
A Fast Parallel Algorithm for Convolutional Sparse Coding
Erik Skau

CCS-3 / T-5, CCS and T Divisions
Los Alamos National Laboratory
Los Alamos, NM 87544, USA

ewskau@gmail.com

Brendt Wohlberg
T-5, T Division

Los Alamos National Laboratory
Los Alamos, NM 87545, USA

brendt@ieee.org

Abstract—The current leading algorithms for convolutional sparse
coding are not inherently parallelizable, and therefore are not able to
fully exploit modern multi-core architectures. We address this deficiency
by developing a new algorithm that partitions the dictionary and the
corresponding coefficient maps into groups, solving the main subprob-
lems for all of the groups in parallel. Theoretical complexities and
implementational details are discussed and validated with computational
experiments, which indicate speed improvements by about a factor of 5,
depending on the specific problem.

Index Terms—Convolutional Sparse Representations, Convolutional
Sparse Coding, ADMM

I. INTRODUCTION

Sparse representations are widely used in signal processing and
computer vision [1]. The representation of a signal s can be written
as Dx ≈ s, where matrix or linear operator D is the dictionary, and
x is a vector with only a few non-zero entries. While synthesis of a
signal from its sparse representation involves a linear operation, the
computation of the representation for a given signal, referred to as
sparse coding, involves solving an optimization problem.

A translation-invariant representation is obtained when the dictio-
nary consists of a set of linear filters dm and the signal represen-
tation can be written as

∑
m dm ∗ xm ≈ s. These convolutional

sparse representations have attracted increasing interest for compu-
tational imaging and image processing applications over the past few
years [2], [3], [4], [5], [6], [7], [8]. Although significant progress
has been made in developing more efficient algorithms [9], [10],
[11], convolutional sparse coding (CSC) remains computationally
expensive. The present paper describes a new CSC algorithm that is
designed to be highly parallelizable, offering a substantial reduction
in computation time on a modern multi-core architecture.

II. CONVOLUTIONAL SPARSE CODING

CSC is usually posed as the optimization problem [12]

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1 , (1)

where s is the signal to be decomposed, {dm} is a set of M
dictionary filters, and {xm} is a set of M coefficient maps that
comprise the sparse representation. A variant of this problem that
includes a spatial mask vector w is useful when careful boundary
handling is required, or when the signal s has missing samples [13],
[14]

argmin
{xm}

1

2

∥∥∥w�(∑
m

dm ∗ xm − s
)∥∥∥2

2
+ λ

∑
m

‖xm‖1 . (2)

Problems (1) and (2) are usually solved via the Alternating
Direction Method of Multipliers (ADMM) [15] which provides a
general framework for solving problems of the form

argmin
x,y

f(x) + g(y) such that Ax+By = c (3)

by iterating over the updates

x(j+1) = argmin
x

f(x) +
ρ

2

∥∥∥Ax+By(j) − c+ u(j)
∥∥∥2
2
, (4)

y(j+1) = argmin
y

g(y) +
ρ

2

∥∥∥Ax(j+1) +By − c+ u(j)
∥∥∥2
2
, (5)

u(j+1) = u(j) +Ax(j+1) +By(j+1) − c , (6)

where u is the dual variable and ρ > 0 is the penalty parameter [15].
Both problems (1) and (2) can be converted to equivalent problems

of the form (3) by variable splitting, which involves introducing
auxiliary variables and suitable constraints. Since the usual variable
splitting for (1) involves an equality constraint

argmin
{xm},{ym}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖ym‖1

such that xm = ym ∀m , (7)

we will refer to the corresponding ADMM algorithm [11] as ADMM-
EQ. Problems (1) and (2) can be solved via an ADMM algorithm
based on a different splitting [13]

argmin
{xm},{y0},{y1,m}

1

2

∥∥w�y0

∥∥2
2
+ λ

∑
m

∥∥y1,m

∥∥
1

such that∑
m

dm ∗ xm − s = y0 and xm = y1,m ∀m . (8)

Since this splitting is based on the mask decoupling method [16], we
will refer to the corresponding ADMM algorithm as ADMM-MD.

The x step (4) is the most computationally expensive component of
the ADMM algorithms for both problems. Unfortunately the solution
of this step is not easily parallelizable since it involves a forward
Discrete Fourier Transform (DFT), solution of independent linear
systems for each frequency, and an inverse DFT [11], [14].

III. DICTIONARY PARTITION ALGORITHM

We propose an alternative variable splitting for these problems,
based on a partition of the M dictionary filters into L groups
{Gl}l∈{0,...,L−1} where

Gi ∩Gj = ∅ for i 6= j and
⋃
l

Gl = {0, . . . ,M − 1} .

The corresponding variable splitting into ADMM form of problem (2)
is

argmin
{xm},{y0,l},{y1,m}

1

2

∥∥∥w�(∑
l

y0,l − s
)∥∥∥2

2
+ λ

∑
m

∥∥y1,m

∥∥
1

such that
∑
g∈Gl

dg ∗ xg = y0,l ∀l and αxm = αy1,m ∀m ,

where α is a parameter chosen to balance the significance of the two
constraints1. As in the case of (8), these constraints can be combined
into ADMM form (3). We will refer to the corresponding ADMM
algorithm as ADMM with dictionary partitioning (ADMM-DP). The
steps for this algorithm are

x
(j+1)
Gl

= argmin
{xg∈Gl}

ρ

2

∥∥∥∑
g∈Gl

dg ∗ xg − y
(j)
0,l + u

(j)
0,l

∥∥∥2
2

+
ρ

2

∑
g∈Gl

∥∥∥αxg − αy(j)
1,g + u

(j)
1,g

∥∥∥2
2

(9)

y
(j+1)
0 =argmin

y0

1

2

∥∥∥w�(∑
l

y0,l − s
)∥∥∥2

2

+
ρ

2

∑
l

∥∥∥∑
g∈Gl

dg ∗ x(j+1)
g − y0,l + u

(j)
0,l

∥∥∥ (10)

y
(j+1)
1,Gl

= argmin
{y1,g∈Gl}

λ
∑
g∈Gl

∥∥y1,g

∥∥
1

+
ρ

2

∑
g∈Gl

∥∥∥αx(j+1)
g − αy1,g + u

(j)
1,g

∥∥∥2
2

(11)

u
(j+1)
0,l = u

(j)
0,l +

∑
g∈Gl

dg ∗ x(j+1)
g − y

(j+1)
0l

(12)

u
(j+1)
1,Gl

= u
(j)
1,Gl

+ αx
(j+1)
Gl

− αy(j+1)
1,Gl

, (13)

where the x, y1, u0, and u1 steps can each be broken up into L
independent problems that can be computed in parallel. The y0 step
cannot be similarly decomposed.

Each parallel x step involves solving a linear system. We define
D̂l as the block matrix constructed by horizontal concatenation of
the diagonal blocks of the DFT of filters in group Gl, and denote the
DFT of variable z by ẑ. The xGl step is given by the solution to the
linear system

(α2I + D̂HD̂)x = D̂H(ŷ0,l − û0,l) + α2ŷ1,Gl − αû1,Gl ,

which can be solved efficiently by exploiting the Sherman-Morrison
formula [11]. The y1 step can be solved as

y
(j+1)
1,Gl

= S λ
α2ρ

(xGl + α−1u1,Gl) ,

where Sγ(·) is the soft thresholding function [17, Sec. 6.5.2]

Sγ(u) = sign(u)�max(0, |u| − γ) ,

and the u0,l and u1,Gl steps are straightforward.
The y0 minimization (10) cannot be broken into similar indepen-

dent problems, and requires closer attention in order to derive an
efficient solution. This problem can be reformulated by defining

y =

y0,0

y0,1

...
y0,L−1

 , z =

∑
g∈G0

dg ∗ x(j+1)
g∑

g∈G1
dg ∗ x(j+1)

g

...∑
g∈GL−1

dg ∗ x(j+1)
g

+

u
(j)
0,0

u
(j)
0,1

...
u
(j)
0,L−1

 ,

W = diag(w), and I =
(
IN IN . . . IN

)
(L identity matrices

concatenated horizontally), so that (10) is equivalent to

argmin
y

1

2

∥∥W Iy −W s
∥∥2
2
+
ρ

2

∥∥y − z
∥∥2
2
. (14)

The solution of this problem is given by the linear system,

(ρILN + I
ᵀW ᵀW I)y = I

ᵀW ᵀW s+ ρz ,

1A similar parameter is also expected to benefit the ADMM-MD algorithm,
but that possibility is not explored here.

TABLE I: Complexity breakdown of ADMM algorithms for M filters
with C channels and a signal with C channels and N samples.

ADMM-EQ ADMM-MD ADMM-DP

x step CMN logN CMN logN CM
L
N logN

y0 step — CMN CLN

y/y1 step MN MN M
L
N

u0 step — CN CN

u/u1 step MN MN M
L
N

which is a degenerate form of the linear equation for one of the x
steps. Similarly to the x steps, this system can be solved by exploiting
the Sherman-Morrison formula [12, Appendix B].

The y0 linear system is well conditioned, with a condition number
of

κ(ρILN + I
ᵀW ᵀW I) =

max(w)2L

ρ
+ 1 ,

and an inverse of

(ρILN + I
ᵀW ᵀW I)−1 =

1

ρ
ILN − I

ᵀ
(

W 2

ρ2IN + ρLW 2

)
I ,

where the division is elementwise. In practice, when W is a mask
consisting of {0, 1} entries, the condition number simplifies to L

ρ
+1.

For the CSC problem without a mask the condition number is

κ(ρILN + I
ᵀ
I) = (L/ρ) + 1 ,

and the inverse simplifies to

(ρILN + I
ᵀ
I)−1 =

1

ρ
ILN −

1

ρ2 + ρL
II

ᵀ .

A. Multi-channel Signals

Multi-channel signals can be represented using either single chan-
nel dictionary filters and multi-channel coefficient maps or multi-
channel dictionary filters and single channel coefficient maps [18].
Masked CSC for the former involves trivial modifications to the
algorithms for single channel signals, and the masked CSC problem
for the latter case can be expressed as

argmin
{xm}

1

2

∑
c

∥∥∥w�(∑
m

dc,m ∗ xm − sc
)∥∥∥2

2
+ λ

∑
m

‖xm‖1 ,

where c indexes the C different channels. It is clear from inspection
of this problem that steps (9) – (13) of the ADMM-DP algorithm are
easily modified to solve this generalization of (8).

B. Complexity Comparison and Implementation

The computational complexities of setting up and solving each
ADMM step for ADMM-EQ, ADMM-MD, and ADMM-DP are
listed in Table I. The cost of solving the linear systems required to
solve the x steps is linear in N , but setting up the systems requires
DFTs which are computed in O(N logN). Computationally, it is
most efficient to include all other DFT operations in the x step as
well. For the x, y1, u0, and u1 steps for ADMM-DP, we report the
complexity of each of the L disjoint problems that can be computed
in parallel.

ADMM algorithms typically start each iteration with the update for
the primary variable, x, followed by those for the auxiliary variable,
y, and the dual variable, u. Because our y0 update involves all
groups, and cannot be computed in parallel, the direct implementation
of the ADMM-DP algorithm breaks the parallelizable updates into
two separate operations as shown in Fig. 1a. By cyclically permuting

Initialize

. . .
xG0

update
xGL−1
update

y0

update

. . .
y1,G0
update

y1,GL−1
update

u0,0

update
. . .

u0,L−1

update

u1,G0
update

. . .
u1,GL−1

update

Stopping
criteria

Terminate

(a) Direct Implementation

Initialize and update x

y0

update

. . .
y1,G0
update

y1,GL−1
update

u0,0

update
. . .

u0,L−1

update

u1,G0
update

. . .
u1,GL−1

update

. . .
xG0

update
xGL−1
update

Stopping
criteria

Update y0, y1,u0, and u1

Terminate

(b) Efficient Implementation

Fig. 1: ADMM-DP implementation flowcharts.

TABLE II: Optimal Convergence Parameters

CSC Problem Masked CSC Problem
Method ρ α Method ρ α
EQ 8.0 — MD 5.0 —
DS L=1 6.0 1.1 DS L=1 1.0 2.4
DS L=2 2.0 2.0 DS L=2 1.0 2.4
DS L=4 2.0 2.0 DS L=4 1.0 2.4
DS L=8 2.0 2.0 DS L=8 2.0 1.8
DS L=16 2.0 2.0 DS L=16 2.0 1.8

the update steps, the parallel steps can be arranged consecutively,
requiring only one merge per iteration as shown in Fig. 1b and
implemented in practice.

IV. RESULTS

All results were computed using a Linux workstation with 250GB
of RAM, and with two Intel(R) Xeon(R) CPU E5-2640 v3 processors,
providing a total of 16 physical cores and 32 logical cores. The
dynamic frequency scaling feature of these CPUs, which was enabled
for our experiments, reduces the effective speed improvement of the
proposed approach. The ADMM-DP algorithm was implemented in
Python, and compared with ADMM-EQ and ADMM-MD implemen-
tations in the SPORCO Python package [19].

The algorithms were compared for both problems (1) and (2) in
sparse coding of a 512 × 512 pixel image with a dictionary of 192
filters of size 12 × 12, and with sparsity parameter λ = 0.1. The
masked CSC problem used a mask of 0 and 1 entries in a checker-
board pattern. Optimal convergence parameters, shown in Table II,
were determined by a grid search to minimize the objective values of
each experiment after 250 iterations. For simplicity, experiments were
performed without advanced techniques such as adaptive ρ or over-
relaxation [12, Sec. III.D]. Convergence and run time comparisons

100 101

Iteration

300

400

500

600

700

800

Ob
je

ct
iv

e
Fu

nc
tio

n

ADMM-EQ
ADMM-DP, L=1
ADMM-DP, L=2
ADMM-DP, L=4
ADMM-DP, L=8
ADMM-DP, L=16

(a) Objective Function vs
Iteration

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.5

1.0

1.5

2.0

2.5

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

ADMM-EQ
ADMM-DP

(b) Time vs Number of Groups

0 20 40 60 80
Run Time (s)

300

400

500

600

700

800

Ob
je

ct
iv

e
Fu

nc
tio

n

ADMM-EQ
ADMM-DP, L=1
ADMM-DP, L=2
ADMM-DP, L=4
ADMM-DP, L=8
ADMM-DP, L=16

(c) Objective Function vs Time

Fig. 2: Convergence and run
times for CSC.

100 101 102

Iteration

200

250

300

350

400

Ob
je

ct
iv

e
Fu

nc
tio

n

ADMM-MD
ADMM-DP, L=1
ADMM-DP, L=2
ADMM-DP, L=4
ADMM-DP, L=8
ADMM-DP, L=16

(a) Objective Function vs
Iteration

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

1

2

3

4

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

ADMM-MD
ADMM-DP

(b) Time vs Number of Groups

0 50 100 150
Run Time (s)

200

250

300

350

400

Ob
je

ct
iv

e
Fu

nc
tio

n

ADMM-MD
ADMM-DP, L=1
ADMM-DP, L=2
ADMM-DP, L=4
ADMM-DP, L=8
ADMM-DP, L=16

(c) Objective Function vs Time

Fig. 3: Convergence and run
times for masked CSC.

TABLE III: Iterations (denoted by ‘Iter.”) and time required to achieve
specified accuracies in a masked CSC problem. Time was measured
in seconds, and “Ratio” is the amount of time relative to ADMM-MD
to reach the desired accuracy.

Obj. Value error = 1% Obj. Value error = 0.1%
PSNR error ≈ 0.4% PSNR error ≈ 0.1%

ADMM Iter. Time (s) Ratio Iter. Time (s) Ratio
MD 103 490.4 1.00 186 869.7 1.00
DS L=1 94 391.8 0.80 173 717.2 0.82
DS L=2 96 224.8 0.46 185 430.3 0.49
DS L=4 104 151.2 0.31 192 276.1 0.32
DS L=8 103 102.2 0.21 201 197.7 0.23
DS L=16 111 99.2 0.20 210 184.4 0.21

for the unmasked and masked CSC problems are shown in Figs. 2
and 3 respectively.

In order to analyze the computation time scaling with respect
to L of the ADMM-DP algorithm, we computed the average time
per iteration in solving our test problems for each of the algorithm
steps, when executed in serial. The comparison with times spent
on ADMM-EQ steps is shown in Fig. 4a, and the ADMM-MD
comparison is in Fig. 4b. As an indication of the speed improvements
that can be expected when the CSC problem is solved to an accuracy
required in a real application, Table III reports the number of
iterations, time in seconds, and time relative to ADMM-MD, to solve
our masked CSC problem for the objective value to be within a
percentage of the optimal objective value.

V. DISCUSSION

There are two properties to consider when analyzing ADMM-DP:
the convergence properties of the ADMM-DP methods relative to the
standard methods, and the time scaling property from parallelization

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.0

0.5

1.0

1.5
Av

g.
 T

im
e

pe
r I

te
r.

(s
)

ADMM-EQ x step
ADMM-DP x step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.5

1.0

1.5

2.0

2.5

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

1e 2

ADMM-DP y0 step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.0

0.2

0.4

0.6

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

ADMM-EQ y step
ADMM-DP y1 step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.6

0.7

0.8

0.9

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

1e 3

ADMM-DP u0 step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.00

0.02

0.04

0.06

0.08

0.10

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

ADMM-EQ u step
ADMM-DP u1 step

(a) Standard CSC Times

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.0

0.5

1.0

1.5

2.0

2.5

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

ADMM-MD x step
ADMM-DP x step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.0

0.5

1.0

1.5

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

1e 1

ADMM-MD y0 step
ADMM-DP y0 step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

ADMM-MD y1 step
ADMM-DP y1 step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

2

3

4

5

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

1e 3

ADMM-MD u0 step
ADMM-DP u0 step

2.5 5.0 7.5 10.0 12.5 15.0
Number of Groups

0.0

0.1

0.2

0.3

Av
g.

 T
im

e
pe

r I
te

r.
(s

)

ADMM-MD u1 step
ADMM-DP u1 step

(b) Masked CSC Times

Fig. 4: ADMM-DP complexity measurements with respect to L in
CSC problems.

of the ADMM-DP algorithm. Comparisons for the CSC problem
without a spatial mask are shown in Fig. 2, and those for the masked
problem are shown in Fig. 3.

It can be seen from Fig. 2a that the convergence of ADMM-EQ
with respect to iterations is slightly better2 than that of ADMM-
DP. Run times per iteration are compared in Fig. 2b. Here ADMM-
EQ and the ADMM-DP L = 1 are comparable, with ADMM-DP
taking just 1.06× longer. When L = 16, ADMM-DP was over 5.2×
faster per iteration relative to ADMM-EQ. Since the convergence for
ADMM-EQ is slightly better than that of ADMM-DP, the effective
speed-up is approximately 4.6×, as seen in Fig. 2c.

In Fig. 3a, ADMM-DP exhibits similar convergence to ADMM-
MD when solving to high accuracy. With L = 1, ADMM-DP is 1.1×
faster per iteration than ADMM-MD, and with L = 16, ADMM-
DP is 5.3× faster than ADMM-MD. With similar convergence
trends per iteration, the effective speed-up for an accurate solution is
approximately 5×, as seen in Fig. 3c. This is confirmed by Table III,
for which the masked CSC problem was solved to various accuracies

2It is substantially better when ADMM-DP does not make use of the
constraint-balancing offered by parameter α, i.e. when α = 1.

measured by the objective value. Solving the problem with ADMM-
DP, L = 16 to a 1% accuracy, or approximately a .4% PSNR error,
is 5.0× faster than ADMM-MD. To solve to an accuracy of 0.1%,
or approximately a .1% PSNR error, is 4.7× faster.

The time scaling of each step shown in Fig. 4 is in accordance with
the complexities listed in Table I. It can be seen from Fig. 4 that the
majority of the execution time of ADMM-EQ and ADMM-MD is
spent on the x steps, which includes solving a linear system with
complexity O(CMN logN). ADMM-DP breaks this step up into
L sub-problems each with complexity O(CM

L
N logN), resulting

in the O(1
L
) trend observed in the ADMM-DP x steps. ADMM-DP

similarly breaks up the y/y1 and u/u1 steps, giving a similar O(1
L
)

trend here as well. As expected, the ADMM-DP y0 trend is linear,
while the ADMM-DP u0 step takes approximately constant time.

The performance of ADMM-DP with larger L can also be pre-
dicted from Fig. 4. As L grows, the limited returns of the O(1

L
)

terms will be dominated by the O(L) growth of ADMM-DP y0

step. It is clear from Figs. 2b and 3b that our experiments did not
reach that transition point, and would still benefit from more cores.
The trends observed in Fig. 4 suggest, however, that using many more
groups, such as would be possible with the very large number of cores
available on a GPU, would not be efficient. We expect that the most
effective approach on such an architecture would be to partition the
available cores into 16 to 32 sets, each of which would be assigned
a single dictionary filter group.

VI. CONCLUSION

We have proposed a new parallelizable CSC algorithm that offers
significant performance gains on multi-core architectures, which are
becoming increasingly prevalent. GPU implementations of existing
algorithms can offer considerably greater time reductions, but are
limited by hardware availability, and are much more time-consuming
to program and modify.

Some of our tests indicate that the use of the Python multi-
processing module introduces a significant overhead, reducing the
effective gain obtained from computing in parallel. We expect that an
implementation using alternative parallelization tools may eliminate
this expense, further improving the speed improvement.

Implementations of the algorithms proposed here will be included
in a future release of the SPORCO library [19], [20].

REFERENCES

[1] J. Mairal, F. Bach, and J. Ponce, “Sparse modeling for image and vision
processing,” Foundations and Trends in Computer Graphics and Vision,
vol. 8, no. 2-3, pp. 85–283, 2014. doi:10.1561/0600000058

[2] S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, and L. Zhang, “Convolutional
sparse coding for image super-resolution,” in Proc. IEEE Intl. Conf.
Comput. Vis. (ICCV), Dec. 2015. doi:10.1109/ICCV.2015.212

[3] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang, “Image fusion with
convolutional sparse representation,” IEEE Signal Process. Lett., 2016.
doi:10.1109/lsp.2016.2618776

[4] H. Zhang and V. Patel, “Convolutional sparse coding-based image
decomposition,” in British Mach. Vis. Conf. (BMVC), York, UK, Sep.
2016.

[5] T. M. Quan and W.-K. Jeong, “Compressed sensing reconstruction of
dynamic contrast enhanced MRI using GPU-accelerated convolutional
sparse coding,” in IEEE Intl. Symp. Biomed. Imag. (ISBI), Apr. 2016,
pp. 518–521. doi:10.1109/ISBI.2016.7493321

[6] B. Wohlberg, “Convolutional sparse representations as an image model
for impulse noise restoration,” in Proc. IEEE Image, Video Multi-
dim. Signal Process. Workshop (IVMSP), Bordeaux, France, Jul. 2016.
doi:10.1109/IVMSPW.2016.7528229

[7] A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia,
“Convolutional sparse coding for high dynamic range imaging,” Com-
puter Graphics Forum, vol. 35, no. 2, pp. 153–163, May 2016.
doi:10.1111/cgf.12819

http://dx.doi.org/10.1561/0600000058
http://dx.doi.org/10.1109/ICCV.2015.212
http://dx.doi.org/10.1109/lsp.2016.2618776
http://dx.doi.org/10.1109/ISBI.2016.7493321
http://dx.doi.org/10.1109/IVMSPW.2016.7528229
http://dx.doi.org/10.1111/cgf.12819

[8] H. Zhang and V. M. Patel, “Convolutional sparse and low-rank coding-
based rain streak removal,” in Proc. IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), March 2017.

[9] R. Chalasani, J. C. Principe, and N. Ramakrishnan, “A fast proximal
method for convolutional sparse coding,” in Proc. Int. Joint Conf. Neural
Net. (IJCNN), Aug. 2013.

[10] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse
coding,” in Proc. IEEE Conf. Comp. Vis. Pat. Recog. (CVPR), Jun. 2013,
pp. 391–398. doi:10.1109/CVPR.2013.57

[11] B. Wohlberg, “Efficient convolutional sparse coding,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), May 2014, pp. 7173–
7177. doi:10.1109/ICASSP.2014.6854992

[12] ——, “Efficient algorithms for convolutional sparse representations,”
IEEE Trans. Image Process., vol. 25, no. 1, pp. 301–315, Jan. 2016.
doi:10.1109/TIP.2015.2495260

[13] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in Proc. IEEE Conf. Comp. Vis. Pat. Recog. (CVPR), Jun.
2015, pp. 5135–5143. doi:10.1109/CVPR.2015.7299149

[14] B. Wohlberg, “Boundary handling for convolutional sparse representa-
tions,” in Proc. IEEE Conf. Image Process. (ICIP), Phoenix, AZ, USA,
Sep. 2016, pp. 1833–1837. doi:10.1109/ICIP.2016.7532675

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2010. doi:10.1561/2200000016

[16] M. S. C. Almeida and M. A. T. Figueiredo, “Deconvolving images
with unknown boundaries using the alternating direction method of
multipliers,” IEEE Trans. Image Process., vol. 22, no. 8, pp. 3074–3086,
Aug. 2013. doi:10.1109/tip.2013.2258354

[17] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 127–239, 2014.
doi:10.1561/2400000003

[18] B. Wohlberg, “Convolutional sparse representation of color images,”
in Proceedings of the IEEE Southwest Symposium on Image Analysis
and Interpretation (SSIAI), Santa Fe, NM, USA, Mar. 2016, pp. 57–60.
doi:10.1109/SSIAI.2016.7459174

[19] ——, “SPORCO: A Python package for standard and convolutional
sparse representations,” in Proceedings of the 15th Python in Science
Conference, Austin, TX, USA, Jul. 2017, pp. 1–8. doi:10.25080/shinma-
7f4c6e7-001

[20] ——, “SParse Optimization Research COde (SPORCO),” Software
library available from http://purl.org/brendt/software/sporco, 2017.

http://dx.doi.org/10.1109/CVPR.2013.57
http://dx.doi.org/10.1109/ICASSP.2014.6854992
http://dx.doi.org/10.1109/TIP.2015.2495260
http://dx.doi.org/10.1109/CVPR.2015.7299149
http://dx.doi.org/10.1109/ICIP.2016.7532675
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/tip.2013.2258354
http://dx.doi.org/10.1561/2400000003
http://dx.doi.org/10.1109/SSIAI.2016.7459174
http://dx.doi.org/10.25080/shinma-7f4c6e7-001
http://dx.doi.org/10.25080/shinma-7f4c6e7-001
http://purl.org/brendt/software/sporco

