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Abstract— Lossy image coding by Partitioned Iterated Function
Systems, popularly known as Fractal Image Compression, has
recently become an active area of research. An image is coded
as a set of contractive transformations in a complete metric
space. As a result of a well known theorem in metric space
theory, the set of contractive transformations (subject to a few
constraints) is guaranteed to produce an approximation to the
original image, when iteratively applied to any initial image.
While rapid decompression algorithms exist, the compression
process is extremely time consuming; an exhaustive search for
the optimum mappings is O(n4) for an n× n image. The most
common solution involves classification of domain and range
blocks according to features such as the presence of edges,
after which matches across class boundaries are excluded. We
propose a geometric construction, allowing clustering, as well as
providing upper and lower bounds for the best match between
domain and range blocks, allowing blocks to be excluded from
the computationally costly matching process.

I. I NTRODUCTION

A Partitioned Iterated Function System (PIFS) encoding of an
image consists of a set of transforms on regions of the image.
The set of regions from which the transform domains are
chosen (the domain blocks) overlap, while the regions forming
the ranges of the transformations are tiled (the range blocks)1.
The simplest implementation has all tiledb× b blocks in the
image as the set of range blocks, and all (overlapping)2b×2b
blocks in the image as the set of domain blocks [1, pg. 912].
The set of transformations consists of a spatial contraction
(eg. averaging each 4 neighbouring blocks to construct ab× b
block from a2b× 2b block), followed by one of the 8 square
symmetry operations (4 rotations and 4 reflections), followed
by a contractive affine transformation on the greyscale values
(for a block with pixel values(p1, p2, . . . , pn)):

(Ts,o)i = spi + o

where−1 < s < 1 guarantees contractivity.
If such mappings are found for each range block, their union
defines a mapping on the image as a whole. This mapping
will be a contraction mapping in the metric space (with RMS
distance measure) of greyscale images. This metric space is
complete (ignoring the sampling and quantisation, which fix
limits as to how close the sequence may approach the limit);

1The range/domain labels are occasionally reversed in the literature, where
the terminology is instead based on the transformations used in image
reconstruction.

Banach’s fixed point theorem [2, pg 84] therefore implies
that iterative application thereof toany initial image will
generate a sequence converging to the unique fixed point of
the transformation.
The image is thus encoded as a set of transformations, which
have as their fixed point an image close to it in the sense of the
distance metric used. The transformation co-efficients are then
quantised and entropy coded. In order to minimise the distance
between the image to be encoded and the fixed point of the
transformation (ie. the lossiness of the encoding), a matching
domain block must be found for every range block, with as
small a distance as possible between them under the set of
transformations discussed above.
A more effective scheme utilises a quadtree partition of
range blocks, where a range block is subdivided into four
smaller blocks if no domain can be found to match within
an acceptable tolerance [1] [3]. A triangular range partition is
also reported to be effective [4].

II. COMPUTATIONAL COMPLEXITY

Consider ann×n image andb× b range blocks. The number
of tiled range blocks isn2/b2, while the number of domain
blocks is(n−2b+1)2. The computation of best match between
a range block and a domain block isO(b2). Consideringb to
be constant, the computational complexity of an exhaustive
search isO(n4).
The computational requirements for an exhaustive search are
prohibitive (in the region of 30 hours on a SUN sparc10 work-
station for a256×256 image). The most common approach to
reducing computational demand is to classify the image blocks
into a number of classes, and to avoid attempting matches
across class boundaries [5] (eg. a smooth domain block is
unlikely to match a range block containing an edge, under any
affine transformation), thereby avoiding the costly matching
process for these blocks. Saupe [6] has recently proposed
utilising an invariant (under the set of transformations applied
to domain blocks) representation of image blocks, followed
by a fast nearest neighbour search in the space of these
representations. Expected encoding complexity based on this
algorithm isO(n2 log n).
We propose a geometric view of the minimisation problem,
which allows us to derive upper and lower bounds of distances
between blocks in terms of distances already computed. Com-
putational load for this scheme(for block to block matching,
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not for the the minimisation algorithm as a whole)is indepen-
dent of block size, unlike direct computation, which isO(b2)
for b× b blocks.

III. M INIMISATION PROBLEM

Consider an imageI, together with the set ofb × b range
blocks, and2b× 2b domain blocks. Construct the set of range
vectorsR ⊂ Rn (wheren = b2), by taking the pixel values
in each range block in scan-line order. The set of domain
vectorsD ⊂ Rn is constructed by subsampling the domain
blocks by averaging, followed by the procedure applied to the
range vectors.
Define Si : Rn 7→ Rn

, 1 ≤ i ≤ 8 as the symmetry
operations on the square, andTa,b : Rn 7→ Rn

, a, b ∈ R
where(Ta,buuu)i = auuui + b. If we utilise the Euclidean distance
measure, the metric space(Rn

, dE) is also an inner product
space, with the norm and distance defined in the usual way:

‖uuu‖ =
√

uuu · uuu

dE(uuu,vvv) = ‖uuu− vvv‖
The minimisation problem is then to find theuuu ∈ D such that
mina,b,c‖Ta,bScuuu−vvv‖ is a minimum, for eachvvv ∈ R. Ignoring
symmetry operations, which we have yet to properly address
within this framework (one may viewSc as generating an
expanded domain set), we consider findingmina,b‖Ta,buuu−vvv‖.

IV. GEOMETRIC CONSTRUCTION

In this section we shall introduce a geometric view leading to
our proposed solution to the previously described minimisation
problem. If the angle between vectorsuuu andvvv is φ

cos φ =
uuu · vvv

‖uuu‖ ‖vvv‖
We show later that the minimisation problem may be restated
in terms of angular distances between vectors, and provide
rapidly computable upper and lower bounds on unknown
angles as a function of known angles.
Define 111n = (1, 1, . . . , 1) ∈ Rn, where we shall refer to111
wheren is obvious from context. Note that‖111n‖2 = n. The
transformationsTa,b may then be written asTa,buuu = auuu + b111,
and the minimum distance between a range vectorvvv and a
domain vectoruuu asmina,b ‖Ta,buuu− vvv‖. Each domain vector,
under the set of transformationsTa,b, generates a plane inRn,
containing span{111} (see figure 2).
Geometrically, if we defineppp to be the closest vector in the
plane span{uuu,111} tovvv (see figure 1), andnnn = vvv−ppp, the required
minimum distance is‖nnn‖. From a geometric perspective, the
minimisation requirement is to find the closest domain “plane”
to each range vector. We shall show that knowledge of the an-
gles between the planes, and the angle between a range vector
and one of the planes provides information regarding the range
vector angles with the other planes, making direct computation
of angular distances unnecessary for certain vectors.
Sinceppp (as defined above) lies in span{uuu,111}, we have that
ppp = a∗uuu + b∗111 for somea∗, b∗, andnnn = vvv − ppp. Sincennn is
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Fig. 1. Geometry of perpendicular from span{uuu,111} to vvv
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Fig. 2. Geometry of planes generated by domains under operatorTa,b

orthogonal to span{uuu,111}, we have thatnnn ·uuu = 0 andnnn ·111 = 0.
Solving for a∗, b∗, we obtain

a∗ =
‖111‖2uuu · vvv − (uuu · 111)(vvv · 111)
‖111‖2‖uuu‖2 − (uuu · 111)2

b∗ =
‖uuu‖2vvv · 111− (uuu · 111)(vvv · uuu)
‖111‖2‖uuu‖2 − (uuu · 111)2

nnn = vvv − a∗uuu− b∗111

where‖nnn‖ is the required minimum distance.

V. PROJECTION OPERATOR

Since the planes generated by the domain vectors are embed-
ded inRn where n > 3, the planes do not have a unique
normal. In order to define an angle between planes, we find
for each plane a vector in that plane and perpendicular to111,
and define angles between planes in terms of angles between
these vectors. In addition, we would like inequalities involving
the angles between a range vector and two range “planes”.
Since the range vector, the two domain vectors, and111 span a
4-dimensional subspace ofRn, we would like to project these
vectors into the 3-dimensional subspace perpendicular to111
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(and containing the origin), thereby allowing the application
of results from solid geometry.
The following projection operator2 satisfies both requirements.
Definition 1:

Pnnnuuu = uuu− (
uuu ·nnn
‖nnn‖2 )nnn

Pnnnuuu projectsuuu parallel tonnn into the space perpendicular to
nnn, and containing the origin (see figure 3).
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Fig. 3. Projection operator

SinceP111uuu = uuu − ( uuu·111
‖111‖2 )111, we have thatP111uuu ∈ span{uuu,111},

andP111uuu ⊥ 111. Therefore we may define the angle between the
planes span{uuu,111} and span{vvv,111} as the angle betweenP111uuu
andP111vvv.
The following results are required:
Lemma 1: If vvv1, vvv2, vvv3 ∈ R3, and the angles betweenvvv1, vvv2

andvvv2, vvv3 andvvv1,vvv3 areα12, α23 andα13 respectively, then

|α12 − α23| ≤ α13 ≤ α12 + α23

Proof: α13 ≤ α12 + α23 and its cyclic permutations are a
standard result of solid geometry (see [7, pg. 106] and figure
4). This impliesα23 − α12 ≤ α13 andα12 − α23 ≤ α13. The
result follows immediately.
For brevity we introduce the notationvvv′ = P111vvv for any vector
vvv.
Theorem 1:Given range vectorvvv and domain vectorsuuu1,uuu2,
and definingα1 = 6 (vvv′,uuu′1) and α2 = 6 (vvv′,uuu′2), if 0 ≤
α1, α2 ≤ π/2, then α1 < α2 ⇒ the minimum distance
from vvv to span{uuu1,111} is less than the minimum distance to
span{uuu2,111}
Proof: Since span{uuui,111} = span{uuu′i,111} we may write the
minimum distance vectornnni in terms ofuuu′i and111 rather than
uuui and111, resulting in considerable simplification, asuuu′i ·111 = 0.

nnni = vvv − ãuuu′ − b̃111

2It is interesting to note that Saupe [6] utilises an identical operator (apart
from normalisation) for his divergent approach.
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Fig. 4. Angular inequalities inR3

where

ã =
uuu′i · vvv
‖uuu′i‖2

b̃ =
vvv · 111
‖111‖2

giving

‖nnni‖2 = nnni ·nnni = ‖vvv‖2 − (uuu′i · vvv)2

‖uuu′i‖2
− (vvv · 111)2

‖111‖2
If α ∈ [0, π/2] we have thatcos α is positive and strictly
decreasing3.

6 (vvv′,uuu′1) < 6 (vvv′,uuu′2)

⇒ uuu′1 · vvv′
‖uuu′1‖ ‖vvv′‖

>
uuu′2 · vvv′

‖uuu′2‖ ‖vvv′‖
⇒ (uuu′1 · vvv′)2

‖uuu′1‖2
>

(uuu′1 · vvv′)2
‖uuu′1‖2

sincevvv′ ·uuu′i = vvv ·uuu′i and we are considering positive quantities
only. Result follows by inspection of‖nnni‖2.
In the following section we shall show how these results may
be applied to the optimisation problem.

VI. D ISTANCE BOUNDS

Consider the set of domain vectorsuuu1 . . .uuun and range
vectorsvvv1 . . . vvvm. Define the angle between span{uuui,111} and
span{uuuj ,111} by

cos αij =
uuu′i · uuu′j

‖uuu′i‖ ‖uuu′j‖
Onceαkj have been computed for somek and all j, lemma
1 gives bounds

|αik − αkj | ≤ αij ≤ αik + αkj

on αij since span{uuui,uuuj ,uuuk,111} ∈ R4, embedded inRn, and
is projected intoR3 by operatorP111.
We propose clustering theuuu′i according to anglesα, utilising
lemma 1 to speed up the process. Choose an initial vector,uuu′1
for example, and computeα1i ∀i. Define alluuu′i such thatα1i

is less than a predetermined threshold to be within a cluster

3Since we admit negative values ofa∗, the maximum possible angular
distance isπ/2, and this condition is therefore not problematic
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centred atuuu′1. Pick auuu′j a large angular distance fromuuu′1 and
repeat the process, utilising lemma 1 to exclude unnecessary
computation where possible. The process should terminate
with a set ofk clusters4, within each of which the angular
distances from one vector to another are small.
Define the angle betweenvvv′i anduuu′j by

cos βij =
vvv′i · uuu′j

‖vvv′i‖ ‖uuu′j‖
Theorem 1 guarantees that we may find the best matching
domain vector for rangevvv′i by minimising βij over all j.
Compute theβij to all k cluster centres. Since angles are
small within the clusters, lemma 1 may be expected to give
useful bounds on the angular distance betweenvvv′i and the
cluster members. In addition, all members of a cluster may
be excluded if the angular distance to the cluster centre is
large enough. In addition, many important quantities may be
rapidly computed from these angles, eg.

a∗ =
‖vvv′i‖
‖uuu′j‖

cos βij

allowing the contractivity condition to be checked.

VII. C ONCLUSIONS

The proposed process reduces computational requirements
in two separate ways. First, the clustering made possible
by theorem 1 makes distance computation unnecessary for
members of all clusters with sufficiently large angular distance
from the cluster centre to the range vector in question. Second,
lemma 1 allows exclusion from direct computation of distances
to cluster members, by utilising the angular distances from
cluster centres to cluster members, and from the range vector
in question to cluster centres, which are already known at this
stage in the process.
While these results have yet to be tested empirically, we expect
a considerable reduction in computational requirements. Many
aspects remain unexplored, such as the possibility of exploiting
the continuity property of images, which results in spatially
neighbouring blocks in an image having small mutual angular
distances where edges are not present. In addition, the design
of an optimal clustering algorithm for this application requires
attention.
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