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ABSTRACT

A key component in any target or anomaly detection algorithm is
the characterization of the background. We investigate several ap-
proaches for estimating the background level at a given pixel, based
on both the local neighborhood around that pixel and on the global
context of the full image. By framing this as a regression problem,
we can compare a variety of background estimation schemes, from
standard signal processing approaches long used in the hyperspec-
tral image analysis community to more sophisticated nonlinear ap-
proaches that have recently been developed in the image process-
ing community. These comparisons are performed on a range of
images including single band, standard red-green-blue, eight-band
WorldView-2, and 126-band hyperspectral HyMap imagery.

Index Terms— Target, Anomaly, Background, Regression, Hy-
perspectral, Image, Processing

1. INTRODUCTION

To detect small targets in large images, it is important that the back-
ground be well estimated. A number of standard detection algo-
rithms – adaptive matched filter (AMF) [1, 2, 3], adaptive coherence
estimator (ACE) [4, 5], finite target matched filter (FTMF) [6] – be-
gin with the assumption that the background is a multivariate Gaus-
sian, whose mean µ and covariance R are estimated from the full
dataset. This assumption is highly restrictive, and amounts to es-
timating the background at a given pixel by the global mean of all
the pixels in the entire image. A natural way to improve this esti-
mate is to compute the mean (and, possibly, the covariance) from a
moving window centered on the pixel of interest. The venerable RX
algorithm [7, 8] takes this approach.

Matteoli et al. [9] recommend a smaller window for estimating
the mean µ and a larger window for estimating the covariance R.
The limit of large covariance window size – so that a global co-
variance estimator is used along with the local estimates of mean –
is sometimes called “semilocal” estimation. Cohen et al. [10, 11]
investigated a variety of algorithms and a variety of background es-
timators. Even taking into account the contaminating effects of the
target on the background, including both pixel phasing and optical
blurring, it was found that using smaller annuli produced better de-
tectors.

But all of these methods are based on local averaging to esti-
mate µ. Our hypothesis is that better performance may be achieved
by treating the problem as a (linear or nonlinear) regression. For
a given pixel at position i, we want to estimate its value (which is
vector-valued for multispectral and hyperspectral imagery) based on
the pixels in its neighborhood Ni (this is usually an annular region
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that does not include the pixel itself, and in some cases avoids a
“guard ring” of pixels in the immediate neighborhood of i). The tra-
ditional approach is to estimate xi with the average of those neigh-
bors:

x̂i =
1

|Ni|
∑
j∈Ni

xj (1)

In our regression approach, we seek a function f , learned from the
entire image, such that

x̂i = f({xj}j∈Ni
) . (2)

Background estimation – though it’s typically not called that – is
also an important part of classical image processing. It arises both in
noise reduction [12] (where the “background” at a pixel location is
the noise-free pixel value) and in the “inpainting” problem [13, 14,
15] (where one seeks to fill in – or to “paint in” – pixel values that
are for some reason unavailable). In both cases, one seeks to exploit
spatial structure in the image in order to estimate a pixel value based
on the values of its neighbors. Our problem is perhaps a little closer
to the inpainting problem. For each pixel in the scene, we remove the
pixel, in-paint a replacement, and measure the difference between
the original pixel and its inpainted replacement. If the two are very
different, then that pixel is a candidate for a target location.

2. REGRESSION ALGORITHMS

The simplest algorithm, and the baseline for the studies presented
here, is the local averaging algorithm in Eq. (1) that estimates the
value of the central pixel as the arithmetic average of the pixels in
the annulus.

Our nonlinear algorithms are also based on an annulus around
a pixel, but they exploit statistics that we can learn from the rest of
the image regarding the relationship of the of pixels in an annulus to
the pixel in the center. The simplest of these nonlinear algorithms is
based on k-nearest neighbors. The idea is to identify the k patches in
the image that are most similar to the annulus that surrounds the pixel
of interest. The center pixels for those k patches are then prototypes
for the pixel of interest. In our implementation, we took k = 3, and
used the median of those prototypes as our estimator for the pixel
of interest. (We also tried using a mean, and obtained essentially
identical results.)

We also considered two other nonlinear algorithms that em-
ployed more sophisticated combinations of these nearest neighbor
patches. In the non-local mean (NLM) [16] algorithm, the simple
mean (or median) is replaced by a weighted mean, with the weights
chosen to depend on the dis-similarity of the neighbor patches with
the patch of interest. In particular, if dim is the dis-similarity of
patches Ni and Nm (measured as the mean of squared differences
of the pixels in those annular patches), then the weight is given by



(a) Lena (b) Parrots (c) Boat

(d) WorldView-2 (e) HyMap

Fig. 1. Three of the images (a,b,c) used in this study are popular
choices for comparing standard image processing algorithms, and
two of the images (d,e) are remote sensing images. (a) Lena is a sin-
gle band (black and white) image, and (b) Parrots and (c) Boat are
both three-band (red, green, blue) images. (d) WorldView-2 is a mul-
tispectral image with eight bands, and (e) HyMap is a hyperspectral
data cube, with 126 spectral channels.

wim = exp(−αdim), and the estimator for the pixel of interest
becomes

x̂i =
∑
m

wimxm

/∑
m

wim. (3)

We have found the the performance does not depend too sensitively
on α, but it is nonetheless a parameter that must be estimated. We
do this by taking a smaller sub-image and searching for an α that
optimizes ||x̂i − xi||2, averaged over the sub-image.

Finally, we consider a non-local sparse (NLS) representation.
This is similar to NLM, but for NLS weights are fit directly so that
Ni ≈

∑
m wimNm, subject to a sparsity constraint on wim [17].

That is, the annular patch of interest is fit with a linear combination
of near neighbor patches, and that linear combination is then applied
to the central pixels in order to provide an estimate x̂i.

All of these non-local algorithms require a search for near
neighbors in patch space; this is much more computationally ex-
pensive than the purely local averaging. We were able to speed up
the computation by using the Generalized PatchMatch algorithm of
Barnes et al. [18].

Although we ultimately care about target or anomaly detection
performance, our focus here will be on the intermediate question of
how precisely we can estimate the background; specifically, we will
use the mean squared error (MSE) of the background estimate rela-
tive to the actual background value. This is the most straightforward
from a regression point of view. Suppose e = x − x̂ is the error in
an estimate x̂ of x. Here, e is a vector with a number of elements
equal to the number of spectral channels in the image. If we write

ek as the kth pixel of n total, then

MSE =
1

n

N∑
k=1

eT
k ek = 〈eT e〉. (4)

Often this is expressed in terms of decibels with respect to the vari-
ance of the image:

SNR(dB) = −10 log10〈e
T e〉+ 10 log10〈x

Tx〉. (5)

3. IMAGERY

We used five images in this study; three of them, shown in Fig. 1(a,b,c),
are popular choices for standard image processing algorithms. Two
of them, shown in Fig. 1(d,e) are obtained from remote sensing
imagers; one is eight-band multispectral, and one is 126-band hy-
perspectral.

Lena is a single-band (“black and white”) 512×512 pixel image
(with an interesting history [19]) that includes edges, textures, gradi-
ents. The Parrots and Boat images are three band (red, green, blue)
color 512×768 pixel images [20]. A WorldView2 [21, 22] image
was provided to us by Digital Globe; this 512×512 crop is from a
much larger image taken of Omaha, Nebraska. We used the blind
reflectance dataset from the RIT blind test [23] as our hyperspectral
sample; there are 126 channels and 280×800 pixels.

4. EXPERIMENTS WITH SINGLE BAND IMAGES

For a single band image (or for a single band in a multispectral im-
age), all the information is spatial, and by comparing local averaging
to nonlocal methods, we test how much information is in the spatial
structure of an image. Intuitively, we know that images have a lot of
spatial structure, and our eye is well practiced at picking out subtle
spatial clues. But is remote sensing imagery qualitatively different
from other kinds of imagery – e.g., the images that are taken of peo-
ple or their pets and that show up in places like ImageNet [24]? We
know that remote sensing routinely employs spectral ranges that are
unavailable in snapshot photography, but the other half of the ques-
tion is: are the spatial statistics of remote sensing imagery funda-
mentally different from those of ImageNet style images? It is not ob-
vious that the kinds of images for which image processing tools such
as nonlocal mean were designed will have utility in remote sensing
images. The single band experiments test this question. What we
observe in Table 1 is that the nonlocal estimators consistently out-
perform local averaging.

This table also shows that a smaller annular patch generally out-
performs larger patches; this result was also observed by Cohen et
al. [10] in their experiments. The effect is quite striking for local
averaging, whereas the nonlocal estimators were seen to be more ro-
bust to increasing patch size. For the remaining experiments, we use
a small annulus: Ni is a 3 × 3 patch of pixels with the center pixel
missing.

5. MULTISPECTRAL AND HYPERSPECTRAL IMAGERY

As we move from single band to RGB, it is feasible to treat each
pixel as a three-component vector of values, and to apply the nonlo-
cal regression to these vectors. The results, shown in Table 2, echo
those seen in Table 1 for the single band images.

To avoid searching in higher dimensional spaces, an alternative
approach is to treat each of the bands independently, and to apply



Table 1. Average SNR(dB) for various regression schemes applied
to single bands of the images; shown here are results are based on
two different patch sizes.

(a) 3×3 annular patch
Avg. kNN NLMean NLSparse

Lena (band 2) 17.47 22.78 23.10 20.88
Parrots (band 2) 18.93 25.39 24.76 24.13

Boat (band 2) 12.42 18.46 19.06 17.24
WV-2 (band 3) 12.34 16.67 16.93 15.40

HyMap (band 20) 17.79 21.39 22.23 23.44

(b) 5×5 annular patch
Avg. kNN NLMean NLSparse

Lena (band 2) 14.29 20.14 19.68 19.28
Parrots (band 2) 15.73 22.60 21.33 23.18

Boat (band 2) 10.09 15.73 15.16 15.88
WV-2 (band 3) 9.37 14.38 13.94 14.76

HyMap (band 20) 12.39 18.05 18.95 23.81

(c) 7×7 annular patch
Avg. kNN NLMean NLSparse

Lena (band 2) 12.46 19.18 18.33 18.98
Parrots (band 2) 14.20 21.54 19.41 22.98

Boat (band 2) 9.24 14.73 13.44 15.15
WV-2 (band 3) 8.23 13.42 11.87 14.99

HyMap (band 20) 9.81 16.77 16.06 23.68

the estimation one component at a time. This is a simpler approach
(though more expensive), and as Table 2(b) shows, its performance is
comparable to (perhaps even better than) the approach in Table 2(a)
based on treating all three bands together. Further, since we have
already demonstrated that individual spectral components (i.e., indi-
vidual bands) are better predicted using nonlinear methods, we can
be confident that this result will obtain for multispectral and hyper-
spectral images as well.

The fact that single band performance improvements can always
be applied band-by-band to a full image provides a path to achieving
lower MSE on hyperspectral images. The nonlinear methods, how-
ever, are more expensive, and this expense becomes significant in an
image with 100+ spectral bands.

We have employed a hybrid algorithm in which PCA is applied
first to the image, and nonlinear band-by-band estimation of the first
few components is performed. Simple local averaging is performed
on the remaining bands, the results are combined, and the PCA is in-
verted. Table 3 shows that the nonlinear improvements to only a few
principal components are enough to substantially improve the perfor-
mance vis-a-vis local averaging for all the bands. Table 3 also com-
pares band-by-band regression for the three principal components to
a scheme that treats those three bands as a three-component vector.
As we saw in the RGB case, the band-by-band approach gives better
performance. Here, the bands are nominally independent (they are
uncorrelated, at least) and so we might expect band-by-band to work
particularly well.

6. FUTURE WORK

Although mean squared error provides one way to evaluate perfor-
mance, we ultimately prefer an approach that more directly maps to

Table 2. Average SNR(dB) for various regression schemes applied
to three bands of the images; results here are for a 3×3 annular patch.

(a) bands together
Avg. kNN NLMean NLSparse

Parrots 20.13 25.60 25.47 24.66
Boat 12.05 17.62 18.63 16.49

WV-2 (bands 1,2,3) 12.94 16.06 17.54 15.64
HyMap (bands 1,2,3) 16.04 19.49 20.24 21.83

(b) band-by-band
Avg. kNN NLMean NLSparse

Parrots 20.13 26.48 25.26 23.59
Boat 12.05 18.10 17.93 16.50

WV-2 (bands 1,2,3) 12.94 17.24 17.79 15.95
HyMap (bands 1,2,3) 16.04 19.66 19.13 22.45

Table 3. Average SNR(dB) for local averaging and nonlocal k-
Nearest-Neighbors applied to all the bands in the images, but using
a hybrid scheme that applies the nonlocal method only to the first
three principal components, and applies local averaging to the rest.

Avg. Hybrid kNN Hybrid kNN
band-by-band bands together

Parrots 20.13 26.53 25.82
Boat 12.05 18.13 17.83

WV-2 16.80 20.80 19.75
HyMap 19.63 22.63 21.28

target detection performance. Future efforts will consider the utility
of these nonlocal estimators in the context of specific target detec-
tion scenarios. Target implantation [25, 10, 11] provides a direct
approach for producing reliable scenarios, when the target signa-
ture is known, but volume-based approaches have also been sug-
gested [26, 27], particularly for anomaly detection (when the target
signature is unknown).

Also, the work described here concentrated on estimating the
mean value of the estimated background. While it is possible to
employ a locally varying mean with a global covariance, there is op-
portunity for further improvement by considering methods to locally
estimate the covariance as well [28, 29, 30, 31].

An alternative approach to local patches for nonlinear regression
is to use kernel methods [32, 33, 34]; it is not clear how these meth-
ods compare, both in terms of theoretical similarities and in terms of
practical target detection performance.
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