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Summary. Geostatistics has become a preferred tool for the identification of litho-
facies from sparse data, such as measurements of hydraulic conductivity and poros-
ity. Recently we demonstrated that the support vector machine (SVM), a tool from
machine learning, can be readily adapted for this task, and offers significant advan-
tages. On the conceptual side, the SVM avoids the use of untestable assumptions,
such as ergodicity, while on the practical side, the SVM outperforms geostatistics at
low sampling densities. In this study, we use the SVM within an inverse modeling
framework to incorporate hydraulic head measurements into lithofacies delineation,
and identify the directions of future research.

1 Introduction

Heterogeneous aquifers typically consist of multiple lithofacies, the spatial
arrangement of which significantly affects flow and transport in the subsurface.
The estimation of these lithofacies is complicated by the sparsity of data and
by the lack of a clear correlation between identifiable geologic indicators and
attributes (e.g. hydraulic conductivity and porosity). This so-called zonation
problem has been studied by [1, 2, 3, 4], among others.

Data which are used in geomaterials classification procedures are typi-
cally obtained from core samples that often disturb soils and are by necessity
sparse, thus contributing to predictive uncertainty associated with the loca-
tion of different geomaterials. Within a stochastic framework, this uncertainty
is quantified by treating a formation’s properties as random fields that are
characterized by multivariate probability density functions or, equivalently,
by their joint ensemble moments. Geostatistics has become an invaluable tool
for estimating facies distributions at points in a computational domain where
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data are not available, as well as for quantifying the corresponding uncertainty
[5].

Recently we [6, 7, 8] demonstrated that Support Vector Machine (SVM)
techniques, a subset of machine learning algorithms, provide a viable alter-
native to geostatistical frameworks by allowing one to delineate lithofacies
in the absence of sufficient data parameterization, without treating geologic
parameters as random and, hence, without the need for the ergodicity as-
sumption. This has been done by using both well and poorly differentiated
parameter data. For additional information on the use of the SVM and other
machine learning techniques in environmental applications, we refer the inter-
ested reader to [9].

In this study, we use machine learning within an inverse modeling frame-
work to incorporate hydraulic head measurements into lithofacies identifica-
tion. We apply the approach to a synthetic case of steady-state flow through
a domain consisting of two materials separated by highly irregular bound-
aries (see Fig. 1). For simplicity, the hydraulic conductivity of each material
is assumed to be constant.
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Fig. 1. Flow domain consisting of two contrasting geologic facies. A highly con-
ducting material is shown in red and a low conducting material in blue.

2 A Problem of Facies Delineation

Consider the problem of reconstructing a boundary between two homogeneous
geologic facies from either parameter data Ki = K(xi) or system state data
hi = h(xi, t) or both. Without loss of generality, we assume that both data
sets are collected at the same N locations xi = (xi, yi)T , where i ∈ {1, . . . , N}.
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Such problems are ubiquitous in subsurface hydrology since the geologic struc-
ture of the subsurface plays a crucial role in fluid flow and contaminant trans-
port. A typical example is the problem of locating permeable zones in the
aquiclude that separates two aquifers, the upper aquifer contaminated with
industrial pollutants, and the lower aquifer used for municipal water supplies
[5].

Parameter data can include measurements of hydraulic conductivity, elec-
tric resistivity, cumulative thickness of relevant geologic facies, and grain sizes.
We will call the problem of estimating the internal boundaries between geo-
logic lithofacies from such data a forward facies delineation problem. System
state data consist of measurements of hydraulic head, flow rate, concentration,
etc. We will call the problem of estimating the internal boundaries between
geologic lithofacies from such data an inverse facies delineation problem. Of-
ten both data types are available at the same locations, e.g., when observation
and/or pumping wells are outfitted with flow-meters.

2.1 Forward Facies Delineation Problem

Since parameter data characterize geologic materials, they allow one to label
the points where they are taken by mean of the indicator function

Ii ≡ I(xi) =
{

+1 xi ∈ M1

−1 xi ∈ M2,
(1)

where M1 and M2 are the two facies. This step typically involves an analysis
of a data histogram, which is often nontrivial, since a typical geologic facies is
heterogeneous. Here we assume that the available parameter data {K(xi)}N

i=1

are well differentiated, so that the process of assigning the values of the indi-
cator functions to points {xi}N

i=1 does not introduce interpretive errors. This
assumption can be relaxed to account for poor differentiation of data [5].

While it is customary to employ geostatistics for facies delineation, we
[6, 7] showed that the SVM, a tool from the statistical learning theory, can
be readily adapted for this task and offers significant advantages. On the
conceptual side, the SVM avoids the use of untestable assumptions, such as
ergodicity. On the practical side, the SVM outperforms geostatistics at low
sampling densities.

The SVM also has an advantage over neural networks, another tool from
the machine learning theory. This is because the SVM solves a convex opti-
mization by minimizing the quadratic functional

max
γ


N∑

i=1

γi −
1
2

N∑
i=1

N∑
j=1

γiγjIiIjK(xi,xj)

 , (2)

where K(xi,xj) is a given Mercer kernel, subject to the constraints
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0 ≤ γi ≤ C and
N∑

i=1

γiIi = 0. (3)

This optimization problem has a well defined global minimum that is influ-
enced by the choice of the fitting parameter C. If {γ?

i }N
i=1 denote a solution of

the optimization problem (2), then the indicator function I(x) at any point
x, and hence the boundary separating two materials, is given by [10, p. 203]

I(x) = sign

(
N∑

i=1

γ?
i IiK(x,xi) + b?

)
, (4)

where

b? = Ij −
N∑

i=1

γ?
i IiK(xj ,xi) (5)

for some j such that γj > 0.

2.2 Inverse Facies Delineation Problem

The incorporation of system state data into the SVM framework is challeng-
ing, since (i) one cannot assign the indicator function to such data and (ii)
the relationship between the two data types is nonlinear. To be concrete, we
consider steady-state saturated flow, so that the parameter K stands for hy-
draulic conductivity and the system state h is hydraulic head. We propose
the following SVM-based algorithm to delineate geologic facies from parame-
ter and system state data.

1. Use an SVM to reconstruct facies from parameter data {K(xi)}N
i=1.

2. Use the resulting parameter field as an initial guess for the optimization
problem

min
γ

−
N∑

i=1

γi +
1
2

N∑
i=1

N∑
j=1

γiγjIiIjK(xi,xj) + λ

√√√√ 1
N

N∑
i=1

[
hi − hs(xi)

] ,

(6)
subject to the constraints (3) and fixed λ > 0. Here hs(x) is a computed
system state, e.g., a numerical solution of the steady-state flow equation
∇·(K∇h) = 0 subject to appropriate boundary conditions. The hydraulic
conductivity K(x) is determined by the current state of {γi}N

i=1.

The proposed approach aims to retain the maximization of the SVM mar-
gin based on conductivity data (Step 1), while minimizing the difference be-
tween the measured and computed heads. This balance is controlled by the
choice of the parameter λ in (6). The higher its value, the more weight one
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Fig. 2. Hydraulic head distribution in the flow domain shown in Fig. 1.

assigns to the head measurements relative to the conductivity measurements,
and vice versa.

In the proposed approach, hydraulic head data affect only the radial func-
tions weights, which, in principle, might provide too few degrees of freedom.
Indeed, one can expect the estimated facies boundary to be overly smooth,
when a conductivity data set is small. However, if such a data set is comple-
mented by a few hydraulic head measurements, fewer degrees of freedom are
necessary to obtain a good correspondence.

Also, it is important to note that the proposed approach replaces the
quadratic optimization in the SVM (2) with the nonlinear optimization (6).
This nonlinearity arises from the nonlocal relationship between hydraulic con-
ductivity K and hydraulic head h. This raise important questions of whether
or not the SVM parameterization of the boundaries is adequate and the use
of SVMs for facies delineation is appropriate. We begin to address these ques-
tions by analyzing the computational example provided below.

3 Computational Example

We employ the proposed SVM-based algorithm to reconstruct the boundaries
between two geologic facies shown in Fig. 1 from N randomly selected data
points {xi}N

i=1. At these data points, both hydraulic conductivity K and hy-
draulic head h are sampled. The values of hydraulic head are obtained by
solving the steady-state flow equation ∇ · (K∇h) = 0 with hydraulic conduc-
tivity K(x) distribution shown in Fig. 1. Flow is driven by the hydraulic heads
h = H1 and h = H2 prescribed along the left and right vertical boundaries, re-
spectively. The lower and upper horizontal boundaries are impermeable. This
results in the reference hydraulic head distribution shown in Fig. 2.
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Fig. 3. The conductivity field reconstructed from N = 100 conductivity measure-
ments, whose locations are shown by the black dots (a) and the corresponding hy-
draulic head distribution (b).

The first step in the proposed algorithm consists of the use of an SVM
to reconstruct the boundaries from N = 100 conductivity measurements.
The location of these measurements, the reconstructed boundaries, and the
corresponding hydraulic head distribution are shown in Fig. 3. We used the
Gaussian kernel K(x,x′) = exp

[
−||x− x′||2/(2σ2)

]
with parameter σ = 5,

and set SVM parameter C = 1000. (These fixed values were chosen for good
facies delineation performance based on our previous experience [7], but in a
more realistic setting these would be chosen via a cross-validation method.)
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Fig. 4. The conductivity field reconstructed from N = 100 measurements of hy-
draulic conductivity and head, whose locations are shown by the black dots (a) and
the corresponding hydraulic head distribution (b).
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Using this hydraulic conductivity field as an initial guess in the second
step, and choosing λ = 1000 to provide appropriate weighting to each term,
we obtain the reconstructed boundaries and the corresponding hydraulic head
distribution in Fig. 4. Table 1 provides a quantitative comparison of these re-
constructions. While the incorporation of hydraulic head measurements leads
to only a marginal reduction in the boundary reconstruction errors, it signif-
icantly reduces the error in predictions of hydraulic head distribution. More-
over, the L2 norm used in this comparison does not tell the whole story. A
visual comparison of the reconstructed conductivity fields (Figs 3a and 4a)
with the reference conductivity field (Fig 1) reveals that the joint use of hy-
draulic conductivity and head data also noticeably improves the boundary
reconstruction.

Table 1. Reconstruction errors (L2 norm with respect to the reference field) result-
ing from the reliance on K data only and on combined K and h data.

Conductivity K Head h

K data 111.83 52.04
K and h data 106.86 25.67

4 Summary and Discussion

Support Vector Machines (SVM), a tool from machine learning, provides a
number of advantages over geostatistics. Previous applications of SVM fo-
cused on the delineation of lithofacies from measurements of properties of
geologic materials (parameter data). Such data allow one to determine the
membership of spatial locations where the measurements are made in a rela-
tively straightforward fashion.

The task of identifying geologic units from system state data is significantly
more challenging, since the membership of such data in a given unit is not
identifiable from data analysis alone. We proposed an SVM-based approach
that allows one to combine both types of data with the aim of improving
the accuracy and robustness of the facies delineation. The preliminary results
reported here demonstrate the potential of the proposed approach.

A number of issues remain open and remain the focus of our ongoing
research. These include

• Since the proposed approach relies on a nonlinear optimization with many
degrees of freedom, its utility and reliability depends critically on the selec-
tion of the optimization strategy. The nonlinear constrained optimization
algorithm (function fmincon in the MATLAB Optimization Toolbox) used
in the present analysis is known to converge to local, rather than global,
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minima and requires careful adjustment of optimization parameters. This
poses the question of selection of optimal optimization strategies.

• As the sampling density (the number of elements in the numerical grid
where data are available relative to the total number of elements) de-
creases, the last term in the optimization functional might become flat.
Consequently, the SVM parameterization of boundaries might not guar-
antee an optimal performance with respect to hydraulic heads. This calls
for a detailed analysis of the influence of sampling density on the perfor-
mance of the proposed approach.

• Locations of data points are expected to play a significant role in the
accuracy of facies delineation. To provide an unbiased assessment of the
performance of the proposed approach, it is desirable to average the re-
construction errors resulting from several alternative placements of data
points for the same sampling data. This task is impossible without a robust
optimization algorithm (see above).

These issues and limitations might explain a relatively modest reduction
(50%) of the reconstruction errors obtained with the SVM inversion, while
geostatistical inverse methods, e.g., the inversion of stochastic moment equa-
tions based on the pilot point method [11, 12], often yield an order of magni-
tude error reductions. However, it is important to emphasize that the success
of this and other geostatistical inversion techniques depends heavily on the
number and location of pilot points, the quality and quantity of data, the
presence/absence of priors, and the way used to regularize the objective func-
tion [13]. The results presented here reduce the bias by averaging over twenty
possible locations of data points.

Finally, the proposed SVM inversion procedure might suffer from an inade-
quate number of degrees of freedom. To alleviate this problem, we are working
on its extension that incorporates the ideas behind pilot point methods (but
not their geostatistical implementation) into the SVM framework.
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