magnitude to be undetectable in the sum
displayed in Figure 5.3. Despite the truncation of expansion 5.1 in this evaluation, it is clear
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from a comparison of Figures 5.3 and 5.4 that an accurate estimate of the autocorrelation
is obtained. All further evaluations were based on Monte Carlo simulations, which are more
easily applied to a wider range of parameters.

Table 5.1: Model parameters used in a number of examples. The affine transform does
not remove the mean of the domain block and all domains are selected with equal prob-
ability. The scaling coefficients are uniformly distributed on the interval (−1, 1), while
the offset coefficients have a Gaussian distribution of zero mean and unit variance.

n b ∆d s pdf o pdf
128 16 2 U(-1,1) N(0,1)

5.2.2 Estimation of the autocorrelation by Monte Carlo simulation

An ensemble of exactly self-affine signals was generated by applying the iterative decoding
process to a corresponding ensemble of random domain to range transforms. Scaling and
offset coefficients were assigned uniform and Gaussian distributions respectively, and domain
positions were selected with equal probability from those available.

Figure 5.4 illustrates the low correlation between blocks10, as well as the decreasing corre-
lation away from the diagonal within each block. Although the autocorrelation is not station-
ary, one may measure the autocorrelation decay with increasing distance from the diagonal
within the visible “blocks” in the autocorrelation of the whole signal. In this case fitting the
expected decay function for an AR(1) model to the initial part of this curve resulted in a best
fit at ρ = 0.92 for the model parameters as in Table 5.1, a value which is consistent with the
findings of Chapter 4, where the best performance for fractal coding was found to occur at a
similar correlation.

These gross features correspond approximately to the usual autocorrelation measurements
for images [37, ch. 2], and the abrupt decay at block boundaries is a result of independent
coding of range blocks11. Adjustment of the fine structure of the autocorrelation surface
(in particular the rate of decay with increasing distance from the diagonal) by varying the
distributions of the fractal representation coefficients and the parameters of the structural
constraints proved to be rather difficult without introducing clearly undesirable features.
Scaling of the surface was possible by varying σ2

o , but practical values for σ2
s were restricted

by the contractivity requirement. Very long distance correlations between blocks resulted
from non-zero µo or µs, as well as from allowing correlations between the individual offsets
oi. The autocorrelation surface became rather irregular with the introduction of correlations
between the scaling coefficients si. Increased irregularities also resulted from an increase in
domain increment ∆d, while the introduction of mean removal in the block transforms (see

10Self-affinity is therefore not necessarily associated with significant long-range correlation as has been con-
jectured [87].

11A similar blocked autocorrelation would be expected for signals subsequent to blocked transform coding.
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E[bbT ] E[AbbT AT ]

E[AbbT ] + E[bbT AT ]E[bbT ] + E[AbbT AT ]

Figure 5.2: Individual terms in expansion of autocorrelation of exactly self-affine model
(parameters as in Table 5.1). Correlation increases from dark to light.
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Figure 5.3: Analytic estimate of autocorrelation of exactly self-affine model (parameters
as in Table 5.1).

Figure 5.4: Autocorrelation of exactly self-affine model (parameters as in Table 5.1).
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Section 3.2.2) did not result in significant differences. In general the form of matrix D plays
an important role in determining the autocorrelation, as is clear from Section 5.2.1.

5.3 A Decorrelating Transform

It was shown in Section 3.9 that a relatively simple wavelet transform domain description
is possible for a restricted set of fractal coding schemes. Since it is reasonable to expect
this simplifying effect to extend to the statistical properties of the exactly self-affine signal
models, these properties were examined in the wavelet transform domain. It will be shown in
subsequent sections that the exactly self-affine models may also be constructed in the wavelet
domain, as opposed to merely examining the wavelet domain properties of signals generated
in the spatial domain.

5.3.1 Autocorrelation

The Haar transform domain autocorrelation for fractal representation coefficient distributions
as in Table 5.1 is displayed in Figure 5.5 (gamma correction12 has been applied to enhance
visibility). The small off-diagonal correlations visible correspond mainly to correlations be-
tween detail coefficients at the same position and different resolutions13. The decorrelation
efficiency [37, ch. 3] [140] of a transform T is

ηC = 1−
∑n−1

i=0

∑n−1
j>i CY (i, j)

∑n−1
i=0

∑n−1
j>i CX(i, j)

where Y = TX. The decorrelation efficiency of the Haar transform for models as in Figure
5.5 is in excess of 99% (see Table 5.2). The Haar transform is thus a good approximation to
the Karhunen-Loève Transform (KLT) for these models.

The rapid decay in variance with increasing coefficient index is displayed in Figure 5.6,
in which it may be observed that the variances adhere to the tree structure of the wavelet
decomposition, all coefficients at the same resolution having similar variances.

Table 5.2: Decorrelation efficiency of Haar transform for exactly self-affine models as in
Figure 5.5.

Mean removal
∆d without with
2 99.34% 99.62%
16 99.31% 99.68%

12Gamma correction by a factor γ consists of normalising all pixel values to the range [0, 1], applying the
function f(x) = x1/γ and finally normalising back to the original range of pixel values.

13It is interesting to note that the positioning of these residual correlations is similar to those after a
Daubechies basis wavelet transform of an AR(1) model [55].
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∆d = 2, without mean removal

∆d = 16, with mean removal

∆d = 2, with mean removal

∆d = 16, without mean removal

Figure 5.5: Haar transform domain autocorrelation of exactly self-affine model (n =
128, b = 16). A gamma correction factor of 4.0 has been applied to the images to empha-
sise small off-diagonal correlations, which would otherwise not be visible.
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Figure 5.6: Haar transform coefficient variances for model parameters as in Table 5.1.

5.3.2 Marginal distributions

The marginal distributions of the Haar transform coefficients are reasonably well approxi-
mated by a spectrum of generalised Gaussian distributions, with shape parameter ν ≈ 2
(similar to a Gaussian) for the initial Nr low resolution coefficients14, and ν ≤ 1 for the
remaining n−Nr high-resolution coefficients (see Figure 5.7), with ν becoming progressively
smaller with increasing resolution. The Gaussian-like distributions may be attributed to
the summing of independent random variables (the offset coefficients) generating the low-
resolution coefficients, while the Laplacian-like distributions reflect the influence of multiple
products of random variables [187] (the scaling coefficients).
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Figure 5.7: Haar transform coefficient marginal distributions in Figure 5.5.

14Where Nr is a power of 2.
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5.4 Coding Experiments

Despite the minimal correlations between Haar transform coefficients for these models, one
would expect a significant degree of dependence between these coefficients from inspection
of the generating mechanism. Any dependence remaining after decorrelation is significantly
non-linear15, and is inadequately characterised by the autocorrelation. The significance of the
residual dependence was measured by comparing the relative effectiveness of fractal coding
(quantising and storing the self-affine representation coefficients) and transform coding (scalar
quantising and storing the Haar transform coefficients) of signals generated by an exactly self-
affine model. This comparison was achieved by generating an ensemble of self-affine signals
(model parameters as in Table 5.1) which were encoded by both methods at an equivalent bit
rate. All distortions are measured in terms of the MSE distortion measure.

5.4.1 Transform coding quantisation

Haar transform coefficients were quantised using optimal Gaussian and Laplacian quantisers
[120] [131] [150], corresponding to the distributions observed (see Section 5.3.2) for low and
high resolution coefficients respectively.

Bit allocation for transform coding was based on Equation (2.3). Since the optimum bit
allocation Rk for coefficient k resulting from this allocation is not necessarily a positive inte-
gers, a heuristic procedure was adopted. Starting with coefficient 0, dRke bits were allocated
for coefficient k, allocating zero bits to the remaining coefficients once all of the available bits
had been allocated.

5.4.2 Fractal coding quantisation

Since the analytic determination of the optimum bit allocation for quantisation of the fractal
coefficients is not as straightforward as in the case of transform coding, this allocation was
determined by Monte Carlo simulation. Figure 5.8 illustrates the distortions obtained for
various bit allocations to each scaling and offset coefficient, while the optimum bit alloca-
tions16 determined from the distortion surface are displayed in Figure 5.9. The distortions17

obtained at these bit allocations are displayed in Figure 5.10. Optimal uniform and Gaussian
quantisers were used for the scaling and offset coefficients respectively.

15The dependence present in a multivariate Gaussian is linear in the sense that the absence of correlation
implies independence.

16These correspond closely to those resulting from the heuristic allocation procedure in Section 4.5.5. The
general tendency to allocate more bits to the offset than the scaling is compatible with the results for test
images discussed in Section 3.5.

17It is interesting to note that the distortion is approximately proportional to 2−14.4R, which represents a
significantly faster decay with increasing rate than that for optimal coding of a multivariate Gaussian, which
is proportional to 2−2R for small distortions [99, pg. 644].
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Figure 5.8: Distortion surface for varying scaling and offset bit allocations in coding of
exactly self-affine signals (model parameters as in Table 5.1).
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Figure 5.9: Optimum scaling and offset coefficient bit allocations selected from Figure
5.8.
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Figure 5.10: Distortion for optimum bit allocations to scaling and offset coefficients in
coding of exactly self-affine signals (model parameters as in Table 5.1). The bit rate is
obtained by dividing the total bit allocation per range block (the sum of the bits required
to distinguish between each of the 49 possible domain blocks and the bits allocated to
the scaling and offset coefficients) by the range block size.

5.4.3 Distortion comparisons

The results of the coding experiments are displayed in Figure 5.11. The considerable dif-
ferences in distortions, especially at rates above 1 bit/sample are evidence for significant
dependence between Haar transform coefficients. It is clear that, although the coefficients
are efficiently decorrelated by the linear transform, they remain mutually dependent, which
has a significant effect on the efficiency of their independent scalar quantisation. As a result,
fractal coding would be expected to be considerably more effective than transform coding for
a signal source sufficiently similar to an exactly self-affine model.
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Figure 5.11: Distortion rate comparison for fractal and transform coding of exactly
self-affine signals (model parameters as in Table 5.1).
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5.5 Explicit Haar Domain Model

The exactly self-affine models may be explicitly constructed18 in the Haar transform domain
by considering the wavelet domain decoding operation described in Section 3.9 to operate on
stochastic si, oi and pi. The subband extrapolation mechanism suggests a slight variation19

on the model definition, in which the oi become the actual coefficient values of domain subtree
roots at resolution id. There are thus 2id domain subtrees at resolution id in the signal wavelet
decomposition and 2ir range subtrees at resolution ir = id+1. Values of coefficients at levels20

below id are determined by the scaling coefficient “paths” of which they form the termination
(see Figure 5.12). The actual paths are, of course, determined by the particular assignment of
domain subtrees to range subtrees. Given a path of length n, originating at domain block l0

and subsequently passing through ranges l1, l2, . . . , ln, the value of the coefficient at the end
of the path is

(
1√
2

)n
ol0sl1sl2 . . . sln . These inherently wavelet domain models are product

models in the sense that the individual innovations process values generating the models are
multiplied21 together, rather than added as in an AR model.

D1D0

R0 R1 R2 R3

o0 o1

1√
2
s1

1√
2
s2

1√
2
s0

1√
2
s0

1√
2
s0

1√
2
s0

Figure 5.12: Paths of scaling factors for detail coefficients with values
(

1√
2

)3

o0s
3
0 and

(
1√
2

)3

o0s2s1s0, for domain to range mappings as in Figure 3.4.

18The notation of Section 3.9 is adopted for the wavelet transform domain models, with domain and range
indices starting at zero and the index of the domain mapped to range i denoted by pi. The domain increment
is assumed to be the same as the domain block width.

19This form of model leaves coefficients at resolutions below id unspecified.
20Higher resolutions correspond to lower “levels” in the decomposition tree.
21The models may be made additive by application of the log function, but complications arise when values

are not strictly positive.
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5.5.1 Variance decay with increasing resolution

The variation in detail coefficient variance with increasing resolution is an important statisti-
cal property in the wavelet transform domain, corresponding to the power spectral density in
many respects (the power spectral density measures signal energy at each frequency, whereas
the detail coefficient variance measures signal energy at each resolution). Wavelet domain
statistical analysis has been found to be a powerful tool in the analysis of non-stationary sig-
nal models such as fractional Brownian motion [66] [67] [128] [191] [205]. Analytic evaluation
of the detail coefficient variance for the wavelet domain self-affine models proved rather com-
plicated, and although analytic bounds on the coefficient variance were obtained as described
in this section, accurate estimates required Monte Carlo simulations.

Calculation of the average variance of a self-affine model at each resolution requires averag-
ing over the variances of each coefficient at that resolution. Given a path of length n, originat-
ing at domain block l0 and subsequently passing through ranges l1, l2, . . . , ln, the value of the
square of the terminating coefficient is

(
1
2

)n
o2
l0
s2
l1
s2
l2

. . . s2
ln

. Fixing the domain to range map-

ping and the specific path (l0, l1, . . . , ln), the variance of that coefficient is σ2
o

2n E[s2
l1
s2
l2

. . . s2
ln

],
assuming the oi and si are independent and zero-mean. Since this expectation is indepen-
dent of the value of l0, it may be excluded from the path for the purposes for which it is
required here, the full path being considered to be (l1, l2, . . . , ln). The average variance at a
particular resolution is therefore the average of each of these expectations over all paths of
the appropriate length, and for all possible domain to range assignments. Evaluation of this
expectation is complicated by the possible presence of multiple occurrences of the same si in
a path, with the result that the expectation is equal to the product of even central moments
of the si, depending on how many multiple occurrences are in the path22. A log decay with
increasing resolution would be obtained in the absence of this complicating factor. Such a
decay is associated with the stochastic fractal fractional Brownian motion models [67] [124],
which have been proposed as image texture models [154].

Since the variance of a coefficient terminating a particular path is dependent on the
number of multiple occurrences of the same si in that path, a classification of the paths
is required so that the average variance at a particular resolution may be calculated by
appropriately weighting the variances of each class of path in averaging over all domain to
range assignments. The natural classification in this situation is in terms of the occurrences
of unique scaling factors. Consider a path of length n, where each entry is one of k scaling
factors (corresponding to the k = 2ir range subtrees), and h0 is the number of the scaling

22Alternative, and somewhat simpler wavelet domain product models may be derived from the coding scheme
described in Section 3.9.4, in which independent scaling coefficients are selected between each pair of levels
and consequently the second order statistics of the models are not dependent on higher order statistics of the
innovations process.
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factors not appearing in the path, h1 is the number of scaling factors appearing once only,
and so on until hn, which is the number of scaling factors appearing n times. Imposing the
condition

n∑

i=0

hi = k

guarantees that each of the k scaling factors is accounted for, and

n∑

i=0

ihi = n

guarantees that the path contains n entries. Each path belonging to a particular class has
the same associated variance of the terminating coefficient, which is

σ2
o

2n

n∏

i=1

mhi
2i ,

where mi are the central moments of the distribution of the scaling coefficient.
The uniform and Laplacian distributions are considered here as possible distributions for

the scaling coefficient. The Laplacian distribution is utilised for reasons revealed in Chapter
6, while the uniform distribution is useful for purposes of comparison, having been utilised
for this purpose in the initial sections of this chapter. A zero-mean uniform distribution (see
Appendix A) on the range [−a, a] has pdf

fX(x) =

{
1
2a if x ∈ [−a, a]
0 otherwise.

Central moments mi for even i are

mi =
ai

i + 1
,

and since a =
√

3 σ,
n∏

i=1

mhi
2i = σ2n

s

n∏

i=1

(
3i

2i + 1

)hi

.

The zero-mean Laplacian distribution (see Appendix A) is

fX(x) =
1

σ
√

2
e−

√
2

σ
|x|.
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Central moment i may be written

mi =
1

σ
√

2

∫ ∞

−∞
e−

√
2

σ
|x|xi dx

=
2

σ
√

2

∫ ∞

0
e−

√
2

σ
xxi dx for i even.

Utilising the standard integral23 [58, pg. 230]

∫ ∞

0
xne−ax dx =

n!
an+1

if a > 0, n ∈ Z+,

the central moments for even i are

mi =
σii!
2i/2

,

and therefore
n∏

i=1

mhi
2i = σ2n

s

n∏

i=1

(
(2i)!
2i

)hi

.

In both cases then, the product may be expressed in terms of the variance of s and a function
M of the class (h1, h2, . . . , hn)

n∏

i=1

mhi
2i = σ2n

s M(h1, h2, . . . , hn).

The average variance at a particular resolution is obtained by averaging over all possible
paths in all domain to range mappings. If N(l1, . . . , ln) is the number of mappings in which a
particular path occurs, NP = 2id+n = 2n k

2 is the number of paths for each distinct mapping,
and NM = NNr

d =
(

k
2

)k
is the number of distinct mappings, the desired average is obtained

by summing
N(l1, . . . , ln)

NP NM

σ2
o

2n
E[s2

l1s
2
l2 . . . s2

ln ]

over all possible paths (l1, . . . , ln). Each of these terms may be expressed as

N(l1, . . . , ln)
NP NM

σ2
o

2n

n∏

i=1

mhi
2i =

N(l1, . . . , ln)
NP NM

M(h1, h2, . . . , hn)σ2
o

(
σ2

s

2

)n

,

where (h1, h2, . . . , hn) is the class of path (l1, . . . , ln).
The value of N(l1, . . . , ln) may be determined by considering the restrictions placed on

the possible mappings by every transition (li)(li+1) in the path. The occurrence of transition
(li)(li+1) in a path implies that pli+1 = bli/2c, since otherwise the transition would not
be possible. It is clear from this observation that pli+1 = bli/2c implies that transitions
(2bli/2c)(li+1) and (2bli/2c + 1)(li+1) are possible, and they are therefore equivalent with
respect to this criterion. Each unique transition, where uniqueness requires that an equivalent

23The positive integers are defined as Z+ = {n ∈ Z |n > 0}.
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transition may not occur elsewhere in the path, specifies one of the pi. Denoting the number
of remaining unspecified pi by NU ,

N(l1, . . . , ln) = NNU
D =

(
k

2

)NU

.

Since calculation for all possible paths (l1, . . . , ln) is impractical for all but the smallest
path lengths, a more efficient method of summing

N(l1, . . . , ln)
NP NM

M(h1, h2, . . . , hn)σ2
o

(
σ2

s

2

)n

over all paths is to enumerate the number of paths in each class and sum the above with the
appropriate weighting for each class. Given the set of all paths of length n, where each entry is
one of k scaling factors, the number of paths in each class (h0, h1, . . . , hn) may be enumerated
by application of the multinomial coefficient [110] as follows. Consider apportioning the hi

over the set of scaling factors. One way of doing so would be to have the first h0 of the k

scaling factors not occur, the next h1 occur once and so on. There are

k!
h0!h1! . . . hn!

ways of apportioning the hi over the set of scaling factors, and

n!
(0!)h0(1!)h1 . . . (n!)hn

different paths for each of the scaling factor utilisations. The total number of paths in class
(h0, h1, . . . , hn) is therefore

NC(h0, h1, . . . , hn) =
k!n!∏n

i=0 hi!(i!)hi
.

The value of N(l1, . . . , ln) is not constant for all paths in the same class, complicating
calculation of the average variance for a particular resolution. Although no solution was
found to this problem, it is clear by inspection that the value of N(l1, . . . , ln) is constant
for all (l1, . . . , ln) in the same class, for classes (k − 1, 0, 0, . . . , 0, 1) and (k − n, n, 0, 0, . . . , 0).
In these cases the coefficient for the expectation of the class (in the average over all classes
required to obtain the average variance at a particular resolution) is the number of paths in
the class multiplied by the coefficient for each path. Evaluation of the expectations for these
classes at least provides an indication of the behaviour of the average variance over all classes.

Since only one transition occurs for class (k− 1, 0, 0, . . . , 0, 1) when n > 1, only one of the
pi is specified, and

N(l1, . . . , ln) = NNR−1
D =

(
k

2

)k−1

.
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Since
N(l1, . . . , ln)

NP NM
=

22−n

k2

and there are
NC(k − 1, 0, 0, . . . , 0, 1) =

k!n!
(k − 1)!n!

= k

paths in the class, the coefficient for σ2
o

2n

∏n
i=1 mhi

2i = σ2
o

2n m2n in this case is

NC(k − 1, 0, 0, . . . , 0, 1)N(l1, . . . , ln)
NP NM

=
22−n

k
.

The coefficient for σ2
o

(
σ2

s
2

)n
for the uniform pdf is then

22−n3n

k(2n + 1)

whereas for the Laplacian pdf it is
(2n)!22−2n

k
.

Since this class represents the paths consisting of multiple occurrences of a single si, and con-
sequently represents the influence of the highest order moments possible, the greater these
values the greater the deviation from simple log decay of the variance. The example values
displayed in Table 5.3 indicate that the deviation from log decay is far greater for the Lapla-
cian distribution of scaling coefficients than for the uniform distribution, and increases with
increasing path length.

Table 5.3: Values of coefficients of σ2
o

(
σ2

s

2

)n

for class (k − 1, 0, 0, . . . , 0, 1) and k = 16.

n 1 2 3 4 5
Uniform 0.0000 0.1125 0.1205 0.1406 0.1726
Laplacian 0.0000 0.3750 2.8125 39.3750 885.9375

Since each si occurs only once for class (k − n, n, 0, 0, . . . , 0), every transition is unique,
and

N(l1, . . . , ln) = NNR−n+1
D =

(
k

2

)k−n+1

.

Since
N(l1, . . . , ln)

NP NM
= k−n

and there are
k!n!

(k − n)!n!
=

k!
(k − n)!
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paths in the class, the coefficient for σ2
o

2n

∏n
i=1 mhi

2i = σ2
o

2n mn
2 in this case is

NC(k − n, n, 0, 0, . . . , 0)N(l1, . . . , ln)
NP NM

k!
(k − n)!kn

.

The coefficient for σ2
o

(
σ2

s
2

)n
for both pdfs is

k!
(k − n)!kn

since M(h1, h2, . . . , hn) = 1 in both cases. Since this class represents paths containing no
multiple occurrences of scaling coefficients, which are therefore dependent only on the variance
σ2

s , the closer these values are to unity, the less the deviation from simple log decay of the
variance. The example values displayed in Table 5.4 indicate increasing deviation from log
decay with increasing path length.

Table 5.4: Values of coefficients of σ2
o

(
σ2

s

2

)n

for class (k − n, n, 0, 0, . . . , 0) and k = 16.

n 1 2 3 4 5
Coefficient 1.0000 0.9375 0.8203 0.6665 0.4999

Although these calculations allow an estimate of the behaviour of the variance decay
with increasing resolution, exact computation is difficult, and Monte Carlo methods are con-
sequently used for the results displayed in Figure 5.13, in which the considerably greater
deviation from linearity on a log scale for the Laplacian24 pdf is visible. The deviation from
log decay is reduced with increasing k and decreasing path length, both of which result from
an increase in id, which corresponds to a decreased range block size. Unlike an AR model for
example, even the second order statistics of an exactly self-affine model are sensitive to the
pdfs of the innovations process.

An interesting comparison is possible between a log variance decay and a theorem connect-
ing the Lipschitz regularity25 of a function with the decay of its wavelet transform maxima
with increasing resolution. It may be shown [126] that if (and only if) a function f(x) is

24Random values with a Laplacian distribution with mean µ and variance σ2 were generated by passing
values uniformly distributed on (−1, 0) ∪ (0, 1) through the function

f(x) =

(
µ + σ√

2
ln |x| if x ≤ 0

µ− σ√
2

ln |x| otherwise.

25A function f(x) is uniformly Lipschitz α (where 0 ≤ α ≤ 1) over an interval (a, b) iff ∃K ∈ R such that
∀x, y ∈ (a, b)

|f(x)− f(y)| ≤ K|x− y|α.

The Lipschitz uniform regularity [126] of f(x) is the upper bound of all α for which f(x) is uniformly Lipschitz
α. It should be noted that the Lipschitz condition as defined here is often referred to as Hölder continuity [60,
ch. 1] [100, ch. 2], in which case Lipschitz continuity is the special case of α = 1.
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Figure 5.13: Comparison of variance decay for exactly self-affine models with uniform
and Laplacian scaling coefficients (id = 3).

uniformly Lipschitz α over (a, b) then ∃K ∈ R such that ∀x ∈ (a, b)

|Qif(x)| ≤ K(2−α)i,

where Qi is the projection operator into wavelet detail space Wi (see Appendix C). Since the
signal magnitude on an interval of a subband is bounded by the maximum of |Qif(x)|, this
provides a relationship between the magnitude decay across subbands and the regularity of
the signal (a detailed study of which is not pursued here).

5.5.2 Autocorrelations

A generalisation of the analysis above is required in calculating correlations between detail
coefficients for a self-affine model. In this case two paths must be considered, one for each
of the coefficients between which the correlation is desired. Since the origin of the paths is
significant in this context, the l0 must be included in each path.

Given a fixed domain to range assignment, the correlation between two coefficients is zero
if any of the si occurs only once in either of the paths, or if the paths originate at different
oi (since the si and oi are assumed independent and zero-mean). Non-zero correlations for
fixed domain to range assignments depend on the number of multiple occurrences of scaling
coefficients in the paths, resulting in dependence of the autocorrelation on the pdfs of the
innovations process via their higher order moments.

The autocorrelation results presented here were generated by Monte Carlo methods due
to the considerable complexity involved in an analytic derivation. A comparison of the auto-
correlations for uniform and Laplacian scaling distributions is presented in Figures 5.14 and
5.15, and the corresponding average correlation coefficients between detail coefficient pairs at
the same resolution and between child parent pairs are displayed in Table 5.5. Although the
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Figure 5.14: Wavelet domain autocorrelation of exactly self-affine model (uniform scal-
ing coefficients, id = 3, µo = µs = 0, σ2

o = 10 and σ2
s = 1). Visibility has been enhanced

by applying a gamma correction of 7 to the absolute values of the pixels.

Figure 5.15: Wavelet domain autocorrelation of exactly self-affine model (Laplacian
scaling coefficients, id = 3, µo = µs = 0, σ2

o = 10 and σ2
s = 1). Visibility has been

enhanced by applying a gamma correction of 14 to the absolute values of the pixels.
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Table 5.5: Average detail coefficient variances and correlation coefficients for self-affine
models as in Figures 5.14 and 5.15. The child-parent correlation coefficients are attached
to the parent resolution in the table.

Uniform scaling Laplacian scaling
Correlation Correlation

Resolution Variance Child Same Variance Child Same
3 10.00 0.00 10.00 0.00
4 5.00 0.00 0.00 4.99 0.00 0.00
5 2.62 0.00 0.00 3.30 -0.01 0.00
6 1.50 0.00 0.01 5.78 -0.04 0.00
7 0.95 0.00 0.01 27.76 -0.10 0.00
8 0.66 0.02 227.56 0.00

visible patterns are similar, there are significant differences in the magnitudes. The low off-
diagonal correlations26 may be understood by noting that a significant fraction of the possible
domain to range assignments are likely to result in the conditions for the zero correlations
described above.

5.6 Conclusions

A class of exactly self-affine signal models is defined in this chapter, enabling an investiga-
tion of the statistical consequences of exact self-affinity by evaluating the properties of these
signal models. A generalised Lattice VQ interpretation of fractal coding is proposed, and the
structure of the resulting codebooks is associated with the properties of these models.

It is important to emphasise that the statistics of an exactly self-affine model are dependent
on model parameters such as block partition, block transforms and statistical distributions
for the transform coefficients, and significantly different results may be obtained for different
model parameters. Nevertheless, the results for the limited range of parameters investigated
provide some insight into the implicit statistical assumptions of fractal coding. While these
assumptions need not be perfectly accurate in order for fractal coding to be effective, nor is
the reduction in coding efficiency resulting from any observed mismatch in these statistics
easily quantified, the more closely these assumptions are adhered to by a particular source,
the more effective is fractal coding of that source.

The second order statistics of the exactly self-affine models, resulting from the affine self-
similarity assumption, are in broad terms similar to those commonly assumed for transform
coding; approximately uncorrelated blocks (under a range of assumptions on the distributions
of the scaling and offset coefficients) and decreasing autocorrelation within each block. The
finer details of the autocorrelation function are however, not easily tuned to desired statistics
by varying the model parameters. Similar analysis in the wavelet domain indicates that the

26Considerable enhancement has been applied to the images to make these patterns visible.
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rate of decay of variance with increasing resolution may be controlled to some extent by
suitable choices of model parameters. This decay is compared with that measured for a set of
test images in the following chapter. The wavelet domain correlations of the exactly self-affine
models are small, but the actual pattern of these correlations is rather unusual.

The poor performance of transform coding of decorrelated signal samples is evidence for
significant non-linear dependence between samples in the exactly self-affine models. Since
these models are poorly described by their second order statistics, a characterisation of the
non-linear dependence is desirable. Higher order statistics [132], which may be used to char-
acterise dependence other than correlation, were not calculated since “standard” properties of
these statistics are not well known for images, and their calculation by Monte Carlo simulation
was considered computationally too demanding (and unstable, since pseudo-random number
generators do not produce independent numbers). Since no suitable means of characterising
the dependence was found, an evaluation of the compatibility of self-affinity with the proper-
ties of natural images was performed by direct measurement of the degree of self-affinity of a
set of test images as, described in the following chapter.

The distributions of matching domains for each range across the signal were assumed
uniform for all self-affine models described in this chapter. Although this assumption is jus-
tified to some extent by a corresponding assumption made in representing these values in
many fractal coding schemes, the resulting long-distance dependence27 is incompatible with
entropy measurements for images [37, ch. 2] which suggest that the dependence between pix-
els falls off rapidly with increasing distance between them. The simplest means of removing
this long-distance dependence from the model is to fix the matching domain for each range
to be the spatially nearest domain, as in domain search free fractal coding schemes [135]. In
this case however, the local dependence is unreasonably strong, since it results in a severe
restriction on the possible range block “shapes”. It appears as if exact self-affinity is necessar-
ily associated with a form of dependence between samples that is incompatible with known
image characteristics, although this has not been proven here since no adequate means of
characterising this dependence was found.

Since exact self-affinity is not necessary for effective fractal coding, an understanding of
the requirements for approximate but strongly present self-affinity would be productive. In
particular, it is not clear how strongly self-affine a signal model may be without requiring the
unnatural forms of dependence observed for exactly self-affine models. A possible approach,
which has not been pursued, is to create an approximately self-affine signal model by adding
varying degrees of “noise” derived from a multiscale AR model [22] [55] to an exactly self-affine
model.

27This dependence is necessary for the domains and ranges to be able to “cooperate” so that there is a
matching domain for each range.



Chapter 6

Image Properties in the Wavelet

Transform Domain

The estimation of the self-affinity of “natural” images by an examination of the wavelet do-
main properties of a set of standard images (see Appendix E) is described in this chapter.
Analysis in the wavelet transform domain is convenient, not only in terms of the simplified
mechanism of fractal coding, but also in allowing an evaluation of the merits of the generali-
sation of fractal coding to a smooth wavelet basis.

The initial examination of distributions of detail coefficients and the ratios between them
provides a basis for the selection of appropriate distributions for scaling and offset coeffi-
cients in a two-dimensional extension of the wavelet domain self-affine models of the previous
chapter. This construction allows the detail coefficient variance decay associated with exact
self-affinity to be compared with the decay measured in the set of standard images. The
correlations between detail coefficients in the test images are measured, and provide valuable
insights into the structure of the domain pool codebooks of these images. Finally, the degree
of self-affinity of these images is quantified by comparisons with suitably constructed random
and optimised codebooks.

The two-dimensional wavelet transform domain fractal coding scheme required both in
the construction of an exactly self-affine model and in the self-affinity calculations utilises the
non-standard construction of a two-dimensional basis (see Appendix C). The operations on
subtrees are identical in two dimensions, except that each node in the coefficient tree has four
children instead of two, and each subtree contains the three equivalent subtrees in the three
directional subbands of the decomposition. The block isometry operations are not utilised
since they are not an essential part of fractal coding1 and contribute unnecessary additional
complication.

The wavelet bases used in these evaluations were the Haar basis (in which wavelet domain
1These operations appear in fact to be counter-productive in a rate distortion sense (see Section 3.2.1).

126
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fractal coding is equivalent to standard fractal coding) and the “Spline Variant with Less
Dissimilar Lengths” basis of Antonini et al. [7], which was selected since it provided the best
performance in the evaluation by Antonini et al., and has been applied to fractal coding with
considerable success [46].

6.1 Detail Coefficient Distributions

The properties of individual transform coefficients, and their dependence on their neighbours,
is investigated in this section. Since practical constraints prevented the assembly of a large en-
semble of images from which ensemble statistics could be calculated, stationarity was assumed
and statistics were estimated from averages within individual images. Marginal distributions
of detail coefficients, for example, were assumed to be the same for all coefficients at a partic-
ular resolution, and the distributions were estimated by assembling an ensemble of coefficients
from all of the coefficients at that resolution in a single image, rather than from all coefficients
at a fixed position across an ensemble of images.

6.1.1 Marginal distributions

The marginal distributions of detail coefficients (in both bases) in each subband were found
experimentally to be well approximated by a generalised Gaussian distribution (see Appendix
A). The shape parameter ν varied between 0.5 and 1.5 over all of the test images, with
the majority close to 1.0, for which the generalised Gaussian is equivalent to a Laplacian
distribution. These results are roughly in agreement with those of Antonini et al. [7], who
found a best fit to a generalised Gaussian distribution (see Appendix A) with parameter
ν = 0.7. No tendency towards decreasing ν with increasing resolution was observed, which is
not compatible with the properties of the exactly self-affine models described in the previous
chapter.

Histograms of the detail coefficient values at resolution 8 of the horizontal directional
subband of the “Lena” image are displayed in Figures 6.1 and 6.2, the peaks visible in Figure
6.1 being averaged out in Figure 6.2 by the use of a sufficiently large bin size. These peaks
stem from the interaction between the rectangular shape of the Haar basis functions2 and the
discrete range of pixel values of the 8 bit image, and are barely discernible for smooth wavelet
bases. This “pre-quantisation” effect may significantly influence the efficiency of a high bit
rate scalar quantiser optimised for a pdf without pre-quantisation [130]. If σ2 is the variance
of the random variable to be scalar quantised, and ∆ = 1

2 is the pre-quantisation interval,
then a rate R quantiser optimised ignoring the pre-quantisation is efficient for σ

∆ > 2R

4 [130],
which is equivalent to requiring R < log2 σ + 3 for Haar basis detail coefficients. Depending
on their construction, the offset coefficients of a fractal coding scheme may be subject to

2The peaks occur at intervals of 1
2
, which is the normalisation factor from one resolution to the next.
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this effect, which should be taken into account in the design of a suitable quantiser. Since
pre-quantisation is also visible in the ratios between child and parent coefficients in the Haar
basis, the scaling coefficients may be subject to a similar effect. These effects need not be
considered for a smooth wavelet basis based fractal coding scheme.
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Figure 6.1: Histogram of Haar transform coefficient values at resolution 8 of the hori-
zontal directional subband of the “Lena” image (the bin size is sufficiently small for the
pre-quantisation effect to be visible).

6.1.2 Child-parent ratios

Each detail coefficient at a particular resolution in an exactly self-affine signal model is deter-
mined by a scaling factor multiplied by a detail coefficient one level up the detail coefficient
tree. It is therefore reasonable to consider the histogram shape of the ratios of child and
parent detail coefficients as an indication of a reasonable pdf for the scaling coefficients in
these model. These histograms were found to be approximately Laplacian for both bases.
Since a range subtree may be represented in terms of any domain subtree, an individual coef-
ficient may be determined by an appropriate scaling of any coefficient in the parent subband.
Similar ratios were therefore also calculated between each detail coefficient and all detail co-
efficients in the parent subband. As before, the histogram distributions were approximately
Laplacian for both bases, providing some justification for using Laplacian scaling coefficients
in the exactly self-affine models.

Additional calculations for the “Lena” image in the Haar basis reveal details of the mag-
nitude decay of coefficients within each image, which is relevant to the contractivity of the
representation of a range subtree by a domain subtree. The standard deviation of the child-
parent ratio was approximately 0.80, with an average of 72% of the detail coefficients having
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Figure 6.2: Histogram of Haar transform coefficient values at resolution 8 of the hori-
zontal directional subband of the “Lena” image (the pre-quantisation effect is smoothed
out by the use of a large bin size). The best fit generalised Gaussian has parameters
σ = 3.51 and ν = 1.14.

smaller magnitudes than their parents. The same average for the ratio between child coeffi-
cient and all coefficients in the parent subband was slightly lower, at 66%. Similar results were
obtained in the spline basis. The high proportion of child coefficients of smaller magnitude
than their parents suggest that the optimum scaling of a domain subtree in matching a range
subtree would in most cases have magnitude less than unity, a requirement which is often
imposed in order to guarantee contractivity.

6.1.3 Variance decay with increasing resolution

The variance3 of detail coefficients at each resolution (averaged over all three directional
subbands) is displayed on a log scale in Figure 6.3, in which the decay may be observed to
be approximately linear for resolutions 3 and higher. If the generating process is assumed to
be wide-sense stationary, the measured variance of detail coefficients within each subband of
a single image may be taken as an approximation of the variance for that subband over an
image ensemble.

Empirical results indicate that there is no large difference in the variance decays with
increasing resolution between the three directional subbands (see Figure 6.4), except that the
variance in the diagonal subband is consistently the lowest at each resolution. Similar results
were obtained for the spline basis, although the measured variances were slightly lower.

The detail coefficient variance decay measured for the test images may be compared with
3Since the mean for each subband is close to zero, the measured variances are approximately equivalent to

image energy [37].
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Figure 6.3: Comparison of average Haar basis detail coefficient variance for the set of
standard images.
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Figure 6.4: Comparison of average Haar basis detail coefficient variance in each of the
directional subbands of the “Lena” image.
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that resulting from the assumption of exact self-affinity by constructing a two-dimensional
extension of a wavelet domain self-affine model. Since isometry operations are disallowed,
there is no interaction between the three directional subbands of the non-standard decompo-
sition, and it is therefore only necessary to model one of them, in which there are 4id domain
subtrees and 4ir range subtrees rooted at resolutions id and ir = id + 1 respectively.

Since the normalisation factor between resolutions is 2 for the two-dimensional case, the
value of a coefficient determined by a path of length n, originating at domain block l0 and
subsequently passing through ranges l1, l2, . . . , ln, is

(
1
2

)n
ol0sl1sl2 . . . sln , and its square is just(

1
4

)n
o2
l0
s2
l1
s2
l2

. . . s2
ln

. The expectation for a path belonging to a particular class is σ2
o

4n

∏n
i=1 mhi

2i ,
by an equivalent argument to that presented in Section 5.5.1.

The results of the previous chapter may be applied, although in this case k = 4id+1, NP =
4n k

4 , NM =
(

k
4

)k
and there are 4 equivalent transitions in the enumeration NU of unspecified

pi. The coefficients of σ2
o

4n

∏n
i=1 mhi

2i for classes (k − 1, 0, 0, . . . , 0, 1) and (k − n, n, 0, 0, . . . , 0)
are

NC(k − 1, 0, . . . , 0, 1)N(l1, . . . , ln)
NP NM

=
42−n

k
.

and
NC(k − n, n, 0, . . . , 0)N(l1, . . . , ln)

NP NM
=

k!
(k − n)!kn

respectively.
Since measurements on standard images indicate that the Laplacian distribution is rea-

sonably appropriate for the marginal distributions of most wavelet coefficients, as well as for
child-parent ratios, it is utilised here for the oi and si. The coefficients of σ2

o

(
σ2

s
4

)n
for classes

(k − 1, 0, 0, . . . , 0, 1) and (k − n, n, 0, 0, . . . , 0) are therefore

(2n)!42−n

2nk

and
k!

(k − n)!kn

respectively. These coefficients provide bounds on the effects of higher-order moments on
the variance at different resolutions of the exactly self-affine signal models. Values for these
coefficients for id = 4 are displayed in Tables 6.1 and 6.2 respectively. The deviation from
log decay of a two-dimensional model is considerably reduced from that of a one-dimensional
version (see Tables 5.3 and 5.4) with the same values of id and n, as a result of the increased
value of k associated with a particular value of id.

Figures 6.5 and 6.6 show the results of Monte Carlo based calculations of the variance
decay for domain subtrees rooted as resolutions 3 and 4 respectively. Although there is a
significant deviation from linearity for Laplacian scaling coefficients in Figure 6.5, the increase
in k resulting from an increase in id from 3 to 4 is sufficient to render this deviation negligible,
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Table 6.1: Values of coefficients of σ2
o

(
σ2

s

4

)n

for class (k−1, 0, 0, . . . , 0, 1) and k = 1024.

n 1 2 3 4 5
Coefficient 0.0000 0.0059 0.0220 0.1538 1.7303

Table 6.2: Values of coefficients of σ2
o

(
σ2

s

4

)n

for class (k−n, n, 0, 0, . . . , 0) and k = 1024.

n 1 2 3 4 5
Coefficient 1.0000 0.9990 0.9971 0.9942 0.9903

as may be observed in Figure 6.6. The decay for uniformly distributed scaling coefficients is
also displayed for purposes of comparison.
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Figure 6.5: Comparison of variance decay for two-dimensional exactly self-affine models
with uniform and Laplacian scaling coefficients (id = 3).

It is possible therefore, by the imposition of suitable restrictions, for the expected variance

at resolution id+i of an exactly self-affine model to be approximately σ2
o

(
σ2

s
4

)i
, which is linear

in i on a log scale, and is compatible with the measured variance decay of the test images. The
primary restriction required is that the domain subtree roots are at resolution 4 or higher,
which is equivalent to setting a maximum range block size of 16 × 16 pixels in a 512 × 512
image. The best fit parameters for each of the images are displayed in Table 6.3, which
illustrates the reduced variance of both coefficients in the spline basis.

The correspondence between measured variance decay for the test images and that of the
self-affine models reflects favourably on the possibility of compatibility of the property of exact
self-affinity with the statistics of natural images. It is however, difficult to quantify the degree
of mismatch between a self-affine model and the test images based on their respective second
order statistics, especially in terms of the consequences of this mismatch on image coding
based on such a model. In addition, evidence was presented in Chapter 5 that an exactly
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Figure 6.6: Comparison of variance decay for two-dimensional exactly self-affine models
with uniform and Laplacian scaling coefficients (id = 4).

Table 6.3: Optimum parameters in fitting variance decay function σ2
o

(
σ2

s

4

)i

to resolution
id + i of the set of standard images (id = 4).

Haar basis Spline basis
Image σ2

o σ2
s σ2

o σ2
s

Airplane 1.12e5 0.82 9.50e4 0.79

Baboon 3.99e4 0.90 2.86e4 1.10

Bridge 9.70e4 1.03 8.50e4 0.92

Lena 7.98e4 0.76 8.19e4 0.49

Peppers 1.58e5 0.68 1.35e4 0.48
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self-affine model is poorly characterised by second order statistics. Direct examination of
the self-affinity of the test images is therefore required to determine the extent to which they
exhibit this property. The measurement of correlations between detail coefficients is described
in the following sections, in preparation for an evaluation of the domain pool structure and
self-affinity of the test images.

6.1.4 Child-parent correlations

Correlation coefficient measurements between each child detail coefficient and its parent,
averaged over all images in the test set, are displayed in Table 6.4. The correlations in the
diagonal subbands may be observed to be significantly smaller than in the horizontal and
vertical subbands, for both bases. The significantly smaller correlations in the spline basis
are evidence for its improved decorrelation efficiency over that of the Haar basis.

Table 6.4: Child-parent correlation coefficients averaged over the set of standard images.

Haar basis Spline basis
Parent Correlation in subband Correlation in subband

Resolution Horizontal Vertical Diagonal Horizontal Vertical Diagonal
2 0.27 0.17 0.09 0.10 0.05 0.06
3 0.32 0.35 0.10 0.14 0.13 0.00
4 0.43 0.38 0.10 0.08 0.12 -0.02
5 0.41 0.41 0.10 0.12 0.10 -0.02
6 0.42 0.44 0.11 0.11 0.14 -0.01
7 0.46 0.47 0.12 0.13 0.17 0.00

These results are compatible with those of Shapiro [182], who found negligible correla-
tions between parent and child detail coefficients for a smooth wavelet basis, but significant
correlations between the squares of parent and child coefficients.

The similarities between subbands of the Haar decomposition of a scan line extracted
from the image indicated in Figure 6.7 are clearly indicated in Figure 6.8. The similarity in
the spline basis depicted in Figure 6.9 is considerably reduced, although the progression of
maxima across resolutions [125] [126] is still visible.

6.1.5 Same-resolution correlations

Average correlation coefficients within each subband were calculated separately for the three
families of directions depicted in Figure 6.10. Average results over all test images are tabulated
in Tables 6.5 and 6.6. In the Haar basis, significant correlations may be observed in the
horizontal direction in the horizontal subband and in the vertical direction in the vertical
subband, while correlations in the diagonal direction are considerably smaller in all subbands.
A similar pattern is evident for the spline basis, but with smaller correlations overall, and
significant negative correlations in the vertical direction in the horizontal subband and in
the horizontal direction in the vertical subband. Same-resolution correlations appear to be
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Figure 6.7: Position of segment of scan line extracted from “Lena” image.

Figure 6.8: Haar basis decomposition of scan line indicated in Figure 6.7. Subbands at
resolutions 4 to 7 are indicated by D4 to D7. Each subband has been scaled so that its
extrema occupy the full vertical range.
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Figure 6.9: Spline basis decomposition of scan line indicated in Figure 6.7. Subbands
at resolutions 4 to 7 are indicated by D4 to D7. Each subband has been scaled so that
its extrema occupy the full vertical range.

of similar significance to child-parent correlations in the Haar basis, but the decorrelation
efficiency of the spline basis is significantly greater for child-parent coefficients than for same-
resolution coefficients.

H H

V

V

D D

D D

Figure 6.10: Directions of correlation measurement.

6.2 Self-Affinity and Domain Pool Structure

Since it is difficult to determine how compatible the assumption of self-affinity is with the
properties of natural images based on standard statistical measures, it is necessary to directly
estimate the degree of self-affinity of the set of test images. This is achieved by defining a sub-
tree codebook performance measure similar to the subblock codebook performance measure
defined in Section 4.4.
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Table 6.5: Same-resolution (Haar basis) correlation coefficients averaged over the set of
standard images.

Horizontal Subband Vertical Subband Diagonal Subband
Resolution H V D H V D H V D

3 0.24 -0.23 -0.04 -0.35 0.47 -0.22 -0.24 -0.13 -0.05
4 0.43 -0.10 -0.01 -0.18 0.40 -0.06 -0.12 -0.18 0.02
5 0.46 -0.10 -0.01 -0.15 0.47 -0.04 -0.24 -0.21 0.09
6 0.42 -0.07 0.02 -0.15 0.44 -0.00 -0.21 -0.20 0.06
7 0.46 -0.08 0.02 -0.09 0.46 0.04 -0.21 -0.20 0.07
8 0.54 -0.05 0.04 -0.08 0.51 0.04 -0.16 -0.14 0.09

Table 6.6: Same-resolution (spline basis) correlation coefficients averaged over the set
of standard images.

Horizontal Subband Vertical Subband Diagonal Subband
Resolution H V D H V D H V D

3 0.28 -0.20 -0.12 -0.28 0.23 -0.10 0.05 -0.14 0.01
4 0.37 -0.23 -0.06 -0.25 0.35 -0.16 0.00 -0.07 0.02
5 0.32 -0.24 -0.07 -0.20 0.35 -0.09 -0.01 -0.13 0.05
6 0.30 -0.20 -0.08 -0.24 0.29 -0.11 -0.04 -0.06 0.03
7 0.32 -0.24 -0.08 -0.22 0.32 -0.09 -0.09 -0.11 0.04
8 0.43 -0.28 -0.11 -0.34 0.38 -0.14 -0.09 -0.09 0.09

6.2.1 Self-affinity

The degree to which a range subtree vector r is a multiple of a domain subtree vector d may
be measured by the deterministic correlation coefficient4

%(d, r) =
〈d, r〉
‖d‖ ‖r‖ ,

which is equivalent to the cosine of the angle between the subtree vectors. The calculation
of % between a domain subtree at resolution 2 and a range subtree at resolution 3 of a one-
dimensional signal is depicted in Figure 6.11. A shape codebook efficiency measure may be
based on this quantity as in Chapter 4, but in this case, since such a measure is required for
individual images, rather than over an ensemble, it is defined as

S =
1

Nr

Nr−1∑

j=0

max
0≤i≤Nd−1

%2(di, rj),

where di and rj are the ith domain and jth range subtrees in an image respectively. The value
of this measure for di extracted from the same image as the ri is denoted Sself . As described in

4In this case, since the domain vector is transformed by scaling alone, without the addition of an offset
vector, this is the deterministic equivalent of the normalised correlation, rather than the normalised covariance
as used in Chapter 4.
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Section 4.4, the classifications of weak and strong self-affinity are based on comparisons with
the values of Srandom and SVQ computed for appropriately constructed random and optimised
sets of di respectively.

d3,4 d3,5d2,2

c0,0

d0,0

d1,1d1,0

d2,2

d3,5

d4,4 d4,5

d3,2 d3,4

d3,2 d4,4 d4,5

%

Figure 6.11: Calculation of deterministic correlation between subtrees for a one-
dimensional signal.

A statistical analysis of self-affinity is complicated by the maximisation in the definition of
the codebook efficiency S, since requiring a high efficiency places constraints on the maximum
rather than directly on the %2 values. A perverse relationship between subtrees as in an exactly
self-affine model is possible, where all domains are mutually dependent, and “cooperate” so
that one of them is a perfect match for each range. Such dependence may be completely
transparent to any examination of the individual %2 values, making it difficult to detect other
than by its effect in raising the maximum %2 value.

Given the evidence for decaying dependence with increasing distance between pixels [37,
ch. 2], this form of domain pool structure appears highly unlikely, relying as it does on
strong dependence between spatially remote domains. In the absence of evidence to the
contrary, it is reasonable to assume a qualitatively similar domain pool structure to that of
the AR(1) models, in which no “special relationship” exists except between nearby domains
and ranges. Forms of inter-pixel dependence other than correlation may be present in images,
and may play a role in determining the similarity of neighbouring domains and ranges. The
domain pool structure of the test images was therefore examined for evidence contradicting
this assumption.



Image Properties in the Wavelet Transform Domain 139

6.2.2 Domain pool structure

The wavelet transform domain equivalent of standard fractal compression entails mappings
between domain and range subtrees, consisting of the combined subtrees at the same posi-
tion and resolution from each of the three directional subbands. Since different correlation
properties were observed in the different directional subbands, the deterministic correlation
between subtrees was investigated for subtrees extracted from separate directional subbands
as well as for combined subtrees. These comparisons were performed for domain and range
subtrees rooted at several resolutions, corresponding to different block sizes in standard fractal
compression.

The dependence of % and %2 on the distance between range and domain subtrees was
investigated by computing a deterministic correlation surface for each range. This surface
was constructed in a coordinate system with the range at the centre, the surface height
at each position being the deterministic correlation (or square thereof) between the range
subtree and the domain subtree (rooted one level up the tree from the range subtree) and at
the position corresponding to the appropriate relative displacement from the position of the
range subtree, i.e. the domain subtree with root at position (jd, kd) and the range subtree at
position (jr, kr) determined the surface height at position (jr/2− jd, kr/2− kd). An average
surface over all range blocks was obtained by averaging each of these surfaces. Normalisation
is required in the calculation of an average surface over all ranges since the ensemble sizes
(see Figure 6.12) decrease with increasing offset from the range subtree (large offsets in all
directions are only possible from range subtrees near the centre of an image because of the
existence of image boundaries). The outer regions of these average surfaces are discarded in
the surfaces displayed here, due to unstable averages resulting from the small ensemble sizes
near the perimeter.

Average deterministic correlation surfaces for separate directional subbands reveal consid-
erable structure in the horizontal direction in the horizontal directional subband (see Figure
6.13) and in the vertical direction in the vertical directional subband (see Figure 6.14), but
not in the diagonal subband. This structure may be attributed to the corresponding same-
resolution correlations described in Section 6.1.5, and is evidence of directional similarity
between neighbouring subtrees. Similar structure was observed for average %2 surfaces, but
the peaks at the origin are not as consistently significant for all images.

The structure visible in average %2 surfaces for combined directional subtrees appears to
be a result of the combined effects of the structure in the individual directional subbands,
although this not as clearly apparent for all cases as it is in Figure 6.15. The surface in
Figure 6.15 is evidence of considerably raised similarity between a range subtree and its
parent subtree, as well as less significant similarity between a range subtree and domain
subtrees at small horizontal and vertical offsets. The mean and central peak values of %

and %2 for the “Airplane”, “Lena” and “Peppers” images are summarised in Tables 6.7, 6.8
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Figure 6.12: Variation with offset from the range subtree of the number of domain
subtrees in the ensemble at resolution 4. The centre of the surface corresponds to a zero
offset in both directions.
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Figure 6.13: Average deterministic correlation surface for the horizontal subband at
resolution 5 of the non-standard Haar basis decomposition of the “Airplane” image.
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Figure 6.14: Average deterministic correlation surface for the vertical subband at reso-
lution 5 of the non-standard Haar basis decomposition of the “Lena” image.
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Figure 6.15: Average squared deterministic correlation surface for combined directional
subtrees with domain subtrees rooted at resolution 5 of the non-standard spline basis
decomposition of the “Airplane” image.
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and 6.9 respectively. The % average of approximately zero indicates that there is no average
tendency for distant domains to have the same direction as ranges5, while the significant
positive value for the central peak indicates that the domain subtree actually containing a
corresponding range subtree is likely to have a similar vector direction. The increase in peak
and mean %2 values with increasing ir is expected as a result of the corresponding decrease
in subtree vector dimensionality. The significant difference between peak and mean values
of %2 indicates that there is a raised probability of a range matching its parent domain in
comparison with the probability of matching other domains. This central peak may be at least
partially attributed to the child-parent correlations described in Section 6.1.4 (especially since
the peaks are slightly less significant in the spline basis, for which child-parent correlations
were lower than in the Haar basis), but other forms of dependence between detail coefficients
may also play a role. There is no evidence to suggest that the domain pool structure is not
qualitatively similar to that of the AR(1) models, with only those domains having raised
average %2 having any significant “special relationship” with the ranges, although this is
certainly not proved by the results presented here.

Table 6.7: Central peak and mean deterministic correlation surface values for range
subtrees in the “Airplane” image.

Haar basis Spline basis
% %2 % %2

ir Mean Peak Mean Peak Mean Peak Mean Peak
4 0.01 0.17 0.06 0.12 0.01 0.10 0.06 0.12
5 0.00 0.20 0.08 0.15 0.00 0.06 0.07 0.14
6 0.00 0.21 0.09 0.16 0.00 0.04 0.09 0.15
7 0.00 0.24 0.12 0.21 0.00 0.02 0.11 0.18

Table 6.8: Central peak and mean deterministic correlation surface values for range
subtrees in the “Lena” image.

Haar basis Spline basis
% %2 % %2

ir Mean Peak Mean Peak Mean Peak Mean Peak
4 0.02 0.21 0.10 0.16 0.01 0.10 0.11 0.17
5 0.01 0.25 0.12 0.20 0.00 0.10 0.11 0.20
6 0.01 0.28 0.13 0.23 0.00 0.05 0.10 0.18
7 0.00 0.30 0.13 0.27 0.00 0.04 0.10 0.17

Calculation of the distribution of best matching domain subtrees with spatial offset from
the matched range revealed no large predominance (after taking into account the variation

5This does not preclude clustering in particular directions, but indicates that any clustering is symmetric
with respect to negative scaling.
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Table 6.9: Central peak and mean deterministic correlation surface values for range
subtrees in the “Peppers” image.

Haar basis Spline basis
% %2 % %2

ir Mean Peak Mean Peak Mean Peak Mean Peak
4 0.01 0.19 0.09 0.13 0.01 0.04 0.08 0.11
5 0.01 0.28 0.11 0.20 0.00 0.06 0.09 0.16
6 0.01 0.34 0.12 0.24 0.00 0.05 0.08 0.15
7 0.01 0.32 0.11 0.24 0.00 0.04 0.08 0.15

in ensemble size with offset) of spatially close domains except for the “Lena” and “Peppers”
images. There is no obvious explanation for this fact, but it should be noted that the average
%2 surface peaks were most clearly visible for these two images6.

6.3 Random Codebooks and Weak Self-Affinity

A random codebook suitable for use in determining weak self-affinity is required to have the
same probability distribution as the individual domains in the source for which a comparison
is desired. While construction of such a codebook was easily achieved in the case of AR(1)
models, where the distribution is known analytically, it is considerably more difficult for
sources for which the distribution is unknown and can only be estimated from an ensemble
of signals.

6.3.1 Codebook construction

An approximation to a suitable random codebook may be constructed by randomly generating
independent detail coefficients with a Laplacian distribution and variance in each subband as
measured in the corresponding subband of the test images. This construction is suboptimal
as a random codebook, since it does not take into account the correlations observed between
detail coefficients, or any other form of dependence.

A conceptually similar random codebook was constructed by van de Walle [194], who
generated random code vectors based on image second order statistics and compared the
performance of these code vectors with that of a domain pool in representing smooth, textured
and edge range blocks. The performance of the random codebook was found to match that
of the domain pool exactly for smooth range blocks, while the domain pool was slightly
superior for textured ranges and significantly superior for ranges containing edges. These
results suggest that the statistical properties of images are well characterised by second order

6A similar highly peaked distribution of matching domain blocks is described by Hürtgen and Stiller [91,
pg. 401]
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statistics, except in the vicinity of edges where significant non-linear dependence is present
[194].

An alternative approximation to the desired random codebook may be constructed by
extracting domains from a different image than the one from which the ranges are extracted.
This construction should provide a closer approximation to the domain probability distri-
butions than that based on independent detail coefficients, although its use as a random
codebook entails an implicit assumption of stationarity and ergodicity.

6.3.2 Codebook efficiency comparisons

Comparisons between the domain pool efficiency and that of the two approximations to a
random codebook are presented in Tables 6.10 to 6.15. The domain pool details are labelled
as “self codebook”, the independent Laplacian codebook is labelled “variance codebook”
and the separate image based random codebook is labelled with the name of that image.
Domain and range subtrees were rooted at resolutions id and ir = id + 1 respectively for
all codebooks. The performance of the codebook constructed from a separate image was on
average significantly better than that of the codebook constructed from independent detail
coefficients, which suggests that the former codebook is a better approximation to the desired
codebook, as expected.

Table 6.10: Comparison of the self codebook and two random codebooks for Haar basis
range subtrees in the “Airplane” image.

Self Codebook “Baboon” Codebook Variance Codebook
%2 %2 %2

ir Mean Max MSE Mean Max MSE Mean Max MSE
4 0.06 0.38 634.50 0.04 0.24 748.23 0.04 0.20 801.16
5 0.08 0.46 306.66 0.04 0.35 394.37 0.04 0.26 486.13
6 0.09 0.57 99.77 0.06 0.51 132.03 0.06 0.43 202.24
7 0.12 0.79 16.60 0.09 0.77 23.48 0.10 0.74 41.96

Table 6.11: Comparison of the self codebook and two random codebooks for spline basis
range subtrees in the “Airplane” image.

Self Codebook “Baboon” Codebook Variance Codebook
%2 %2 %2

ir Mean Max MSE Mean Max MSE Mean Max MSE
4 0.06 0.35 506.04 0.03 0.20 601.69 0.04 0.23 574.06
5 0.07 0.43 238.01 0.03 0.32 301.54 0.05 0.32 309.43
6 0.09 0.54 79.65 0.05 0.48 100.54 0.07 0.49 110.00
7 0.11 0.78 11.88 0.08 0.76 16.24 0.11 0.77 18.29
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Table 6.12: Comparison of the self codebook and two random codebooks for Haar basis
range subtrees in the “Lena” image.

Self Codebook “Peppers” Codebook Variance Codebook
%2 %2 %2

ir Mean Max MSE Mean Max MSE Mean Max MSE
4 0.10 0.45 327.25 0.09 0.42 346.41 0.06 0.28 436.35
5 0.12 0.53 131.56 0.11 0.52 140.76 0.06 0.33 233.66
6 0.13 0.57 46.67 0.13 0.57 47.52 0.08 0.44 90.94
7 0.13 0.76 9.79 0.13 0.76 10.47 0.10 0.72 19.64

Table 6.13: Comparison of the self codebook and two random codebooks for spline basis
range subtrees in the “Lena” image.

Self Codebook “Peppers” Codebook Variance Codebook
%2 %2 %2

ir Mean Max MSE Mean Max MSE Mean Max MSE
4 0.11 0.42 254.92 0.08 0.39 276.95 0.08 0.37 278.27
5 0.11 0.49 103.38 0.10 0.49 105.93 0.08 0.40 132.49
6 0.10 0.51 36.23 0.10 0.50 38.03 0.08 0.46 48.73
7 0.10 0.73 7.19 0.09 0.72 7.50 0.09 0.72 8.79

Table 6.14: Comparison of the self codebook and two random codebooks for Haar basis
range subtrees in the “Peppers” image.

Self Codebook “Airplane” Codebook Variance Codebook
%2 %2 %2

ir Mean Max MSE Mean Max MSE Mean Max MSE
4 0.09 0.43 570.82 0.06 0.34 682.79 0.06 0.30 739.50
5 0.11 0.54 195.70 0.08 0.47 252.61 0.06 0.33 378.77
6 0.12 0.55 58.15 0.09 0.52 72.97 0.07 0.42 142.50
7 0.11 0.71 14.11 0.10 0.70 15.64 0.08 0.66 33.54

Table 6.15: Comparison of the self codebook and two random codebooks for spline basis
range subtrees in the “Peppers” image.

Self Codebook “Airplane” Codebook Variance Codebook
%2 %2 %2

ir Mean Max MSE Mean Max MSE Mean Max MSE
4 0.08 0.40 425.17 0.06 0.34 473.71 0.07 0.34 464.75
5 0.09 0.47 145.16 0.06 0.43 167.74 0.07 0.38 206.41
6 0.08 0.46 45.45 0.07 0.44 53.60 0.07 0.41 77.41
7 0.08 0.68 11.24 0.08 0.67 12.23 0.08 0.64 18.12
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Mean %2 values are slightly higher for the domain pool than the other codebooks, but this
may be due to the the central peak raising the average value of the domain pool %2 surfaces
(the peak is obviously not present for the other codebooks), rather than a general superiority
in matching ability for all self codebook domains. The maximum %2 for the self codebook is
on average slightly higher than that for the separate image codebook, with particularly large
differences for the lower resolution subtree roots. The superiority of the self codebook is likely
to be due to to the similarity between neighbouring domains and ranges, but the extent to
which it is observed may have been enhanced by the difficulty in constructing an appropriate
random codebook.

Consider creating two sequences of shape codebooks of increasing size, one by optimising
each codebook in the sequence, and the other by simply including an additional random vec-
tor. Although the former is always more efficient, their performance measured in terms of
maximum %2 would both approach unity asymptotically7, and one may therefore expect that
the maximum %2 performance measures of these types of codebook converge with increasing
codebook size. An additional effect in this case is the decreasing vector dimensionality with
increasing subtree root resolution, which results in further convergence of the performance
measure. It is not clear whether the observed convergence in performance of the three code-
books is largely due to this effect, or a result of the decreased influence of the local similarity
between subtrees in larger codebooks. The increase in maximum %2 with increasing ir for all
three codebooks is due to the combined effects of increasing codebook size and decreasing
vector dimensionality; the former increasing the set over which maximisation occurs and the
latter increasing the minimum possible angle between any two vectors.

Average MSE distortion values were also calculated for the representation of each range
subtree by the optimum scaling of the best domain subtree. The codebook effectiveness
rankings in terms of the deterministic correlation correspond well with those in terms of
this distortion, which is equivalent to spatial domain collage error for the Haar basis. Spatial
domain distortions do not correspond to detail coefficient distortions in the spline basis, which
is not orthogonal.

While conclusions are not as reliable as those for AR(1) models, due to practical limitations
on ensemble sizes and in the construction of an appropriate random codebook, the test images
appear to be weakly self-affine to a significant extent, especially for the lower resolution subtree
roots. There is no convincing evidence however, that this self-affinity is due to any effect
other than the statistical dependence between neighbouring regions of a signal, as observed
for AR(1) models. Considerable further investigation is required to conclusively settle this
issue. A comparison with a suitably optimised codebook is required to determine whether
the test images are strongly self-affine.

7The larger the codebook therefore, the more difficult it is to determine the existence of significant self-
affinity.
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6.4 Vector Quantisation and Strong Self-Affinity

The degree to which the test images are strongly self-affine was evaluated by a comparison of
the domain pool performance with that of a fixed subtree codebook, constructed by applica-
tion of the Generalised Lloyd Algorithm (GLA) to subtrees rooted at the range resolution in
the test images. Since domain subtrees are matched to range subtrees by scaling, Shape-Gain
Vector Quantisation (SGVQ) [73, ch. 12] provides the codebooks appropriate for comparison.

Although comparisons with optimised codebooks have previously been performed [112,
ch. 5], the experiments here differ in that

• Evaluation of the self-affinity is of primary interest, and transform coefficients are con-
sequently not quantised.

• Since comparisons are performed in the wavelet domain, SGVQ is used rather than
Mean Removed SGVQ [139].

• Comparisons are performed in Haar basis (equivalent to standard fractal coding) and
smooth wavelet basis decompositions.

6.4.1 Codebook construction

Although the usual codebook design for SGVQ consists of simultaneous optimisation of the
shape and gain codebooks [32] [167], the gain is not quantised in the experiments here (since
evaluation of the structural constraints is the primary concern), and an alternative codebook
design procedure is selected in order to optimise the shape codebook independent of the gain
values.

Maximising average deterministic correlation

The first stage of each iteration of the GLA consists of identifying the training vectors in each
Voronoi cell, while the second updates each of the code vectors to be the optimum vector for
all of the training vectors in its Voronoi cell. The first stage may easily be modified to define
Voronoi cells in terms of the maximum deterministic correlation, rather than the minimum
MSE distortion. The second stage is more complex, as it is not immediately clear what the
optimum vector for a set of training vectors is when using the deterministic correlation based
measure.

Given the N training vectors t0, t1, . . . , tN−1 in a Voronoi region, the desired optimum
code vector c maximises the average deterministic correlation with the training vectors by
maximising the function

α(c) =
1
N

N−1∑

i=0

〈c, ti〉
‖c‖ ‖ti‖ .
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The maximum of α(c) occurs when ∇cα(c) = 0, and since

∇c
〈c, t〉
‖c‖ ‖t‖ =

t
‖c‖ ‖t‖ −

〈c, t〉c
‖c‖3 ‖t‖ ,

this evaluates to
N−1∑

i=0

ti

‖c‖ ‖ti‖ =
N−1∑

i=0

〈c, ti〉c
‖c‖3 ‖ti‖ ,

which may be written as
N−1∑

i=0

ti

‖ti‖ =
c
‖c‖

N−1∑

i=0

〈c, ti〉
‖c‖ ‖ti‖ .

Rewriting the right hand side

N−1∑

i=0

〈c, ti〉
‖c‖ ‖ti‖ =

N−1∑

i=0

〈 c
‖c‖ ,

ti

‖ti‖〉 = 〈 c
‖c‖ ,

N−1∑

i=0

ti

‖ti‖〉

reveals the solution

c =
1
N

N−1∑

i=0

ti

‖ti‖
to be simply the usual centroid of the set of normalised training vectors. Unfortunately,
however, this solution ignores the possibility of a negative scaling coefficient for a subtree,
in which case maximising the deterministic correlation between vectors is suboptimal. The
appropriate criterion for a match is to maximise the absolute value or the square of the
deterministic correlation.

Maximising average absolute value of deterministic correlation

Addressing first the absolute value deterministic correlation criteria, the function to be max-
imised for the training vectors in a Voronoi region is

α(c) =
1
N

N−1∑

i=0

∣∣∣∣
〈c, ti〉
‖c‖ ‖ti‖

∣∣∣∣ .

Proceeding as before, since8

∇c

∣∣∣∣
〈c, t〉
‖c‖ ‖t‖

∣∣∣∣ = sign〈c, t〉
(

t
‖c‖ ‖t‖ −

〈c, t〉c
‖c‖3 ‖t‖

)
,

8Where

sign x =

� −1 if x < 0
1 otherwise.
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the requirement ∇cα(c) = 0 for a maximum implies

N−1∑

i=0

sign〈c, ti〉 ti

‖c‖ ‖ti‖ =
N−1∑

i=0

sign〈c, ti〉 〈c, ti〉c
‖c‖3 ‖ti‖ ,

which reduces to
N−1∑

i=0

sign〈c, ti〉 ti

‖ti‖ =
c
‖c‖

N−1∑

i=0

sign〈c, ti〉 〈c, ti〉
‖c‖ ‖ti‖ .

Rewriting the right hand side as before

N−1∑

i=0

sign〈c, ti〉 〈c, ti〉
‖c‖ ‖ti‖ =

N−1∑

i=0

〈 c
‖c‖ , sign〈c, ti〉 ti

‖ti‖〉 = 〈 c
‖c‖ ,

N−1∑

i=0

sign〈c, ti〉 ti

‖ti‖〉

reveals the solution to be

c =
1
N

N−1∑

i=0

sign〈c, ti〉 ti

‖ti‖ .

This is unfortunately not a closed form equation, the only obvious technique of finding
a solution being to test all possible values of sign〈c, ti〉 for consistency, which is a time-
consuming task which entails testing each of 2N different sign assignments.

An iterative approach may be considered as an alternative solution. One would expect the
existing code vector cj for a Voronoi region to be reasonably close to the centroid after a few
iterations of the GLA, in which case most of the centroids, or new code vectors cj+1, would
be such that sign〈cj , ti〉 = sign〈cj+1, ti〉. A reasonable approach based on this assumption is
to define9

cj+1 =
1
N

N−1∑

i=0

sign〈cj , ti〉 ti

‖ti‖ .

Now √
〈cj+1, cj+1〉 =

1
N

N−1∑

i=0

sign〈cj , ti〉 〈cj+1, ti〉
‖cj+1‖ ‖ti‖ ,

and by comparison with

α(cj+1) =
1
N

N−1∑

i=0

sign〈cj+1, ti〉 〈cj+1, ti〉
‖cj+1‖ ‖ti‖

it is clear that √
〈cj+1, cj+1〉 ≤ α(cj+1).

9This is in fact equivalent to the solution adopted by Lepsøy [112, ch. 3], based on a rather different deriva-
tion. Lepsøy’s approach however, did not lead to a simple solution for the squared deterministic correlation
criterion as presented here.
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In addition

〈cj+1, cj〉 =
1
N

N−1∑

i=0

sign〈cj , ti〉〈cj , ti〉
‖ti‖

which implies
〈cj+1, cj〉√〈cj , cj〉

= α(cj).

Applying the Cauchy-Schwarz inequality [186, pg. 185]

〈cj+1, cj〉2 ≤ 〈cj+1, cj+1〉〈cj , cj〉

gives
α(cj+1) ≥ α(cj).

Since each iteration moves the codebook vector closer to its optimum for a particular set of
training vectors, the inclusion of this step in the GLA, rather than the assignment of the
exact centroid, results in a convergent algorithm.

Maximising average squared deterministic correlation

In the case of the squared deterministic correlation criterion the function to be maximised is

α(c) =
1
N

N−1∑

i=0

〈c, ti〉2
‖c‖2 ‖ti‖2

.

Once again requiring ∇cα(c) = 0, and noting

∇c
〈c, t〉2

‖c‖2 ‖t‖2
=

2〈c, t〉t
‖c‖2 ‖t‖2

− 2〈c, t〉2c
‖c‖4 ‖t‖2

,

results in the condition
N−1∑

i=0

〈c, ti〉ti

‖c‖2 ‖ti‖2
=

N−1∑

i=0

〈c, ti〉2c
‖c‖4 ‖ti‖2

for an optimum c. Expressing this condition as

N−1∑

i=0

〈c, ti〉
‖c‖ ‖ti‖

ti

‖ti‖ =
c
‖c‖

N−1∑

i=0

〈c, ti〉2
‖c‖2 ‖ti‖2

,

and observing that

N−1∑

i=0

〈c, ti〉2
‖c‖2 ‖ti‖2

=
N−1∑

i=0

〈 c
‖c‖ ,

〈c, ti〉
‖c‖ ‖ti‖

ti

‖ti‖〉 = 〈 c
‖c‖ ,

N−1∑

i=0

〈c, ti〉
‖c‖ ‖ti‖

ti

‖ti‖〉,
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the solution may be shown to be

c =
1
N

N−1∑

i=0

〈c, ti〉
‖c‖ ‖ti‖

ti

‖ti‖ .

Since this solution is not in closed form, an iterative approach

cj+1 =
1
N

N−1∑

i=0

〈cj , ti〉
‖cj‖ ‖ti‖

ti

‖ti‖

is adopted as before. The proof of convergence proceeds in a similar fashion to that for the
previous case. As before, it is easily shown that

α(cj) =
〈cj+1, cj〉√〈cj , cj〉

.

Similarly

〈cj+1, cj+1〉 =
〈cj+1, cj+1〉√〈cj+1, cj+1〉

=
1
N

N−1∑

i=0

〈cj , ti〉
‖cj‖ ‖ti‖

〈cj+1, ti〉
‖cj+1‖ ‖ti‖ ,

α(cj) =
1
N

N−1∑

i=0

〈cj , ti〉2
‖cj‖2 ‖ti‖2

,

and

α(cj+1) =
1
N

N−1∑

i=0

〈cj+1, ti〉2
‖cj+1‖2 ‖ti‖2

.

Now writing

ai =
〈cj , ti〉
‖cj‖ ‖ti‖ bi =

〈cj+1, ti〉
‖cj+1‖ ‖ti‖

and considering the ai and bi each as the components of an N -vector it is clear that

〈cj+1, cj+1〉 = 〈a,b〉2, α(cj) = 〈a,a〉 and α(cj+1) = 〈b,b〉.

Since by the Cauchy-Schwarz inequality 〈a,b〉2 ≤ 〈a,a〉〈b,b〉,

〈cj+1, cj+1〉 ≤ α(cj)α(cj+1).

A further application of the Cauchy-Schwarz inequality 〈cj+1, cj〉2 ≤ 〈cj , cj〉〈cj+1, cj+1〉 im-
plies

(α(cj))
2 =

〈cj+1, cj〉2
〈cj , cj〉 ≤ 〈cj+1, cj+1〉 ≤ α(cj)α(cj+1)

and therefore
α(cj) ≤ α(cj+1).
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Once again, this step may therefore safely be included in the GLA.

6.4.2 Codebook efficiency comparisons

Codebook efficiency comparisons for the “Airplane”,“Lena” and “Peppers” images are pre-
sented in Tables 6.16, 6.17 and 6.18 respectively. Domain and range subtrees were rooted
at resolutions id and ir = id + 1 respectively, and all fixed codebooks were optimised using
the GLA with squared deterministic correlation distortion criterion, which consistently deliv-
ered a slightly better codebook than the absolute value criterion. In each case the codebook
training set was constructed from subtrees rooted at resolution ir in the set of test images
(excluding the image from which the range subtrees were extracted), and the subtrees for the
codebook required to initialise the GLA were selected from this training set.

The maximum %2 values are, in the majority of cases, higher for the fixed codebook than
the self codebook, often even for a fixed codebook one quarter the size of the corresponding
self codebook. The two codebook performances are equal however, for the highest resolution
subtrees in the “Lena” and “Peppers” images10. The expected convergence of random and
optimised codebook performance with increasing codebook size [210] may be observed, for
these cases, in the random codebook results of the previous section11. Since local similarity
between subtrees is able to confer an advantage over a random codebook on a self codebook, it
is possible that, where random and optimised codebook performances are sufficiently similar,
this advantage might slightly outweigh that of optimisation.

There is no observable improvement of the self codebook relative to the fixed codebook in
changing from the Haar to the spline basis. This suggests that the improved performance of
fractal coding in the smooth wavelet basis [46] is not a result of the exploitation of a form of
self-affinity which is present to a greater extent than in the Haar basis; a corresponding com-
parison for an equivalent form of VQ is likely to exhibit a similar performance improvement
in the spline basis.

Although the self codebook enjoys the advantage of code vectors which are statistically
related to the domains (resulting in the central %2 peaks), the disadvantage of the absence of
an optimisation procedure appears to outweigh it in most of the cases examined here. While
borderline strong self-affinity may be present for some large domain pools, there is no evidence
for any significant advantage for the self codebook, and one may reasonably claim that, on
average, the test images are not strongly self-affine.

The relative merits of self and optimised codebooks as described here are compatible with
Lepsøy’s comparison [112, ch. 5] of fractal coding with an equivalent VQ scheme, in which VQ

10These are also the images with large domain locality effects referred to in Section 6.2.2, but this may well
be coincidental, given the small test set.

11It is interesting that a random codebook with approximately the distribution of the domain subtrees
has similar performance to a codebook optimised for the range subtrees. This observation is evidence for a
stochastic fractal nature of natural images, since it appears that their statistics are approximately invariant to
a shift in resolution.
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Table 6.16: Comparison of self and optimised codebooks for range subtrees in the ”Air-
plane” image.

Haar basis Spline basis
Self Codebook Fixed Codebook Self Codebook Fixed Codebook

ir %2 MSE Size %2 MSE %2 MSE Size %2 MSE
4 0.38 634.50 64 0.42 564.83 0.35 506.04 64 0.42 444.32

32 0.41 584.48 32 0.40 458.71
16 0.39 612.03 16 0.36 473.11

5 0.46 306.66 256 0.50 264.07 0.43 238.01 256 0.49 200.12
128 0.49 271.20 128 0.48 206.04
64 0.47 285.60 64 0.47 211.17

6 0.57 99.77 1024 0.58 90.35 0.54 79.65 1024 0.56 67.33
512 0.57 94.41 512 0.55 69.57
256 0.56 97.90 256 0.54 71.73

Table 6.17: Comparison of self and optimised codebooks for range subtrees in the ”Lena”
image.

Haar basis Spline basis
Self Codebook Fixed Codebook Self Codebook Fixed Codebook

ir %2 MSE Size %2 MSE %2 MSE Size %2 MSE
4 0.45 327.25 64 0.49 305.70 0.42 254.92 64 0.47 230.65

32 0.47 314.50 32 0.46 236.06
16 0.44 332.97 16 0.44 243.88

5 0.53 131.56 256 0.54 132.06 0.49 103.38 256 0.51 99.61
128 0.53 137.84 128 0.50 101.22
64 0.51 143.47 64 0.49 105.88

6 0.57 46.67 1024 0.57 47.52 0.51 36.23 1024 0.51 36.27
512 0.56 49.00 512 0.50 37.92
256 0.55 52.54 256 0.49 39.24
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Table 6.18: Comparison of self and optimised codebooks for range subtrees in the ”Pep-
pers” image.

Haar basis Spline basis
Self Codebook Fixed Codebook Self Codebook Fixed Codebook

ir %2 MSE Size %2 MSE %2 MSE Size %2 MSE
4 0.43 570.82 64 0.50 485.70 0.40 425.17 64 0.47 358.06

32 0.47 508.56 32 0.46 366.25
16 0.45 539.99 16 0.43 381.26

5 0.54 195.70 256 0.56 179.06 0.47 145.16 256 0.50 132.81
128 0.55 189.29 128 0.49 135.18
64 0.53 200.64 64 0.48 140.41

6 0.55 58.15 1024 0.55 59.59 0.46 45.45 1024 0.46 45.73
512 0.54 61.80 512 0.45 47.40
256 0.53 65.44 256 0.44 49.05

was found to be superior in a rate distortion sense. A coding scheme constructed as a hybrid
of fractal coding and VQ [80] was found to perform significantly better than a standard fractal
scheme, and similarly to a comparable VQ scheme, which further supports the superiority of
VQ.

Jacquin reported that fractal coding performed slightly better than VQ for edge blocks
[95]. If this were the case, one would expect a comparison of self and fixed codebooks with
the same deterministic correlation based effectiveness to reveal an advantage in distortion
terms for the domain pool, since the magnitudes of edge range subtrees are expected to be
larger than average. Although a small effect of this type is observed in the results presented
here (for example, ir = 5 and Haar basis in Table 6.17) it is not significant enough to provide
convincing evidence. Such an effect is not necessarily incompatible with the conjecture that
there is only local dependence between subtrees, since it might be a consequence of particularly
high expected similarity between an edge range subtree and its parent domain subtree.

6.5 Conclusions

The consequences of exact self-affinity on image second order statistics were evaluated by
constructing an exactly self-affine model in the wavelet domain. Comparisons with measured
statistics for a set of test images indicated that the variance decay with increasing resolution
associated with an exactly self-affine model may be made compatible with the measured decay
by suitable restrictions on the self-affine model parameters, corresponding to restrictions on
the parameters of a fractal coding scheme. The off-diagonal correlations of the exactly self-
affine models were small, and although the observed pattern was rather unusual, this does
not necessarily constitute a significant incompatibility since test image correlations were also
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small in the smooth wavelet basis. Despite this apparent compatibility there is evidence for
additional non-linear dependence which appears incompatible with image properties.

A direct examination of the self-affinity, similar to that for AR(1) models in Chapter
4, was performed for the set of test images. The domain pool structure of the test images
exhibited increased similarity between spatially close range and domain subtrees, decaying
rapidly with increasing distance in a similar fashion to that observed for AR(1) models. A
comparison with approximations to random domain subtree codebooks suggested that the test
images are weakly self-affine to a significant extent, but there was no compelling evidence that
this is due to any “special relationship” other than the locally increased similarity between
subtrees. While this local similarity may be sufficient for the existence of borderline strong
self-affinity in large codebooks, where the optimisation does not constitute a large advantage
over a random codebook, the test images are, on average, not strongly self-affine.

It is important to emphasise that as a result of practical difficulties in this evaluation, the
results are not as reliable as those for AR(1) models. Since in some cases the differences in
codebook performances are rather small, the corresponding classifications in terms of weak
and strong self-affinity are similarly unreliable. Considerable further investigation of these
issues is therefore required to confirm the tentative conclusions arrived at here.

It appears from the results presented here that there is a significant difference between
domains in the neighbourhood of a range, with which they are statistically related, and distant
domains with which it is not statistically related, but which act as random code vectors. This
distinction may, in simplified form, be encapsulated in an interpretation of fractal coding as a
“predict-or-quantise” strategy, in which representation by nearby domains constitutes vector
prediction, as a result of the statistical dependence, while representation by remote domains
constitutes vector quantisation with a random codebook.
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Conclusions

Despite the apparent absence of any rational foundation in information theory, fractal com-
pression appears to be capable of performance comparable with that of considerably more
theoretically sound compression techniques. The aim of the research described here has been
to provide a theoretical basis for an understanding of the statistical signal properties required
for effective fractal compression.

The fundamental requirement for effective fractal compression is that each signal to be
compressed may be efficiently represented by the parameters of a set of affine transforms un-
der which the signal is invariant, and which collectively comprise a contractive mapping in a
suitably defined space. The existence of this “self-affinity” property is thus the basic assump-
tion underlying fractal compression, and on which any understanding of fractal compression
hinges. This is a complicated assumption, the rationale for which is certainly not obvious1,
although it appears to rest on the existence of a “special relationship” between regions in the
same signal, resulting in their being more similar to each other than to regions in separate
signals, even if the signals are similarly distributed. In particular, it is not immediately clear
whether this entails some hitherto undiscovered property of “natural” images, or is merely a
consequence of known image properties. Although other aspects of fractal compression are
addressed, three primary questions are posed in examining this self-affinity property:

1. Is self-affinity a natural consequence of common or weak statistical conditions?

2. What are the consequences of self-affinity for signals exhibiting this property?

3. To what extent do “natural” images exhibit this property?

7.1 Restrictions and Limitations of Scope

Fractal compression is a blanket description for a wide variety of coding schemes, as should be
clear from Chapter 3. Since many of these differences are not easily represented by different

1Barnsley argues [16, ch. 2] that certain affine transforms of subregions of “natural” images are themselves
“natural” images, but this does not imply the existence of the required “self-affinity” within a particular image.

156
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parameter choices of a single inclusive model, and in most cases evaluation of these coding
schemes is, by practical necessity, performed by numerical experiment rather than symbolic
analysis, only a small subset of the possible schemes is examined here. Furthermore, while
the more complicated of these schemes are usually the most effective, their complexity repre-
sents considerable additional difficulty in obtaining a clear understanding of the underlying
principles, and evaluation has consequently been limited to the simplest cases.

The primary restrictions lie in the range partition (fixed size blocks, square where applica-
ble), block transforms (affine), in the limited variety of domain pools (in particular excluding
the domain search free types of fractal coding [134] [135]), and in the omission of block
isometry operations (see Section 3.2.1) and collage optimisation (see Section 3.7.3). In addi-
tion, many of the results were generated for one-dimensional signals only, and in many cases
assumptions were made with respect to the transform parameter probability densities.

While any conclusions drawn from the results presented here are obviously subject to
these limitations, there is sufficient commonality between fractal coding schemes for one to
suspect, in the absence of evidence to the contrary, that they are relevant to a considerably
wider variety of schemes than those examined here.

7.2 Description and Interpretation

The term “fractal compression” is derived from the similarity between the signal represen-
tation utilised and the Iterated Functions Systems used in generating deterministic fractal
images, as well as the potential of the representation for decoding at arbitrary resolution, with
synthesis of detail at all resolutions. The prevalence of this term is unfortunate, emphasising
as it does one of the least significant aspects of the technique, as well as creating the im-
pression that the success of fractal compression is a result of exploitation of the deterministic
fractal properties of natural images, which do not appear to exist to any appreciable extent.
In addition, the algorithm of Rinaldo and Calvagno [163] is not associated with fractals, yet is
sufficiently conceptually close to fractal compression that they should share a common classi-
fication. Alternatives such as “Iterated Transformation Theory” based coding [93], “attractor
coding” [112] and “self-quantisation” [47] have been proposed, but have not superseded the
original description.

An interesting interpretation of fractal coding as long-range non-causal prediction has
been proposed [118], but although there are distinct similarities, the representation of an
image block by a distant domain block can not justifiably be viewed as prediction2, which
requires statistical dependence between the blocks, for which there is no evidence in the case

2In addition, the prediction is usually based on samples at a fixed location, and is not constructed by
locating the best predictor deterministically for each signal. An analogy might be drawn however, with
the relationship between transform coding and Singular Value Decomposition (SVD) coding [5] [71]. While
transform coding is optimised for optimal energy packing in a statistical sense, the SVD performs a similar
function deterministically for each signal to which it is applied.
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of images. This is however, a reasonable interpretation of the domain search free types of
fractal coding [134] [135].

The usual interpretation in terms of VQ utilising a “self codebook” coincides well with
the actual coding procedure of fractal compression, but does not adequately describe the
statistical dependence between neighbouring domains and ranges. While any range block
may, in principle, be represented to an arbitrary accuracy by a transform on a remote domain
block, the “shape” of the range block is far more strongly constrained by requiring it to be
equal to a transform on a domain block with which it overlaps, which introduces deterministic
constraints on the range block. The domain pool is thus a codebook in the way it is used,
but not in the motivation for its use.

It is proposed here that fractal coding be interpreted as a “predict-or-quantise” strategy in
the wavelet transform domain. To simplify somewhat, if a range subtree cannot be sufficiently
accurately predicted from its parent subtree, it is vector quantised in terms of the random
codebook consisting of the remaining domain subtrees. The option of quantisation in the event
of inadequate prediction accuracy replaces the usual coding of residual error after prediction.
The actual fractal coding process is usually more complex, since there is not such an abrupt
transition between prediction and quantisation.

7.3 Self-Affinity of a Standard Class of Signal Models

The self-affinity of a class of standard signal models, consisting of AR(1) models with cor-
relation varying between 0 and 1, was examined in order to determine whether self-affinity
is a natural consequence of standard statistical characterisations in terms of second order
statistics. Significant self-affinity requires range blocks to be more similar to domain blocks
in the same signal than to statistically independent, but similarly distributed, domain blocks.
The correlation between samples of an AR(1) model results in such dependence between
neighbouring domain and range blocks, but to an extent sufficient only for the presence of
marginally significant self-affinity. It is therefore conjectured that strong self-affinity is not a
natural consequence of simple statistical restrictions.

7.4 Statistical Consequences of the Self-Affinity Assumption

Since fractal compression performance improves with increasing self-affinity (essentially by
definition), it is reasonable to enquire what the consequences of exact self-affinity are for
the standard signal statistics, in particular the second order statistics, which for a variety
of reasons are used predominantly in stochastic signal modelling. This question is answered
by constructing a signal model generating exactly self-affine signals (subject to a number of
assumptions, since many such models are possible).

A decaying autocorrelation with initial high correlation, which is compatible with mea-
sured image statistics [37, ch. 2], is found to result from the assumption of exact self-affinity.
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In the wavelet transform domain, with appropriate restrictions on the model parameters, the
decay of average detail coefficient variance with increasing resolution is a reasonable match
for the behaviour observed for “natural” images. The average correlations between detail co-
efficients are small, which is also the case for “natural” images in a number of wavelet bases.
The pattern of correlations between detail coefficients is however rather unusual, and it is
doubtful whether appropriate adjustments to the model parameters are capable of creating a
particularly good match with the corresponding statistics for “natural” images.

Although the Haar transform is found to effectively decorrelate the signal samples of
exactly self-affine models, a comparison between the relative efficiencies of transform coding
of the transform coefficients, and direct coding of the fractal representation coefficients, reveals
the existence of considerable residual dependence subsequent to decorrelation. Thus, although
in a broad sense the consequences for second order statistics of exact self-affinity are reasonable
(although difficult to adapt as desired by tuning model parameters), there are additional
consequences of the assumption which are not revealed by the second order statistics. An
appropriate statistical characterisation of these consequences was not found.

7.5 Self-Affinity of Natural Images

The self-affinity of a set of standard images was evaluated in the wavelet transform domain
for Haar and spline bases. It should be emphasised that this investigation is considerably less
reliable in determining the properties of natural images than the corresponding investigation
for AR(1) models, for which a precise characterisation is available. Nevertheless, it appears
as if the domain pool structure of natural images is qualitatively similar to that of high
correlation AR(1) models, the only significantly enhanced similarity being observed between
neighbouring domains and ranges. The domain pool was generally considerably less effective
than an optimised codebook, although in a few cases the local similarity was sufficient for
the domain pool to be as effective. While natural images may be self-affine to a small but
significant extent, there is no evidence that this self-affinity is sufficiently strongly present for
the domain pool to have any appreciable advantage over an optimised codebook. The observed
degree of self-affinity of natural images appears simply to be a consequence of dependence
between neighbouring pixels, rather than some mysterious relationship between all parts of
an image.

7.6 Rate Distortion Performance of Fractal Image Coding

Some caution is required in discussing the effectiveness of fractal compression for image coding,
since the wide variety of available schemes are responsible for an equally wide variety of
performance levels. While a favourable comparison with JPEG transform coding at low bit
rates is common [63], this comparison is somewhat biased since this transform coding scheme is
not designed for low bit rates [182]. A far more fair comparison may be made with the EZW
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algorithm, against which many fractal coding systems compare rather poorly (see Section
3.10). Nevertheless, the existence of a few systems which do offer comparable performance
to the state of the art EZW algorithm suggests that the assumptions underlying the fractal
coding framework are, at least to some extent, accurate.

The results presented in this dissertation suggest that the effectiveness of fractal coding
is the result of the ability of the codebook derived from the domain pool to be almost as
effective as a fixed optimised codebook at the same block size. Although the domain pool is
similar to a random codebook in structure, the disadvantage of the absence of optimisation is
compensated for to some extent by the dependence between neighbouring domain and range
blocks, constituting a form of prediction of the range from a domain. Additional constraints
necessary for utilising the domain pool in fractal coding, such as those required to guarantee
contractivity, further reduce the performance of fractal compression relative to VQ. As a
result, it is reasonable to claim that the effectiveness of fractal coding is largely due to its
ability to emulate, rather than outperform VQ.

The wavelet transform domain perspective (see Section 3.9) is helpful in explaining why
the form of VQ it emulates, operating on detail coefficient subtrees, is effective. Recent high
performance compression algorithms [182] have been designed based on assumption of the
importance of utilising the combined space-frequency localisation of image energy provided
by the wavelet transform, in the sense that the majority of image energy is conjectured to be
concentrated at low frequencies (coarse resolution coefficients) as well as spatially localised
about edges and texture in the high frequencies (fine resolution coefficients) [208]. The wavelet
subtree is the natural structure for representing such combined localisation, and it it thus
reasonable to expect VQ on these subtrees to be effective [43]. In addition, since a domain
block does not have to be identified when the relevant scaling coefficient is zero, this represents
a primitive form of zerotree coding3, and as the distortion threshold is raised in order to
decrease the bit rate, such a zerotree equivalent becomes more likely.

7.7 Advantages and Disadvantages

While the primary criterion of rate distortion behaviour of fractal compression has already
been discussed, there are often additional criteria of a more practical nature that are also
significant in selecting an appropriate compression algorithm, the most common of which are
the encoding and decoding times. Rapid decoding has been claimed [6] as an advantage of
fractal compression over transform coding, although there do not appear to have been any
comparisons between decoding times for fractal compression and other schemes such as the
EZW algorithm. There is no reason however, to expect decoding of the fractal representation
to be any more rapid than the equivalent VQ scheme.

3More similar to that of Lewis and Knowles [114] than the zerotrees used in coding significance maps in
the EZW coder [182].
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Encoding times are often not as critical as decoding times4, and although fractal compres-
sion has traditionally required excessive encoding times, significant advances have recently
been made in addressing this problem (see Section 3.4). Once again, there is no reason to
expect slower encoding for an equivalent VQ system, since any preprocessing required for an
efficient search of a fixed codebook need not be performed for each image to be coded.

Another oft-cited advantage of fractal compression is so called “resolution independence”
(see Section 3.6.2). Although it is true that the structure of the image representation may
be designed to have no explicit reference to a particular image size, this representation is
implicitly dependent on the resolution of the image during its construction (i.e. at encoding),
and it is more accurate to consider the decoder as being capable of a form of interpolation
naturally associated with the image representation. This ability is only partially relevant
to actual image compression, since any other compression algorithm could also incorporate
interpolation at the decoder if desired5. Since empirical evidence suggests that there is no
significant advantage to representing image subtrees in terms of subtrees rooted at coarser
resolutions in the same image (other than for neighbouring subtrees), it is natural to enquire
whether equally effective interpolation is possible for a fixed codebook by truncating the
highest resolution coefficients of codebook subtrees for normal operation, and restoring them
where interpolation is required. It is, in any event, unlikely that either form of interpolation
would be as effective as one based on a more careful analysis of the progression of wavelet
maxima across resolutions [33] [34].

The absence of a firm theoretical basis for fractal compression leads to a number of diffi-
culties in practical implementation, as well as in the development of specific coding schemes,
where it often results in ad hoc design choices, with little understanding of the reasons for
their effectiveness. While relaxing the constraints on scaling coefficients has been shown to
result in improved reconstruction fidelity [62], guaranteeing eventual contractivity poses a
significant problem for all but the simplest cases [90]. A heuristic approach which works in
the majority of cases may be acceptable in a research setting, but it is certainly not acceptable
in a commercial implementation. An additional disadvantage of fractal compression is that
the actual reconstruction distortion is not easily available during the encoding phase, with
the result that it is difficult to encode with a target distortion limit. These complications all
contribute to increased difficulty in designing a robust compression system which does not
require impractical levels of operator tuning6.

It appears therefore (bearing in mind the restrictions in scope of the results presented
here), that fractal coding has no significant advantages over the equivalent (i.e. same block
size and product codebook) form of VQ. With the additional consideration of the broad patent

4Especially in applications where multiple decode cycles are performed for each encode cycle.
5To be fair, the fractal representation may be a more time efficient means of achieving this in circumstances

where images are frequently desired to be reproduced at a variety of sizes.
6One must assume that these difficulties have been solved in the implementation of the commercially

available fractal compression software.
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coverage of fractal compression [16], as well as the more developed theoretical background of
VQ, this observation weighs heavily in favour of VQ based systems in any evaluation expected
to lead to a commercial implementation.

In defence of fractal compression it might be claimed that it is based on rather general
statistical assumptions, and is thus suitable for a broad class of signals (as is the EZW
algorithm [182], which requires only that each wavelet detail coefficient is likely to have
smaller magnitude than its parent). Thus, while VQ may enjoy an advantage when an
accurate statistical characterisation of the source is available7, fractal compression might
provide superior performance to VQ when applied to signals differing significantly from those
in the VQ training set, since the self codebook of fractal compression provides an adaptation
mechanism, which is absent in standard VQ. However, since the self codebook is not equally
efficient for all classes of signals (not all statistical sources exhibit significant self-affinity),
the existence of such an advantage for fractal compression of “natural” images depends on
the similarity between the class of “natural” images and the class of self-affine images. While
the comparisons between domain pool and fixed optimised codebooks were performed on a
set of very dissimilar images (and the fixed codebook training sets excluded the test images),
which suggests that there is no such advantage, the evidence presented here is certainly not
sufficient to entirely exclude this possibility.

In conclusion, the evidence presented here suggests that fractal compression is effective
due to its ability to emulate comparable forms of VQ, but appears not to offer any substantial
advantages over this technique8, while simultaneously introducing a number of disadvantages.
It should however once again be strongly emphasised that these conclusions are subject to
the restrictions in scope described at the beginning of this chapter, and are in particular
not applicable to partitions such as the HV partition, which is constructed to enhance self-
similarity (although empirical evidence presented in Section 3.10 suggests that this does not
result in improved performance).

7.8 Further Research

While the research described in this dissertation has contributed to an improved understand-
ing of the implicit statistical assumptions underlying fractal compression, many significant
questions remain unresolved. The most significant of these are presented here as issues par-
ticularly deserving of further research.

An extension of the evaluations described in this dissertation to a wider range of fractal
coding schemes is clearly desirable, and evaluations based on a significantly larger ensemble

7A VQ codebook may be designed for any source statistics, whereas fractal compression is based on the
assumption of some form of self-affinity, which is not a property shared by all sources.

8There may, in some circumstances, be an advantage to fractal compression in not requiring the storage
of the codebook at the encoder and decoder, but the actual disk space required for these programs is not
particularly critical in most applications.
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of test images are required to confirm the tentative conclusions reached here with respect
to the self-affinity of natural images. Further examination of the self-affine signal models is
also proposed, in order to discover how strongly self-affine a signal model may be without
exhibiting clearly unnatural characteristics. It is suggested that comparisons between the rate
distortion performance of fractal coders and other techniques would benefit from the inclusion
in the comparison of a fixed codebook VQ scheme equivalent to the fractal scheme in as many
respects as possible. This would provide an indication whether superior performance by the
fractal coder is a result of the exploitation of some strongly present form of self-affinity, or
more prosaically, a well designed equivalent VQ algorithm. Since superior performance of the
self codebook has been claimed specifically for edge blocks, individual comparisons between
self and fixed codebooks are required for blocks of different classifications.

The “predict-or-quantise” interpretation suggests two avenues for generalisation. First,
the existing “prediction” stage may be retained, either by considering only the parent domain
subtree of a range subtree, or its immediate neighbours as well, but replacing the remainder
of the domain pool with a fixed optimised codebook. Second, one might also9 consider
alternative forms of prediction of the range subtree, particularly since there is no apparent
reason to expect this to constitute a particularly effective form of prediction, and improved
understanding of this aspect is required.

9Since evidence suggests there is no advantage whatsoever in the use of spatially remote domains, there is
no point in retaining them.
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Probability Theory

Probability theory utilises the language of set theory in addressing the analysis of nondeter-
ministic events in a rigorous fashion. Any process which produces results nondeterministically
is considered to be an experiment with a fixed set of possible outcomes, each of which may
be assigned a probability.

A.1 Probability

The fixed set S of all possible outcomes of an experiment is termed the sample space [110].
The sample space may be continuous or discrete, depending on the problem at hand. A
discrete sample space S = {1, 2, 3, 4, 5, 6} for example, would be appropriate to describe the
outcome of a single throw of a die, whereas a continuous sample space S = [50, 300] would
be appropriate to describe the result of measuring the height in centimetres of a randomly
selected individual.

An event is a subset of a sample space and is considered to have occurred for an experiment
if any of its elements is an outcome of that experiment [110]. Possible events defined on the
samples spaces in the preceding examples might be the event “an odd number is thrown”
A = {1, 3, 5}, or the event “a very short person is measured” B = [50, 100].

The purpose of defining a sample space and events of interest is to enable calculation of the
probability of these events. The simplest and most easily comprehended interpretation1 of the
probability of an event is that of relative frequency. In this interpretation, if an experiment is
repeated n times and the event A occurs k times, the probability of event A is approximately
k/n, the estimate becoming more accurate as n increases.

The following axioms for a probability measure in a sample space are defined in accordance
with the requirements of the intuitive notion of probability discussed above [52] [110]:

Definition 1 A probability measure on a sample space S is a function2 P : P(S) → R such
1Although one with some technical difficulties.
2The power set of A, P(A) = {X|X ⊂ A} is the set of all subsets of A.
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that

1. P (S) = 1

2. P (A) ≥ 0 ∀A ⊂ S

3. P (∪iAi) =
∑

i P (Ai) if Ai ∩Aj = ∅ ∀i 6= j

These axioms define conditions necessary for a function to be a valid probability measure,
but do not suggest how to construct this measure in order to represent an accurate description
of the physical situation or experiment of interest. A number of useful results may be derived
from these axioms [110, pg. 27]:

1. P (∅) = 0

2. P (S −A) = 1− P (A)

3. P (A ∪B) = P (A) + P (B)− P (A ∩B)

In many cases knowledge of one event may allow a re-evaluation of the probability of
another. The conditional probability P (B|A) of event B given that A has occurred is obtained
by re-normalising such that A becomes the new sample space

P (B|A) =
P (B ∩A)

P (A)
if P (A) 6= 0.

Returning to the example of the die, if event A = {1, 3, 5} and event B = {6}, it is clear that
knowing A has occurred influences the probability of B (in this case fixing it at 0, since A

and B are mutually exclusive).
Two events A and B are independent if P (B|A) = P (B), which is equivalent to

P (A ∩B) = P (A)P (B).

Independent events provide no information about each other in the sense of conditional prob-
ability.

A.2 Univariate Random Variables

The appropriate model for the result of an experiment often involves a numerical description of
the outcome. Random variables provide a formal mechanism for modelling such experiments
when the behaviour of the underlying processes is nondeterministic. Just as in the case of
deterministic variables, random variables may be manipulated algebraically, although with
considerably greater difficulty [187]. Formally, a random variable is defined as follows [110,
pg. 76]:
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Definition 2 A (univariate) random variable X on a sample space S is a function X : S →
R.

Returning to the previous example of random height measurements, a random variable X

might be defined as X(s) = 10s with s ∈ S, representing the height in millimetres, while the
sample space consists of heights measured in centimetres. The standard methods of dealing
with random variables are dependent on the type of range of the random variable.

A.2.1 Discrete random variables

A random variable X is discrete if its range is a discrete set, that is, it consist of only countably
many elements in R [110, pg. 76]. The probability mass function (pmf) of a random variable
X defined on sample space S

pX(x) = P ({s ∈ S | X(s) = x})

assigns a probability to each element of the range of X in terms of the probabilities of the
underlying events in S. Since the notation above is rather cumbersome, it is often abbreviated
as

P (X = x) ≡ P ({s ∈ S | X(s) = x})
P (X < x) ≡ P ({s ∈ S | X(s) < x})

and so forth. The probability of an event {s ∈ S | a < X(s) ≤ b} in the range of the random
variable X is

P (a < X ≤ b) =
∑

a<x≤b

pX(x).

The cumulative distribution function (cdf) [110, pg. 86] of a random variable X is defined
as

FX(t) = P (X ≤ t),

which may, for a discrete random variable X, be expressed in terms of the pmf as

FX(t) =
∑

x≤t

pX(x).

The probability of events in the form introduced above may instead be expressed as [110, pg.
84]

P (a < X ≤ b) = FX(b)− FX(a).
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A.2.2 Continuous random variables

A continuous random variable X has a range consisting of an interval or union of intervals
in R, with the probability of any single element of the range equal to zero [110, pg. 76]. The
probability density function (pdf) fX is defined such that [110, pp. 87-88]

P (a < X ≤ b) =
∫ b

a
fX(x) dx,

equivalent to requiring that

FX(t) =
∫ t

−∞
fX(x) dx.

The probability of an event may be visualised as the area under the curve integrated over all
regions of the x axis within the event of interest (see Figure A.1). Subject to a few technical
requirements which will not be dealt with here

fX(t) =
d

dt
FX(t).
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Figure A.1: Probability P (−σ < X < σ) ≈ 0.68 as area under the curve for a Gaussian
pdf with µ = 0 and σ = 1.
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A.2.3 Expected values

The expected value of a function g(X) of random variable X is the average value of the
function over all x in the range of X (weighted by the probability of x), and is defined3

as [110, pp. 95-96]
E[g(X)] =

∑
x

g(x)pX(x)

for a discrete random variable and

E[g(X)] =
∫ ∞

−∞
g(x)fX(x) dx

for a continuous random variable. It may be shown that for a, b ∈ R and functions g, h that

E[ag(X) + bh(X)] = aE[g(X)] + bE[h(X)].

The expected values of standard functions gk(x) = xk, the moments of a random variable,
are useful in summarising many of its properties. The kth moment of random variable X is
E[Xk]. The mean

µX = E[X],

the first moment of X, measures the “centroid” of the distribution. The kth central moment
is defined as E[(X − µX)k]. The variance

σ2
X = E[(X − µX)2]

is the second central moment of X, and is a measure of the “spread” in the distribution. The
square root of the variance is the standard deviation σX .

A.2.4 Standard distributions

Processes are often modelled by random variables selected from a set of standard distributions.
The simplest distribution is the uniform pdf (see Figure A.2), defined as [110, pp. 152-153]

fX(x) =

{
1

b−a a ≤ x ≤ b

0 otherwise,

where a and b are parameters determining the extent of the distribution. The mean and
variance are µX = b+a

2 and σ2
X = (b−a)2

12 respectively.
The most commonly encountered distribution is the Normal or Gaussian pdf (see Figure

3The expected values may not exist if the sum or integral is not convergent.
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Figure A.2: Uniform pdf on the interval [−1, 1].

A.3), defined as [110]

fX(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 .
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Figure A.3: Gaussian pdfs with µ = 0.

The Laplace pdf (see Figure A.4), defined as [57]

fX(x) =
1

σ
√

2
e−

√
2

σ
|x−µ|

is useful in signal modelling applications, as is the generalised Gaussian pdf (see Figure A.5),
which is defined as4 [37, ch. 4] [190]

fX(x) =
να(σ, ν)
2Γ(1/ν)

e−(α(σ,ν)|x−µ|)ν

4The gamma function is defined as Γ(x) =
R∞
0

e−ttx−1 dt.
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Figure A.4: Laplacian pdfs with µ = 0.

where ν ∈ (0,∞) and

α(σ, ν) =
1
σ

√
Γ(3/ν)
Γ(1/ν)

.

The parameter ν controls the form of the pdf, which is the same as the Gaussian pdf for
ν = 2, the Laplace pdf for ν = 1, and approaches the uniform pdf as ν →∞ [190].
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Figure A.5: Generalised Gaussian pdfs with µ = 0 and σ = 1.

A.3 Multivariate Random Variables

A univariate random variable is inadequate for modelling processes generating vector valued
results, such as a simultaneous throw of three dice, or measurement of the height and weight
of a randomly selected individual. A multivariate random variable is used where a vector
valued range is desired.
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Definition 3 An n-dimensional multivariate random variable X on a sample space S is a
function X : S → Rn.

X0 X1 X2 X3

x0

x1

xk−1

X4 X5

Figure A.6: Ensemble of k vectors x0 . . .xk−1. The statistics of element i across the
ensemble are represented by the random variable Xi.

The random variable X = (X0, X1, . . . , Xn−1)T may be visualised as representing the
statistical properties of a large ensemble of individual vectors x as displayed in Figure A.6.

A.3.1 Discrete random variables

The pmf of a discrete multivariate random variable X on sample space S is defined analogously
to the univariate case as

pX(x) = P ({s ∈ S | X(s) = x}),

or pX(x) = P (X = x) in the abbreviated notation. As in the univariate case, the probability
of an event is obtained by summing the pmf over all elements of the range of X in that event

P (A) =
∑

x∈A

pX(x).

The cdf of a multivariate random variable is defined as

FX(t) = FX0,X1,...,Xn−1(t0, t1, . . . , tn−1) = P (X0 ≤ t0, X1 ≤ t1, . . . , Xn−1 ≤ tn−1).



172 Appendix A

A.3.2 Continuous random variables

The pdf fX(t) of a multivariate continuous random variable X is defined such that the prob-
ability of an event A is

P (A) =
∫

A
fX(t) dt.

Subject to a few technical requirements which will not be discussed here,

fX(t) =
∂n

∂t0∂t1 . . . ∂tn−1
FX(t).

A.3.3 Marginal distributions

The marginal distributions [52] [110] of a bivariate distribution (X, Y ) are the individual
distributions of random variables X and Y . The marginal distribution of X is obtained by
summing

pX(x) = P (X = x) =
∑

y

pX,Y (x, y)

or integrating

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy

over all possible values of Y (and vice versa for the marginal distribution of Y ). When dealing
with multivariate distributions of higher dimensionality one may also define the marginal
distributions of any subset of the components by integrating or summing over the remainder
of the components [52, pp. 143-144].

The individual random variables Xi making up the vector random variable X are inde-
pendent [81] iff

pX(x) =
∏

i

pXi(xi)

for a discrete pdf, or
fX(x) =

∏

i

fXi(xi)

for a continuous distribution.

A.3.4 Conditional distributions

The conditional distributions [52] [110] of a bivariate distribution (X, Y ) are the distributions
of one of the component random variables given that the value taken on by the other random
variable is known. The conditional distribution of X, given that Y = y is defined as

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
pY (y) > 0
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for discrete random variables, and as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
fY (y) > 0

for continuous random variables, where the conditional distribution of Y given that X = x is
defined analogously. Conditional distributions of a subset of the components of a multivariate
distribution of higher dimensionality may also be defined in an analogous fashion [52, pp. 146-
148].

A.3.5 Expected values

Expected values are defined by an obvious extension of the univariate definition;

E[g(X)] =
∑
x

g(x)pX(x)

for a discrete random variable and

E[g(X)] =
∫

g(x)fX(x) dx

for a continuous random variable. The function g(X) may be vector valued, resulting in a
vector valued expectation. In particular, the mean vector µX = (µX0 , µX1 , . . . , µXn−1)

T is

µX = E[X].

A.3.6 Correlation and covariance

Given a bivariate distribution (X,Y ), the covariance of X and Y [110, ch. 5]

σXY = E[(X − µX)(Y − µY )]

is a measure of the linear dependence between X and Y . Since this value is dependent on the
individual variances of X and Y , a better indication of the linearity of the relationship is the
correlation coefficient [110, ch. 5] (also called the normalised covariance [99, ch. 2])

ρXY =
σXY

σXσY
,

which may be shown to be restricted to the range ρXY ∈ [−1, 1].
The autocorrelation of X

RX = E[XXT ]

and autocovariance of X

CX = E[(X− µX)(X− µX)T ]



174 Appendix A

are a measure of linear dependence between components of the multivariate random variable
X. The diagonal element at position (i, i) of CX is the variance σ2

Xi
and the off diagonal

element at (i, j) is the covariance σXiXj .
It is often convenient to express the autocorrelation and autocovariance as the functions

RX(i, j) = E[XiXj ]

and
CX(i, j) = E[(Xi − µXi)(Xj − µXj )]

respectively. A wide-sense stationary random variable X has

µXj = µXj+k
= µX and σ2

Xj
= σ2

Xj+k
= σ2

X ∀j, k

in which case the autocovariance and autocorrelation are functions of relative displacement
k = n−m only, i.e.

RX(k) = E[XjXj+k]

and
CX(k) = E[(Xj − µX)(Xj+k − µX)].

In this case one may define the power spectral density function

SX(ω) =
∑

k

RX(k)e−ıωk

as the Fourier transform of the autocorrelation function [73, ch. 2], and the variance nor-
malised autocorrelation function as

ρX(k) =
RX(k)
RX(0)

.
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Functional Analysis

Functional analysis plays an important role in signal processing, forming the mathematical
basis of tools such as spectral analysis and Fourier transform theory, as well as the more
recently developed wavelet theory and multiresolution analysis. In addition, concepts from
functional analysis are fundamental to fractal coding.

B.1 Vector Spaces

Vectors and their associated vector spaces play a fundamental role in functional analysis. A
vector space is a non-empty set upon the elements of which operations of addition and scalar
multiplication with desirable properties are defined [108]:

Definition 4 A vector space over a field1 K is a set V 6= ∅ together with the two algebraic
operations:
Vector addition: V × V → V satisfying

1. u + v = v + u ∀u,v ∈ V

2. u + (v + w) = (u + v) + w ∀u,v,w ∈ V

3. ∃0 ∈ V such that u + 0 = u ∀u ∈ V

4. ∀u ∈ V ∃(−u) ∈ V such that u + (−u) = 0

and
Scalar multiplication: K × V → V satisfying

1. k(u + v) = ku + kv ∀k ∈ K, u,v ∈ V

2. (k + l)u = ku + lu ∀k, l ∈ K, u ∈ V

1See Rudin [166] for example, for the definition of a field. Little is lost in this context in assuming that K
is either R or C.
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3. (kl)u = k(lu) ∀k, l ∈ K, u ∈ V

4. ∃1 ∈ K such that 1u = u ∀u ∈ V

The simplest example of a vector space is Rn, the space of n-dimensional Euclidean vectors,
where a geometric interpretation of the individual vectors as directed line segments is possible.

A subspace of a vector space is a subset of that vector space which is closed under ad-
dition and scalar multiplication, i.e. all vector additions and scalar multiplications involving
elements of the subset are also elements of the subset. These requirements may be encapsu-
lated in the following definition [108]:

Definition 5 A subspace U of vector space V is a set U ⊂ V such that

1. U 6= ∅

2. u,v ∈ U ⇒ ku + lv ∈ U ∀k, l ∈ K

Any plane containing the origin is a subspace of R3, for example.
The orthogonal complement of a subspace of a vector space is the set of all vectors in the

vector space which are orthogonal to every vector in the subspace [108]:

Definition 6 The orthogonal complement U⊥ of U in V , where U is a subspace of V , is

U⊥ = {v ∈ V | 〈u,v〉 = 0 ∀u ∈ U}.

The orthogonal complement in R2 of the subspace represented by a line through the origin is
the line through the origin at right angles to the first.

A vector space is the sum of two subspaces if any vector in the space may be expressed
as the sum of a vector from each of the subspaces. If, in addition, the intersection of the
subspaces contains only the 0 vector, uniqueness of the expansion in terms of vectors of the
subspaces is guaranteed and the sum is a direct sum [108]:

Definition 7 A vector space U is the direct sum U = V ⊕W of two subspaces V and W if
every u ∈ U may be expressed uniquely as u = v + w where v ∈ V and w ∈ W .

The vector space R2, for example, may be expressed as the direct sum of the subspaces
represented by non-parallel lines through the origin. A projection is an operator taking a
vector space into one of its subspaces:

Definition 8 The operator P : U → U is the projection from U onto V and parallel to W if
U = V ⊕W , and Pu = v where u = v + w for u ∈ U , v ∈ V and w ∈ W .

A projection operator P is necessarily linear and idempotent (i.e. P 2 = P ).
If the subspaces involved in a direct sum decomposition are orthogonal, the sum is termed

an orthogonal sum.
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Definition 9 A vector space U is the orthogonal sum2 of two subspaces V and W if U =
V ⊕W and W = V ⊥.

In the example involving R2 above, the orthogonal sum decomposition corresponds to two
orthogonal lines. The orthogonal projection from U onto a subspace V is the projection onto
V and parallel to V ⊥.

Subsequent notation and definitions will be simplified by assuming that all vector spaces
are over the field K = R.

B.2 Metric Spaces

A vector space imposes structure on a set by defining operators which constitute rules for
generating set members from other set members. In contrast to this, a metric space need have
no such operations defined, imposing a different type of structure by defining the notion of a
distance or metric between pairs of set members. In order to qualify as a distance measure,
a function should conform to the following definition [108]:

Definition 10 A metric on a set X is a function d : X ×X → R such that

1. d(x, y) = 0 ⇔ x = y ∀x, y ∈ X

2. d(x, y) = d(y, x) ∀x, y ∈ X

3. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X

The definition of a metric space follows immediately:

Definition 11 A metric space (X, d) is a non-empty set X together with a metric d.

Examples of metric spaces include (R, dE), the real numbers with the Euclidean metric
dE(x, y) =| x − y | ∀x, y ∈ R, and (X, dD) for arbitrary non-empty set X with the discrete
metric

∀x, y ∈ X dD(x, y) =

{
0 if x = y

1 if x 6= y.

While the structure imposed on a finite set by a distance measure may not be particularly
interesting, concepts such as continuity become useful for infinite sets. The behaviour of
sequences within these infinite sets is a useful way of characterising the structure of the set
under the chosen metric.

Definition 12 A sequence in (X, d) is a function3 S : N→ X. The members of the sequence
are denoted x0, x1, x2, . . ., i.e. xn = S(n).

2The orthogonal sum may be denoted by
⊥⊕. Note, however, that Chui [36] utilises +̇ for the direct sum,

and ⊕ for the orthogonal sum.
3The natural numbers are defined here as N = {n ∈ Z |n ≥ 0}. Note that a common alternative definition

excludes 0 from this set.
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It is also possible to define a bi-infinite sequence, which is a function S : Z → X having
members . . . , x−1, x0, x1, . . .. When referring to a sequence as a whole, it is conventional4 to
write {xn} as opposed to xn, which is just the nth element of the sequence. The behaviour of a
sequence as it approaches infinity is of particular interest, leading to the notion of convergence.

Definition 13 A sequence {xn} ⊂ (X, d) is a Cauchy sequence if ∀ε > 0 ∃N ∈ N such that
n,m > N ⇒ d(xn, xm) < ε.

A Cauchy sequence has the property that d(xn, xm) → 0 as m,n → ∞. This does not
necessarily imply that the sequence is convergent in the following sense,

Definition 14 A sequence {xn} ⊂ (X, d) converges to a point x ∈ X if ∀ε > 0 ∃N > 0 such
that n > N ⇒ d(xn, x) < ε,

although all convergent sequences are Cauchy sequences. A Cauchy sequence in (X, d) is not
a convergent sequence if it “attempts to converge” to a limit which is not in X, e.g. the
sequence

xn = 1 + 1/1! + 1/2! + 1/3! + . . . + 1/n!

in Q converges to a limit in R, but not in Q [155, pg. 66] [166, pp. 63-65].

Definition 15 A metric space (X, d) is complete if every Cauchy sequence in (X, d) con-
verges to a limit in X.

While R is complete, the counterexample above indicates that Q is not.
Associated with a set such as (0, 1) ⊂ R are boundary points (“accumulation points”)

which are not in the set. The closure of a set is the original set together with the accumulation
points, which are 0 and 1 in the example above.

Definition 16 The closure [10] [166] X in Y of a subset X of metric space Y is

X = {x ∈ Y | ∃{xi} ⊂ Xsuch that lim
i→∞

xi = x}

A set is closed if it is equal to its closure. A closed space is necessarily complete, but not vice
versa.

Definition 17 A subset X of the metric space Y is dense [108] in Y if X = Y .

If X is dense in Y , every member of Y is the limit of a sequence in X.
4A common alternative notation is (xn) for the sequence as a whole.
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B.3 Normed and Inner Product Spaces

While metric spaces were defined for an arbitrary set in the previous section, there is no
reason why that set should not be a vector space if a suitable distance is defined between any
two vectors in that space. Instead of defining a distance on a vector space, one may define
the norm [108]:

Definition 18 A norm on a vector space V over R is a function ‖ · ‖ : V → R such that

1. ‖v‖ ≥ 0 ∀v ∈ V

2. ‖av‖ = |a| ‖v‖ ∀a ∈ R,v ∈ V

3. ‖u + v‖ ≤ ‖u‖+ ‖v‖ ∀u,v ∈ V

4. ‖v‖ = 0 ⇔ v = 0 ∀v ∈ V

which corresponds to the notion of vector magnitude for Euclidean vectors. A norm on a
vector space immediately induces a metric on that space defined by

d(u,v) = ‖u− v‖ ∀u,v ∈ V,

although not every metric on a vector space is induced by a norm.
The definition of a normed space follows immediately

Definition 19 A normed space is a vector space V together with a norm ‖ · ‖.

Since every norm induces a metric, completeness is defined for a normed space, allowing the
following definition

Definition 20 A Banach space is a complete normed space.

An alternative function which may be defined on a vector space is the inner product [108]:

Definition 21 An inner product on a vector space V over R is a function 〈·, ·〉 : V × V → R
such that

1. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 ∀u,v,w ∈ V

2. 〈au,v〉 = a〈u,v〉 ∀a ∈ R,u,v ∈ V

3. 〈u,v〉 = 〈v,u〉 ∀u,v ∈ V

4. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 ⇔ u = 0 ∀u ∈ V

Definition 22 An inner product space is a vector space V together with an inner product
〈·, ·〉.
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A commonly encountered example of an inner product space is Rn with the inner product

〈u,v〉 =
n−1∑

i=0

uivi.

An inner product space is also a normed space since the inner product induces a norm

‖u‖ =
√
〈u,u〉.

Once again, not every norm is induced by an inner product. The relationship between the
various spaces introduced here is displayed in Venn diagram form in Figure B.1.

Metric SpacesVector Spaces Inner Product Spaces

Normed Spaces

Figure B.1: Relationship between vector, metric, normed and inner product spaces.

Definition 23 A Hilbert space is a complete inner product space.

Hilbert spaces of particular interest here are L2(R) and l2(Z), the spaces of square-
integrable functions, and square-summable sequences respectively.

Definition 24 The Hilbert space L2(R) is defined as5

L2(R) =
{

f : R→ R
∣∣∣∣
∫ ∞

−∞
|f(x)|2 dx < ∞

}

with the inner product

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx.

5The integral is a Lebesgue integral, but is equivalent to the Riemann integral for “well-behaved” functions.
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Definition 25 The Hilbert space l2(Z) is defined as

l2(Z) =

{
{ai}

∣∣∣∣∣
∞∑

i=−∞
a2

i < ∞
}

with the inner product

〈{ai}, {bi}〉 =
∞∑

i=−∞
aibi.

These definitions correspond to the sets of functions and sequences with “finite energy”
respectively.

B.4 Orthogonal Bases

In a finite (n-)dimensional Hilbert space H a set {e0, e1, . . . , en−1} forms an orthonormal
basis of H if 〈ei, ej〉 = δi,j and span{e0, e1, . . . , en−1} = H. Any vector u ∈ H may be
expressed as [197] u =

∑
i ciei where the Fourier coefficients of u are ci = 〈u, ei〉.

The situation is more complicated in an infinite dimensional vector space, since by defi-
nition, no finite set can form a basis. In general an orthonormal set {ei}i∈N ⊂ H forms an
orthonormal basis of H iff any of the following equivalent conditions hold [141, ch. 5]

1. 〈u, ei〉 = 0 ∀i ∈ N⇒ u = 0 {ei} is a maximal orthonormal set

2. u =
∑

i∈N
〈u, ei〉ei ∀u ∈ H Fourier series expansion

3. ‖u‖2 =
∑

i∈N
〈u, ei〉2 ∀u ∈ H Parseval equality

4. 〈u,v〉 =
∑

i∈N
〈u, ei〉〈v, ei〉 ∀u,v ∈ H Generalised Parseval equality

5. span{ei}i∈N = H span{ei}i∈N is dense in H

B.5 Biorthogonal Bases

More general representations than those provided by orthogonal bases find application where
the the conditions necessary for a set to form an orthogonal basis are excessively restrictive.
A frame [39, pp. 130-131] [45, ch. 3] [197] [209, ch. 4] is a set of vectors providing a
stable representation in a Hilbert space, but which are not necessarily linearly independent,
and therefore do not necessarily constitute a basis. Stability is guaranteed by the following
definition:
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Definition 26 A frame in a Hilbert space H is a set of vectors {ei}i∈N ⊂ H where ∃A,B ∈
R, A,B > 0 such that ∀u ∈ H

A‖u‖2 ≤
∑

i

〈u, ei〉2 ≤ B‖u‖2.

A more general basis than an orthogonal basis may be defined by the addition of a linear
independence requirement to the definition of a frame [39, pp. 130-131] [209, ch. 1]:

Definition 27 A Riesz basis of a Hilbert space H is a frame such that the constituent vectors
{ei}i∈N ⊂ H are linearly independent.

Since a Riesz basis {ei}i∈N is generally not orthogonal, the appropriate Fourier coefficients
in such a basis may not be calculated as inner products with the basis vectors themselves.
It may be shown, however, that the Fourier coefficients in this basis may be computed with
respect to a dual Riesz basis {ẽi}i∈N, selected such that the basis and its dual are biorthogonal

〈ei, ẽj〉 = δi,j ∀i, j ∈ N.

Definition 28 A set of vectors {ei}i∈N and its dual {ẽi}i∈N represent biorthogonal bases [39]
[197] of a Hilbert space H iff each set is a frame, and 〈ei, ẽj〉 = δi,j ∀i, j ∈ N.

The primary basis and its biorthogonal dual basis are automatically Riesz bases, since the
biorthogonality condition implies linear independence of both sets [39, pg. 131]. Any u ∈ H

may be expressed in such biorthogonal bases as

u =
∑

i∈N
〈u, ei〉ẽi =

∑

i∈N
〈u, ẽi〉ei.

Note that an orthogonal basis corresponds to the special case of {ei} = {ẽi}.
The Parseval equality and the generalised Parseval equality for biorthogonal bases are

[197, pg. 26]
‖u‖2 =

∑

i∈N
〈u, ei〉〈u, ẽi〉

and
〈u,v〉 =

∑

i∈N
〈u, ei〉〈v, ẽi〉 =

∑

i∈N
〈u, ẽi〉〈v, ei〉

respectively.
It is, in some circumstances, convenient to index the set of basis vectors {ei}i∈Z by the

integers, requiring trivial modifications to the conditions above.
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Multiresolution Analysis and

Wavelet Bases

The basis functions of transforms such as the DFT and DCT are constructed by dilation
of a single periodic function (the complex exponential and the cosine function for the DFT
and DCT respectively). The resulting decompositions discard all spatial localisation, since
the periodic basis functions are not spatially concentrated within a particular region. Some
spatial information may be retained by modulating the basis functions by translates of a
suitable “window” function (blocked transforms may be considered to result from modulation
by appropriate translates of the box function), but the fixed width of the window function
represents a compromise between spatial resolution (requiring a narrow window) and accuracy
of representation on the selected basis (requiring a wide window).

The wavelet transform achieves variable spatial resolution by decomposing functions onto
a basis constructed from translations and dilations of a single non-periodic function (the
mother wavelet). Dyadic wavelet bases, in which the basis functions are constructed from
dilations of the mother wavelet by powers of two, are particularly useful in signal processing
and compression applications.

C.1 Multiresolution Analysis

Although there are alternative avenues [45, pg. 136], the simplest construction of dyadic
wavelets is via Multiresolution Analysis (MRA), which provides a formal framework for
analysing functions at different resolutions. Low resolution approximations to a function
may be considered to be lowpass filtered versions thereof, while progressively higher resolu-
tion approximations correspond progressively more closely to the original function as more
function detail is included in the approximation. The formal definition of an MRA ensures
that these approximations are structured so that wavelets generate the bases appropriate for
representing the detail required to move from one resolution to the next.

183
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Definition 29 A multiresolution analysis of L2(R) is a sequence {Vi}i∈Z of closed subspaces
of L2(R) such that [98] [197, ch. 4]

1. Vi ⊂ Vi+1 Containment

2.
⋃

i∈Z Vi = L2(R) Upward completeness

3.
⋂

i∈Z Vi = {0} Downward completeness

4. f(x) ∈ Vi ⇔ f(2x) ∈ Vi+1 Scale invariance

5. f(x) ∈ V0 ⇔ f(x + 1) ∈ V0 Translation invariance

6. ∃φ ∈ V0 such that
∫∞
−∞ φ(x) dx 6= 0 and {φ(x− j)}j∈Z is a Riesz basis of V0.

Each subspace Vi contains the approximation at resolution i of all functions f ∈ L2(R),
where Vi+1 contains functions at a higher1 resolution than Vi. Each detail space Wi is defined
as the complement of Vi in Vi+1

Vi+1 = Vi ⊕Wi,

representing the “detail information” removed by the approximation of a function vi+1 ∈ Vi+1

by a function vi ∈ Vi. Any approximation space may therefore be expressed as the direct sum
of a lower resolution approximation space and the intervening detail spaces

VN = VM ⊕
N−1⊕

i=M

Wi M < N.

Defining the projection operators Pi : L2(R) → Vi and Qi : L2(R) → Wi into the approxima-
tion and detail spaces respectively, this implies that, for any f ∈ L2(R)

PNf = PMf +
N−1∑

i=M

Qif M < N,

resulting in a representation of PNf ∈ VN as the sum of a low resolution approximation and
detail signals, each containing localised spectral information in a different frequency subband
[36, pg. 120]. Any f ∈ L2(R) may, as a result of the upward completeness property, be
expressed as f = PMf +

∑∞
i=M Qif or f =

∑
i∈ZQif .

It may be shown that since the scaling function φ generates a Riesz basis of V0, it also
generates a Riesz basis {φi,j}j∈Z of Vi, where

φi,j =
√

2iφ(2ix− j).

1Daubechies [45] and a number of other authors index in the opposite direction, i.e. Vi+1 ⊂ Vi.
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The Fourier coefficients of function f in this basis are the approximation coefficients ci,j =
〈f, φi,j〉. The dilation equation

φ(x) =
√

2
∑

k

hkφ(2x− k),

is a result of the observation that, since φ ∈ V0 ⊂ V1, it must be possible to express φ as a
linear combination of the basis functions {φ1,j}j∈Z of V1 . The sequence {hk}, together with
the normalisation [98] ∫ ∞

−∞
φ(x) dx = 1

uniquely characterises the scaling function.
The central result of multiresolution analysis is that, given an MRA as defined above,

a mother wavelet ψ may be derived from the scaling function φ such that {ψ(x − j)}j∈Z is
a Riesz basis of W0 [45, ch. 5]. Since the detail spaces inherit the scaling and translation
properties of the approximation spaces, this implies that {ψi,j}j∈Z is a Riesz basis of Wi,
where

ψi,j =
√

2iψ(2ix− j).

The Fourier coefficients of function f in this basis are the detail coefficients di,j = 〈f, ψi,j〉.
A second dilation equation

ψ(x) =
√

2
∑

k

gkφ(2x− k)

is obtained by observing that ψ ∈ W0 ⊂ V1, where the condition

∫ ∞

−∞
ψ(x) dx = 0

ensures that the sequence2 {gk} uniquely characterises the wavelet.
The dilation equations imply φi,j =

∑
k hk−2jφi+1,k and ψi,j =

∑
k gk−2jφi+1,j , and there-

fore
ci,j =

∑

k

hk−2jci+1,k and di,j =
∑

k

gk−2jci+1,k.

These equations describe the “pyramid algorithm” for wavelet analysis, providing an efficient
means of obtaining the approximation coefficients and detail coefficients at resolution i, given
the approximation coefficients at resolution i + 1, as depicted in Figure C.1, where ci =
(. . . , ci,−1, ci,0, ci,1, . . .)T and di = (. . . , di,−1, di,0, di,1, . . .)T . Since each stage is equivalent to
convolution by the filters with coefficients {h−k} and {g−k} followed by downsampling by a
factor of two, each stage of the decomposition may be implemented as the analysis part of a
two-channel filter bank.

2A common alternative notation employed by Chui [36] and others absorbs the factors of
√

2 into the
sequences and denotes them as pk ≡

√
2 hk and qk ≡

√
2 gk instead.
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cN cN−1 cN−2 c1 c0cN−3

dN−1 dN−2 dN−3 d0

g−k g−k g−k g−k

h−k h−k h−k h−k

Figure C.1: The pyramid algorithm for wavelet analysis.

Given a sampled signal, the inner products required for the highest resolution ci,j may
be calculated explicitly for a particular resolution i, with the pyramidal algorithm producing
the di,j and ci,j for lower resolutions. Alternatively, if the signal is sufficiently smooth at
the resolution at which it is sampled, these samples may be used as the initial ci,j [197, pp.
270-271].

It may be shown that finite {hk} and {gk} filter sequences correspond to a scaling function
and wavelet with compact support3 [45, ch. 6] [189, pp. 185-186]. In this case it is convenient
to construct the scaling function and wavelet by designing appropriate filter sequences (the
dilation equations represent necessary, but not sufficient conditions on the scaling function
and wavelet; additional restrictions are required to ensure that specific sequences correspond
to a suitable scaling function and wavelet). The simplest example of a scaling function and
wavelet pair, forming the Haar basis, is displayed in Figure C.2, while the corresponding filter
sequences are displayed in Table C.1.

-0.5

0

0.5

1

1.5

-0.5 0 0.5 1 1.5
x

φ(x)

(a) Scaling Function

-1.5

-1

-0.5

0

0.5

1

1.5

-0.5 0 0.5 1 1.5
x

ψ(x)

(b) Wavelet

Figure C.2: Haar scaling function and wavelet.

3The support of a function f : R → R is the closure of the set {x ∈ R | f(x) 6= 0} [166, pg. 246]. The
function has compact support if its support is some closed interval [a, b] in R.
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Table C.1: Haar MRA dilation equation coefficients.

k hk gk

0
√

2
2

√
2

2

1
√

2
2 −

√
2

2

C.2 Orthogonal Wavelets

The imposition of the orthonormality requirement

〈φ0,0, φ0,k〉 = δ0,k

on the scaling function of an MRA results in an orthogonal MRA, in which {φ(x− j)}j∈Z is
an orthonormal basis of V0, and {φi,j}j∈Z is therefore an orthonormal basis of Vi. Each detail
space Wi is taken as the orthogonal complement of Vi in Vi+1, so that Vi ⊥ Wi ∀i ∈ Z and
therefore Wi ⊥ Wj ∀i, j ∈ Z, i 6= j and ψ (called an orthogonal wavelet) forms an orthonormal
basis {ψ(x− j)}j∈Z of W0. Since distinct detail spaces are mutually orthogonal, {ψi,j}i,j∈Z is
an orthonormal basis of L2(R). It may be shown [45, ch. 5] [189] that an orthogonal wavelet
may be derived from an orthogonal scaling function by choosing

gk = (−1)kh1−k.

An example of an orthogonal scaling function and wavelet is displayed in Figure C.3, the
corresponding filter coefficients being tabulated in Table C.2.
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2.0
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0.0

-1.0

(b) Wavelet

Figure C.3: Daubechies 4-coefficient scaling function and wavelet.

Since {φi,j}j∈Z and {ψi,j}j∈Z are orthonormal bases of Vi and Wi respectively, the projec-
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Table C.2: Filter coefficients [45, pg. 195] for scaling function in Figure C.3.

k 0 1 2 3

hk√
2

1+
√

3
8

3+
√

3
8

3−√3
8

1−√3
8

tion operators into the approximation spaces and detail spaces are

Pif =
∑

j

〈f, φi,j〉φi,j =
∑

j

ci,jφi,j

and
Qif =

∑

j

〈f, ψi,j〉ψi,j =
∑

j

di,jψi,j

respectively.
It may be shown, using the dilation equations and the orthonormality of the bases of Vi and

Wi, that 〈φi+1,j , φi,k〉 = hj−2k and 〈φi+1,j , ψi,k〉 = gj−2k. Observing that Pi+1φi+1,j = φi+1,j

since φi+1,j ∈ Vi+1, and noting that Pi+1f = Pif+Qif , it follows that φi+1,j =
∑

k hj−2kφi,k+∑
k gj−2kψi,k and therefore

ci+1,j =
∑

k

hj−2kci,k +
∑

k

gj−2kdi,k.

This equation describes the pyramid algorithm for orthogonal wavelet synthesis, depicted in
Figure C.4. Each stage may be implemented as the synthesis part of a two-channel filter bank
with filters {hk} and {gk}.

hk hk hk hk

cNcN−1c1c0

dN−1d0 dN−3 dN−2

cN−3 cN−2

gk gk gk gk

Figure C.4: The pyramid algorithm for orthogonal wavelet synthesis.

C.3 Biorthogonal Wavelets

Relaxation of the orthogonality requirement allows additional flexibility in the design of
wavelet bases. The primary wavelet basis is constructed using an MRA {Vi} with scaling
function φ as before, while the dual Riesz basis required to form a biorthogonal pair is con-
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structed by introducing a dual MRA {Ṽi} with dual scaling function φ̃. Biorthogonality of the
bases {φ0,j}j∈Z of V0 and {φ̃0,j}j∈Z of Ṽ0, which implies biorthogonality of the bases {φi,j}j∈Z
of Vi and {φ̃0,j}j∈Z of Ṽi, is ensured by the condition

〈φ0,0, φ̃0,k〉 = δ0,k.

The detail spaces and dual detail spaces are taken as the complements of Vi in Vi+1 and
Ṽi in Ṽi+1 respectively, where the biorthogonality condition implies that Ṽi ⊥ Wi and Vi ⊥ W̃i

for all i ∈ Z, and W̃i ⊥ Wj ∀i, j ∈ Z, i 6= j. The bases {ψi,j}j∈Z of Wi and {ψ̃i,j}j∈Z of W̃i

are biorthogonal, and {ψi,j}i,j∈Z and {ψ̃i,j}i,j∈Z are biorthogonal bases of L2(R), where

〈ψi,j , ψ̃k,l〉 = δi,kδj,l.

The dual scaling function and wavelet satisfy dilation equations involving sequences4 {h̃k}
and {g̃k} respectively, and the wavelet dilation equation coefficients may be chosen as [7]

gk = (−1)kh̃1−k and g̃k = (−1)kh1−k.

An example of a biorthogonal pair of scaling functions and wavelets is displayed in Figure
C.5, the corresponding filter coefficients being tabulated in Table C.3.

Table C.3: Filter coefficients (see Table II in Antonini et al. [7]) for scaling functions in
Figure C.5.

k 0 ±1 ±2 ±3 ±4

hk√
2

0.602949 0.266864 -0.078223 -0.016864 0.026749

h̃k√
2

0.557543 0.295636 -0.028772 -0.045636

The projection operators into Ṽi and W̃i are

P̃if =
∑

j

〈f, φi,j〉φ̃i,j =
∑

j

ci,jφ̃i,j

and
Q̃if =

∑

j

〈f, ψi,j〉ψ̃i,j =
∑

j

di,jψ̃i,j

respectively. These projections correspond to analysis using the primary scaling function
and wavelet and reconstruction using the dual scaling function and wavelet; these roles are
reversed when projecting into spaces Vi and Wi. The properties of the reconstruction basis
functions are particularly important, since they represent the elementary building blocks from

4Chui [36] denotes the duals of hk and gk as ak ≡
√

2 h̃k and bk ≡
√

2 g̃k respectively.
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Figure C.5: Spline Variant with Less Dissimilar Lengths scaling functions and wavelets.
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which a function is reconstructed [45, pg. 269].
The dilation equations, together with the biorthogonality of the bases of Vi and Ṽi imply

that 〈φi+1,j , φ̃i,k〉 = h̃j−2k and 〈φi+1,j , ψ̃i,k〉 = g̃j−2k, and therefore

ci+1,j =
∑

k

h̃j−2kci,k +
∑

k

g̃j−2kdi,k.

This equation describes the pyramid algorithm for biorthogonal wavelet synthesis, depicted
in Figure C.6. Each stage may be implemented as the synthesis part of a two-channel filter
bank with filters {h̃k} and {g̃k}.

h̃k h̃k h̃k h̃k

cNcN−1c1c0

dN−1d0 dN−3 dN−2

cN−3 cN−2

g̃k g̃k g̃k g̃k

Figure C.6: The pyramid algorithm for biorthogonal wavelet synthesis.

C.4 Wavelets in Signal Processing

The wavelets described in the preceding sections generate bases of L2(R), and are thus not
suitable for the decomposition of functions defined only on a bounded interval in R, as is the
case in most signal processing applications [40]. Given a function f defined on the interval
[0, 1), the simplest solution is to periodically extend f , resulting in a function g(x) = f(x−bxc)
which is defined over all of R and coincides with f where it is defined [45, pp. 304-305, 333-334]
[98]. Since g has unit period, there are only 2i distinct inner products of g with translations
of the wavelet at resolution i > 0; the corresponding detail coefficients may therefore be
arranged in a binary tree structure as illustrated in Figure C.7 (the indexing relationship
between parent and child coefficients in this tree structure is depicted in Figure C.8). As a
result, each stage of the pyramid algorithm may, in this context, only be applied to a signal
containing an even number of samples.

Superior alternatives to periodic extension include symmetric extension [189, ch. 8] [45,
pp. 333-337] and the construction of “boundary wavelets” to take care of complications at
the interval boundaries [40] [98].

Desirable properties (some of which are mutually exclusive) of wavelet bases for signal
processing, and signal compression in particular, include [98] [189, ch. 10,11] [197, ch. 7]:

Compact support Finite filter sequences, corresponding to a scaling function and wavelet
with compact support, are necessary for efficient implementation of the pyramid al-
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Figure C.7: Wavelet decomposition coefficient tree.
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gorithm [36, pg. 21]. Shorter filter sequences decrease the computation time for the
pyramid algorithm, and are desirable for good spatial localisation [197, pg. 263].

Symmetry Symmetrical wavelets and scaling functions correspond to symmetrical filter
sequences, for which the analysis and synthesis operations are linear phase [36, pp.
159-168]. Symmetry of the synthesis wavelet is also desirable in order to reduce the
visibility of quantisation errors in image coding [45, pp. 253-254]. Biorthogonal sym-
metric wavelets with compact support are often used in signal processing, since the
Haar wavelet is the only orthogonal symmetrical wavelet with compact support [45, pp.
251-254].

Regularity The regularity or smoothness of the wavelet (regularity is improved with in-
creased filter lengths) is usually described in terms of the number of continuous deriva-
tives or its Lipschitz or Hölder regularity [45, pg. 216] [197, pp. 86-87]. The more
regular the analysis wavelet, the better the frequency localisation of the decomposition.
Regularity of the synthesis wavelet is also considered desirable in reducing the visibility
of quantisation artifacts [98] (while there is some evidence for this assertion [7], an al-
ternative measure based on the impulse response of the filters appears to indicate more
accurately the suitability of the filters for image compression applications [198]).

Vanishing moments A wavelet ψ has M vanishing moments if
∫∞
−∞ ψ(x)xm dx = 0 for

0 ≤ m ≤ M [98]. The greater the number of vanishing moments of the analysis wavelet,
the faster the coefficients decay with increasing resolution in smooth signal regions [45,
pp. 242-245] [197, pp. 266-267]. There is also a connection between the number of
vanishing moments of the analysis wavelet and the differentiability of the synthesis
wavelet [45, pg. 269].

C.5 Wavelets in Image Processing

Although it is possible to design an inherently two-dimensional MRA [45, pp. 315-319], images
are often analysed by two-dimensional wavelets constructed from one-dimensional wavelets.
In the standard construction [45, pg. 313] [188], the two-dimensional basis consists of the
functions

Φi,j;k,l(x, y) = φi,k(x)φj,l(y)

Ψh
i,j;k,l(x, y) = φi,k(x)ψj,l(y)

Ψv
i,j;k,l(x, y) = ψi,k(x)φj,l(y)

Ψi,j;k,l(x, y) = ψi,k(x)ψj,l(y)
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where i and j are the horizontal and vertical resolutions respectively, and k and l are the
horizontal and vertical positions respectively. The arrangement of the basis functions is
depicted in Figure C.9. Such a decomposition of an image may be computed by applying the
full one-dimensional decomposition to each row and then to each of the resulting columns
[188].

Ψ2,2;

Ψ0,0;

Ψ1,2;

Ψ2,1;

Ψ0,2;

Ψ2,0;Ψ1,0;

Ψ0,1; Ψ1,1;Ψh
0,1;

Φ0,0; Ψv
0,0; Ψv

1,0; Ψv
2,0;

Ψh
0,0;

Ψh
0,2;

Figure C.9: Standard two-dimensional wavelet decomposition. The block labelled as
Ψ2,2; contains the coefficients of basis functions Ψ2,2;0,0 through Ψ2,2;3,3, with a similar
convention adopted for the other blocks.

In the non-standard construction the two-dimensional basis consist of the functions [45,
pp. 313-316]

Φi;j,k(x, y) = φi,j(x)φi,k(y)

Ψh
i;j,k(x, y) = φi,j(x)ψi,k(y)

Ψv
i;j,k(x, y) = ψi,j(x)φi,k(y)

Ψd
i;j,k(x, y) = ψi,j(x)ψi,k(y)

where i is the resolution, j and k are the horizontal and vertical positions respectively, and
h, v and d represent “horizontal”, “vertical” and “diagonal” respectively. The arrangement
of the basis functions is depicted in Figure C.10. Such a decomposition of an image may be
computed by alternating between applying a single stage of a one-dimensional decomposition
to all of the rows and to all of the columns [188].

Although the non-standard construction of a two-dimensional wavelet basis is usually
used in image compression, the standard construction has been reported to offer improved
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Ψd
2;

Ψv
2;

Ψv
1;

Ψd
1;Ψh

1;

Ψh
0;

Φ0;

Ψh
2;

Ψd
0;

Ψv
0;

Figure C.10: Non-standard two-dimensional wavelet decomposition. The block labelled
Ψd

2; contains the coefficients of basis functions Ψd
2;0,0 through Ψd

2;3,3, with a similar con-
vention adopted for the other blocks.

performance for some quantisation strategies [165]. An interpretation of the non-standard
image decomposition as consisting subbands produced by directional filters is illustrated in
Figure C.11, while the corresponding tree structure of the detail coefficients is illustrated in
Figure C.12.
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D

D

V

V
H D

V

H

H

H Horizontal low frequencies and vertical high frequencies (horizontally oriented edges)
V Vertical low frequencies and horizontal high frequencies (vertically oriented edges)
D Horizontal high frequencies and vertical high frequencies (diagonally oriented edges)

Figure C.11: Horizontal, vertical and diagonal subbands in the non-standard decompo-
sition.

Figure C.12: Detail coefficient tree in the non-standard decomposition.
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Mathematical Foundations of

Fractal Compression

Fractal image compression is based on a result of metric space theory known as Banach’s Fixed
Point Theorem, which guarantees that an image may be reconstructed from its representation
as a contractive transform of which it is a fixed point. The resulting coding scheme is described
as “fractal” since the representation may be constructed in a finite dimensional space, but
decoded in an infinite dimensional space in which detail is synthesised at all resolutions not
present in the original space. The relevant results of metric space theory are summarised
here.

Any point mapped to itself by a function is a fixed point of that function.

Definition 30 A fixed point of a mapping T : X → X is an x ∈ X such that Tx = x [108,
pg. 299].

A contraction mapping always takes two points closer together, as illustrated in Figure D.1.

Definition 31 A mapping T : X → X on a metric space (X, d) is a contraction mapping if
∃α ∈ R, 0 < α < 1 such that ∀x, y ∈ X

d(Tx, Ty) ≤ αd(x, y)

Theorem 1 (Banach Fixed Point Theorem) A contraction mapping T : X → X on a
complete metric space (X, d) has precisely one fixed point [108, pg. 300].

Proof: Construct a sequence {xn} ⊂ X by defining xn = Tnx0 for an arbitrary x0 ∈ X.
Contractivity of T implies

d(xn+1, xn) = d(Tn+1x0, T
nx0) ≤ αd(Tnx0, T

n−1x0) ≤ . . . ≤ αnd(Tx0, x0)

197
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y

x

(X, d)

Tx

Ty

Figure D.1: Action of contraction mapping.

which implies, by repeated application of the triangle inequality (for m, n > 0 and n > m)

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + . . . + d(xn−1, xn)

= αmd(x1, x0) + αm+1d(x1, x0) + . . . + αn−1d(x1, x0)

= (αm + αm+1 + . . . + αn−1)d(x1, x0)

= αm 1− αn−m

1− α
d(x0, x1)

<
αm

1− α
d(x0, x1) (since 1− αn−m < 1).

The sequence {xn} is therefore Cauchy since, taking n > m and N = logα
(1−α)ε
d(x0,x1)

∀ε > 0 m,n > N ⇒ d(xm, xn) < ε.

Since X is complete, {xn} converges to some xT ∈ X. In order to show that xT is a fixed
point, consider

d(xT , TxT ) ≤ d(xT , xm) + d(xm, TxT ) ∀m
≤ d(xT , xm) + d(xm−1, xT ).

Since {xn} converges to xT it is clear that d(xT , TxT ) = 0 by taking the limit as m → ∞
above. Uniqueness follows, since if TxT = xT and T x̃T = x̃T then d(xT , x̃T ) = d(TxT , T x̃T ) ≤
αd(xT , x̃T ), which implies that d(xT , x̃T ) = 0. 2

It is clear from the proof of Banach’s theorem that the fixed point of any contraction
mapping in a complete metric space may be approximated to arbitrary accuracy by iterated
application of the contraction mapping to an arbitrary initial element of the metric space.
The inverse problem of finding a contraction mapping having a given point as its fixed point



Mathematical Foundations of Fractal Compression 199

is considerably more difficult. Barnsley’s collage theorem suggests a possible approach to this
problem.

Lemma 1 The metric d(a, b) of any metric space (X, d) is continuous in b ∈ X for fixed
a ∈ X.

Proof: The triangle inequality implies

d(x, z) ≤ d(x, y) + d(z, y) ⇒ d(x, z)− d(y, z) ≤ d(x, y)

d(y, z) ≤ d(y, x) + d(x, z) ⇒ d(y, z)− d(x, z) ≤ d(x, y)

and consequently
| d(x, z)− d(y, z) | ≤ d(x, y).

Defining the mapping Tab = d(a, b), and considering any convergent sequence {xn} → x in
X, it is clear that Taxn converges to Tax since

| Taxn − Tax | = | d(a, xn)− d(a, x) | ≤ d(x, xn).

The mapping Tab = d(a, b) is therefore continuous, giving the required continuity of the
metric. 2

Theorem 2 (Collage Theorem) If (X, d) is a complete metric space, T : X → X is a
contraction mapping with contractivity 0 ≤ α < 1 and fixed point xT , then [15, pp. 94-95,
102-103]

d(x, xT ) ≤ (1− α)−1d(x, Tx) ∀x ∈ X.

Proof: The metric d(a, b) is continuous in b ∈ X for fixed a ∈ X.

d(x, xT ) = d(x, lim
n→∞Tnx)

= lim
n→∞ d(x, Tnx) (by Lemma 1)

≤
n∑

m=1

d(Tm−1x, Tmx)

≤ d(x, Tx)(1 + α + . . . + αn−1)

≤ (1− α)−1d(x, Tx). 2
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Standard Images

Figure E.1: Airplane.
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Figure E.2: Baboon.
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Figure E.3: Bridge.
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Figure E.4: Lena.



204 Appendix E

Figure E.5: Peppers.
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