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Abstract

Fractal image compression entails a computationally costly search for matching image
blocks. It is proposed that a block be represented by its DCT coefficients, which may
be made invariant to many of the usual block transforms. Due to the energy packing
properties of the DCT, the efficiency of an existing multidimensional nearest neighbour
search is improved.

1 Introduction

Fractal image compression [1] is closely related to certain forms of Vector Quantisation (VQ),
with the distinction that a codebook is not required since contractivity of the mapping allows
decoding by iterative application to an arbitrary initial image. While fractal compression
enjoys certain advantages over other coding methods [2], the encoding process is extremely
time consuming. A number of solutions such as block classification [3] have been proposed to
the problem of finding a matching domain block for each range block.

Saupe [4] reports on the use of a multi-dimensional nearest-neighbour search algorithm,
based on a partition of the search space by a k-d tree [5], operating in O(N log2 N) time for N
domain blocks. A scale and offset invariant representation is found within which to perform
the nearest-neighbour search.

2 Discrete Cosine Transform

Promising results have previously been obtained for fractal compression in the Discrete Cosine
Transform (DCT) domain [6] [7] but since the inverse DCT is performed for every image block
on decoding, the decoding stage is not as rapid as fractal compression in the image domain.
We propose that the properties of the DCT be utilised for compression in the image domain,
speeding up the encoding process and avoiding the inverse DCT on decoding.

Published as: B. Wohlberg and G. de Jager, “Fast image domain fractal compression by DCT domain
block matching,” Electronics Letters, vol. 31, pp. 869–870, May 1995.
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The relevant transform properties of the DCT domain representation are:

Cf(x,y)−o(u, v) = Cf(x,y)(u, v)− oNδu
0 δv

0 (1)
Csf(x,y)(u, v) = sCf(x,y)(u, v) (2)
Cf(y,x)(u, v) = Cf(x,y)(v, u) (3)

Cf(N−1−x,y)(u, v) = (−1)uCf(x,y)(u, v) (4)
Cf(x,N−1−y)(u, v) = (−1)vCf(x,y)(u, v) (5)

where Cf(x,y)(u, v) is the N ×N (indices range from 0 to N − 1) DCT [8, pg. 144] of f(x, y)
and δy

x is the Kronecker delta.
All of these operations commute with each other, for example equations 4 and 5 may be

combined to give Cf(N−1−x,N−1−y)(u, v) = (−1)(u+v)Cf(x,y)(u, v).
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Figure 1: Standard deviations of DCT coefficients for all 8 × 8 domain blocks (after spatial
contraction to 4×4 blocks) in the 256×256 grey scale “Lena” image. Inset illustrates “zig-zag”
scan order on a 4× 4 block of DCT coefficients.

The main utility of the DCT in this application is its energy packing properties. When
the search keys are constructed by taking the DCT coefficients in “zig-zag” scan order (see
inset in figure 1), which corresponds to increasing spatial frequency [9, pp. 172-173], there
is a rapid decrease in variance from the most to least significant keys (see figure 1), which
improves the efficiency of the search algorithm [5, pg. 214].

Other advantages of the DCT representation are:

• Storage requirements for each processed domain block may be reduced by the application
of a normalisation matrix [8, pg. 386], after which each component value may be
represented by a decreased number of bits.

• Since the RMS distance measure is known to be suboptimal, Human Visual System
(HVS) weighting [9, pp. 34-38] may be applied to the DCT coefficients to provide a
more accurate measure of perceived distance.
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• Since the scale and offset are decoupled by the DCT, contractivity (|s| < 1 for scaling
factor s) may be rapidly checked without the inner product computations required in
the image domain.

• Symmetry operations may be rapidly applied in the DCT domain, requiring only mul-
tiplications by ±1.

3 Canonical representation

A canonical representation with respect to the allowed operations is required to allow ap-
plication of nearest-neighbour search techniques, translating the problem from a distance
minimisation over all domains and operations to a minimisation over domains alone.

Such a representation with respect to scale, offset and transposition may be obtained
by considering the DCT of each image block. We achieve offset invariance by setting the
DC coefficient to zero (see equation 1). Scale invariance, up to a factor of ±1, is achieved
by normalising the remaining coefficients (see equation 2) by the block magnitude, which
is the l2 norm on the appropriate coefficients. Transposition invariance (see equation 3) is
obtained by ensuring that the magnitude of the “lower triangle” is greater than that of the
“upper triangle” (excluding the components on the main diagonal). Unfortunately a distance
preserving invariant representation with respect to the remaining symmetry operations is not
possible within this framework.

4 Implementation

An algorithm closely related to the k-d tree method, but utilising binary searches within a
lexicographically ordered array of multidimensional keys was used. Canonical representations
were computed for each spatially contracted domain vector, followed by normalisation and
quantisation [8, pg. 386] to reduce memory requirements before insertion into the array.

The DC coefficient, the scaling factor and a flag indicating whether transposition was
applied, were stored with each set of coefficients. A similar procedure was followed for each
range block prior to the nearest neighbour search. Once a matching domain block had been
identified, the scale and offset for the mapping were

s =
SD

SR
o =

OR − sOD

N

respectively, for N×N range blocks, where SD, OD were the scaling factor and DC coefficient
for the domain block, and SR, and OR were the corresponding range block values.

5 Results

Tests were conducted on 256 × 256 grey scale “lena” and “bridge” images for fixed range
block sizes of 4 × 4 and 8 × 8, where domain blocks were spatially contracted by a factor of
two on each side. Comparisons of the canonical representation suggested in [4] and the DCT
representation reveal an improvement in total computation time by a factor of 1.5 for the
larger blocks to 2.0 for the smaller blocks. Comparisons of subjective image quality indicated
a slight advantage for the DCT based method, where differences were discernible. Since an
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optimised DCT algorithm was not utilised, it is felt that these results convey a conservative
estimate of the possible performance gains.

6 Comments

There are sound theoretical reasons for expecting improved performance during the domain
search by application of the techniques presented here. While empirical evidence has been
obtained, further comparisons are required for an accurate assessment of the computational
advantage, and further investigation into the use of HVS weighting is necessary. It should be
noted that this method is also expected to be applicable to certain forms of VQ coding.
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