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Abstract—Lossy image coding by Partitioned Iterated Function Banach's fixed point theorem [2, pg 84] therefore implies
Systems, popularly known as Fractal Image Compression, has that iterative application thereof tany initial image will

recently become an active area of research. An image is codedganerate a sequence converging to the unique fixed point of
as a set of contractive transformations in a complete metric .
the transformation.

space. As a result of a well known theorem in metric space ] . ) )
theory, the set of contractive transformations (subject to a few The image is thus encoded as a set of transformations, which

constraints) is guaranteed to produce an approximation to the have as their fixed point an image close to it in the sense of the
original image, when iteratively applied to any initial image. distance metric used. The transformation co-efficients are then
While rapid decompression algorithms exist, the compression , antised and entropy coded. In order to minimise the distance
process is extremely time consuming; an exhaustive search for : \ .

the optimum mappings is O(n*) for an n x n image. The most between th_e image to be gncoded and the fl_xed point of f[he
common solution involves classification of domain and range transformation (ie. the lossiness of the encoding), a matching
blocks according to features such as the presence of edgesdomain block must be found for every range block, with as

after which matches across class boundaries are excluded. Wegmall a distance as possible between them under the set of
propose a geometric construction, allowing clustering, as well as transformations discussed above

providing upper and lower bounds for the best match between . . .
domain and range blocks, allowing blocks to be excluded from A more effective scheme utilises a quadtree partition of

the computationally costly matching process. range blocks, where a range block is subdivided into four
smaller blocks if no domain can be found to match within
an acceptable tolerance [1] [3]. A triangular range partition is

[. INTRODUCTION also reported to be effective [4].
A Partitioned Iterated Function System (PIFS) encoding of an
image consists of a set of transforms on regions of the image. II. COMPUTATIONAL COMPLEXITY

The set of regions from which the transform domains are
chosen (the domain blocks) overlap, while the regions formi
the ranges of the transformations are tiled (the range blbck
The simplest implementation has all tiléd< b blocks in the
image as the set of range blocks, and all (overlappbg) 26
blocks in the image as the set of domain blocks [1, pg. 912]:

i 4
The set of transformations consists of a spatial contracti_l_ﬁlarCh ISO(n ) | . f h . h
(eg. averaging each 4 neighbouring blocks to constrict & e computational requirements for an exhaustive search are

block from a2b x 2b block), followed by one of the 8 Squareprohibitive (in the region of 30 hours on a SUN sparc10 work-

symmetry operations (4 rotations and 4 reflections), followetation for 256 x 256 image). The most common approach to

by a contractive affine transformation on the greyscale valugucing computational demand is to classify the image blocks
(for a block with pixel valuegp, po ) into a number of classes, and to avoid attempting matches
) v n)).

across class boundaries [5] (eg. a smooth domain block is

nsider am x n image and x b range blocks. The number
tiled range blocks is:? /b, while the number of domain
locks is(n—2b+1)2. The computation of best match between
a range block and a domain block®?). Consideringb to
?e constant, the computational complexity of an exhaustive

(Ts,0)i = spi+o unlikely to match a range block containing an edge, under any
o affine transformation), thereby avoiding the costly matching
where—1 < s <1 guarantees contractivity. process for these blocks. Saupe [6] has recently proposed

If such mappings are found for each range block, their uniRjjising an invariant (under the set of transformations applied
defines a mapping on the image as a whole. This mappiggdomain blocks) representation of image blocks, followed
will be a contraction mapping in the metric space (with RMBy, g fast nearest neighbour search in the space of these
distance measure) of greyscale images. This metric spacggsresentations. Expected encoding complexity based on this
complete (ignoring the sampling and quantisation, which fiigorithm isO(n2 log n).

limits as to how close the sequence may approach the limi)fe propose a geometric view of the minimisation problem,

) _ _ _ _ which allows us to derive upper and lower bounds of distances
The range/domain labels are occasionally reversed in the literature, where blocks i f di | d d c
the terminology is instead based on the transformations used in imaggtWeen blocks in terms of distances already computed. Com-

reconstruction. putational load for this schemor block to block matching,



not for the the minimisation algorithm as a whols)indepen-

dent of block size, unlike direct computation, whichQgb?) v

for b x b blocks. n .1
[1l. M INIMISATION PROBLEM

Consider an imagd, together with the set ob x b range p

blocks, and2b x 2b domain blocks. Construct the set of range

vectorsR ¢ R" (wheren = b?), by taking the pixel values

in each range block in scan-line order. The set of domain

vectorsD C R" is constructed by subsampling the domain

blocks by averaging, followed by the procedure applied to the

range vectors. Fig. 1. Geometry of perpendicular from sganl} to v
Define S; : R" — R", 1 < i < 8 as the symmetry

operations on the square, affid;, : R" — R", a,b € R

where (T, pu); = au,; +b. If we utilise the Euclidean distance

measure, the metric spa¢R”, dg) is also an inner product spar{1}
space, with the norm and distance defined in the usual way: us

[u] = vu - u

dp(u,v) = [u—v|

The minimisation problem is then to find thec D such that U2

Ming b c||Ta,pScu—v| is @ minimum, for eaclk € R. Ignoring
symmetry operations, which we have yet to properly address
within this framework (one may views. as generating an
expanded domain set), we consider findingn, ;|| 7o su—v||.
Uy

IV. GEOMETRIC CONSTRUCTION

In this section we shall introduce a geometric view leading to
our proposed solution to the previously described minimisatidiy. 2. Geometry of planes generated by domains under opefatpr
problem. If the angle between vectarsandwv is ¢

cos ¢

u-v
) o]l orthogonal to spafu, 1}, we have thak-u = 0 andn-1 = 0.

We show later that the minimisation problem may be restatesé)lvIng fora”,b”, we obtain
_Puv—(u-1)(v-1)

in terms of angular distances between vectors, and provide

*

rapidly computable upper and lower bounds on unknown a = 1] ]|u]? — (u-1)2
angles as a function of known angles.

Definel, = (1,1,...,1) € R", where we shall refer ta B [ulPv -1 — (u-1)(v-u)
wheren is obvious from context. Note thdfl,,||> = n. The 11112 |lu||? — (u-1)2

transformationdy, , may then be written a$;, yu = au + 01,
and the minimum distance between a range vest@nd a
domain vectom asmin, |7, ,u — v||. Each domain vector, where ||n| is the required minimum distance.
under the set of transformatiof ,, generates a plane ",
containing spafil} (see figure 2).

Geometrically, if we defing to be the closest vector in the
plane spafu, 1} tow (see figure 1), anel = v—p, the required Since the planes generated by the domain vectors are embed-
minimum distance igjn||. From a geometric perspective, theded in R" wheren > 3, the planes do not have a unique
minimisation requirement is to find the closest domain “planeformal. In order to define an angle between planes, we find
to each range vector. We shall show that knowledge of the dor each plane a vector in that plane and perpendiculdr, to
gles between the planes, and the angle between a range vemtar define angles between planes in terms of angles between
and one of the planes provides information regarding the ran@ese vectors. In addition, we would like inequalities involving
vector angles with the other planes, making direct computatitie angles between a range vector and two range “planes”.
of angular distances unnecessary for certain vectors. Since the range vector, the two domain vectors, hisgpan a
Sincep (as defined above) lies in spanl}, we have that 4-dimensional subspace &", we would like to project these

p = a*u + b*1 for somea*,b*, andn = v — p. Sincen is vectors into the 3-dimensional subspace perpendiculak to

n=v—au-—>b1

V. PROJECTION OPERATOR



(and containing the origin), thereby allowing the application
of results from solid geometry.
The following projection operatdsatisfies both requirements.
Definition 1:

Pou=u— (un—‘g)n
P,u projectsu parallel ton into the space perpendicular to
n, and containing the origin (see figure 3).

up Poul 7 ™
\\\ Fig. 4. Angular inequalities iR
P,u
AN where , 1
\\\ d:ui,.’l; B:’U~2
. [ [1]]
giving
(u)-v)?  (v-1)?
. il = ni - ni = [l — =t —
L ' Y o2 ]2
If o € [0,7/2] we have thatcosa is positive and strictly
’ decreasing
Fig. 3. Projection operator L(v’,u’l) < Z('U',ug)
N u) v ul v
Since Pyu = u — ({41)1, we have thatPiu € spar{u, 1}, [l [ [[o']] ]| o]
andPiu L 1. There*ore we may define the angle between the N () -v")? _ (u] -v')?
pla;;s spafu,1} and spafw,1} as the angle betweeRu AR AR
an 1v.

sincev’ -u = v -} and we are considering positive quantities
only. Result follows by inspection dfn; 2.

In the following section we shall show how these results may
be applied to the optimisation problem.

The following results are required:
Lemma 1:If v{,vs,v3 € ]R‘s, and the angles between, v-
andwv,, v3 andwv,,v3 area;s, asz andags respectively, then

lang — aos| < anz < aqg + ass
VI. DISTANCE BOUNDS

Proof: a3 < aj2 + az3 and its cyclic permutations are aConsider the set of domain vectots, ...u, and range
standard result of solid geometry (see [7, pg. 106] and figuYgCctorsv: ... vn,. Define the angle between sfan,1} and
4) This impIieSa23 — a2 < 13 andaqs — a3 < aq3. The Spar{u’j’l} by

. . !l
result follows immediately. COS Qi — Wi U
. . . 1]
For brevity we introduce the notatiari = P,v for any vector lla |l I
v

Onceay; have been computed for somkeand all j, lemma

Theorem 1:Given range vectop and domain vectora us, 1 gives bounds

and definingay = Z(v',u)) and ay = Z(v',ub), if 0 <

a, s < /2, thenay < as = the minimum distance |k — amj| < auj < our + ag;
from v to spaqu;,1} is less than the minimum distance to . .
spar{uy, 1} parfu, 1} on «; since spafu,,u;,u;, 1} € R*, embedded irR", and

) . . : 3
Proof: Since spafu;,1} = spafu.,1} we may write the s projected intaR t_)y operatorry.. I
minimum distance vectams; in terms ofu; and1 rather than We propose clustering the] according to angles, utilising
K3

u; andl, resulting in considerable simplification, as1 = 0. lemma 1 to speed up the procgss. C_:hooselan initial vacfor,
for example, and compuie,; Vi. Define allu] such thatx;

n, =v—au — bl is less than a predetermined threshold to be within a cluster

21t is interesting to note that Saupe [6] utilises an identical operator (apart3Since we admit negative values af, the maximum possible angular
from normalisation) for his divergent approach. distance isr/2, and this condition is therefore not problematic



centred ats}. Pick au;- a large angular distance from{ and [5] A. E. Jacquin, *image coding based on a fractal theory of iterated con-
repeat the process, utilising lemma 1 to exclude unnecessarytractlve image transformationdEEE Transactions on Image Processing
i h ible. The proce hould terminage "L PP- 18-30, Jan. 1992.

computation where possible. p Ss shou INRYL D. Saupe, “Breaking the time complexity of fractal image compression,”
with a set ofk clusterd, within each of which the angular ~ tech. rep., Institutiir Informatik, Universiét Freiburg, 1994.
distances from one vector to another are small. [7] K_. L. Nielsen and J. H. VanlonkhuyzeAn outline of plane and spherical

. , trigonometry New York: Barnes & Noble, 1944,
Define the angle betweerj andu; by

/! /

i Yy
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Presented at COMSIG94:

Theorem 1 guarantees that we may find the best matching
domain vector for range) by minimising 5;; over all j. u .
Compute thes;; to all k£ cluster centres. Since angles arg' Wohlberg and G. de Jager, "On the reduction of fractal

small within the clusters, lemma 1 may be expected to gi\%ﬁgaen gor;]pfss.s'rznonegg%iggn.tc'r;l?c;ns'ragr?(fs!EE; P?ooget:s'n
useful bounds on the angular distance betwegrand the ' ymposiu unicat '9 N9

cluster members. In addition, all members of a cluster m GOMSIG '94) (University of Stellenbosch), pp. 158-161,

be excluded if the angular distance to the cluster centre |sEE’ Oct. 1994. IEEE Cat No 94TH0665-0.

large enough. In addition, many important quantities may be
rapidly computed from these angles, eg.

cos B;; =

v
T
[0

allowing the contractivity condition to be checked.

VIl. CONCLUSIONS

The proposed process reduces computational requirements
in two separate ways. First, the clustering made possible
by theorem 1 makes distance computation unnecessary for
members of all clusters with sufficiently large angular distance
from the cluster centre to the range vector in question. Second,
lemma 1 allows exclusion from direct computation of distances
to cluster members, by utilising the angular distances from
cluster centres to cluster members, and from the range vector
in question to cluster centres, which are already known at this
stage in the process.

While these results have yet to be tested empirically, we expect
a considerable reduction in computational requirements. Many
aspects remain unexplored, such as the possibility of exploiting
the continuity property of images, which results in spatially
neighbouring blocks in an image having small mutual angular
distances where edges are not present. In addition, the design
of an optimal clustering algorithm for this application requires
attention.
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4Assuming that only the most promising cluster is searched the optimum
number of clusters i& ~ \/n wheren is the number of domain vectors



