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COMPARISON OF SATELLITE ORBIT TOMOGRAPHY WITH
SIMULTANEOUS ATMOSPHERIC DENSITY AND ORBIT

ESTIMATION METHODS

Michael A. Shoemaker∗, Brendt Wohlberg†, Richard Linares‡, David M. Palmer§,
Alexei Klimenko¶, David Thompson‖, and Josef Koller∗∗

Satellite orbit tomography is a newly developed method for addressing the Dy-
namic Calibration of the Atmosphere (DCA). The focus of this paper is a side-by-
side comparison with other DCA methods that use the raw tracking measurements
and solve simultaneously for the orbit state and parameterized density correction.
The main contribution of this work is to test the notion that, in general, an es-
timator benefits from using raw measurements to solve for the state, in contrast
with an estimator that uses intermediate estimated quantities in place of the raw
measurements.

INTRODUCTION

The influence of atmospheric drag acceleration model errors on LEO satellite orbit propagation
is well known, and much effort has been spent in recent years on improving these models.1 One
research area involves the estimation of corrections to a given density model, i.e. the so-called
Dynamic Calibration of the Atmosphere (DCA) methods (pp. 569-570 of Ref. 2). Satellite orbit
tomography is a newly developed DCA method, inspired by X-ray computed tomography, for es-
timating the atmospheric density.3, 4, 5 The orbit tomography uses the measured change in specific
mechanical energy, and relates that to the specific work acting on the satellite due to drag. Previous
work has introduced the method and shown its feasibility with numerical simulations. The focus of
the present study is a side-by-side comparison with another method of addressing the DCA problem.
The main contribution of this work is to test the notion that, in general, an estimator benefits from
using raw measurements to solve for the state, in contrast with an estimator that uses intermediate
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estimated quantities in place of the raw measurements. Furthermore, this work shows a simpler
example of the satellite orbit tomography compared with previous work, which allows the overall
method to be more easily understood.

Satellite orbit tomography assumes that a separate orbit estimation scheme is in place (e.g. a
sequential estimator like an Unscented Kalman filter(UKF)) to process raw tracking measurements
and produce estimates of the position and velocity. The tomography then treats these estimated
states as input measurements of the change in mechanical energy. In contrast, a simultaneous
method uses the tracking measurements and solves simultaneously for the orbit state and param-
eterized density correction. For example, the U.S. Air Force’s High Accuracy Satellite Drag Model
(HASDM)6 uses ground-based tracking measurements of a number of satellites, and uses a weighted
least squares differential correction method across all targets that simultaneously solves for the den-
sity corrections and a state vector for each target. The HASDM DCA corrections are applied to
the exospheric and inflection point temperatures in the vertical temperature profile in the Jacchia-70
empirical density model, and are represented as two separate spherical harmonic expansions.

This research is part of the IMPACT (Integrated Modeling of Perturbations in Atmospheres for
Conjunction Tracking) project at Los Alamos National Laboratory (LANL), of which several other
related efforts are in progress.7, 8, 9

METHODOLOGY

Because the purpose of this study is to compare different estimation methods, a simpler dynamics
model is used than developed previously for the satellite orbit tomography. In Ref.5, a full 3-D
model with higher-order Earth gravity, solar radiation pressure, atmospheric drag, and third-body
gravitation from the Moon and Sun were considered when introducing the tomography method.
Here, the dynamics are restricted to 2-D with only two-body gravitation from the Earth and a simple
atmospheric drag model (see Fig. 1):

r̈ = − µ
r3

r− 1

2
ρsβvv (1)

where ρ is the density, α is a scalar correction to the density, β ≡ CdA/m is the ballistic coefficient
containing the satellite’s drag coefficient (Cd), drag cross-sectional area (A), and mass (m). The
position and velocity vectors are r =

[
x y

]T and v =
[
ẋ ẏ

]T The density is modeled with
a simple exponential:

ρ = ρ0 exp
R− r
H

, (2)

where ρ0 = 3.875 × 10−9 kg/m3, H = 59.06 km, R is the Earth radius, and r = |r|. The scalar
correction to the density is modeled with a Fourier series as follows:

s =
a0
2

+

K∑
k=1

ak cos(kφ) + bk sin(kφ) (3)

where φ is the geocentric latitude: φ = atan(y/x).

ESTIMATORS

Several different UKF implementations are used in this study. Each one uses at least the satellite
Cartesian position and velocity vectors for M satellites in their state vectors:

X =
[
rT1 vT

1 · · · rTM vT
M a0 a1 · · · aK b1 · · · bK

]T (4)
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Figure 1. Illustration of 2-D orbit and coordinate system.

We define three different types of UKFs as follows:

• Base UKF, estimating only the Cartesian states for each satellite.

• In addition to the satellite states, estimating a single scalar constant on the density.

• In addition to the satellite states, estimating Fourier series coefficients of degree M.

The full formulation for the UKFs are not repeated here; they can be obtained, e.g. from Ref.10.
Although the planned application for the orbit tomography is ground-based angles-only measure-
ments, this study also uses a range measurement. Thus, each satellite i has a measurement vector

yi =
[
δ d

]T (5)

where δ is the declination angle measured relative to the local coordinate frame aligned with the xy
axes,

δ = atan(
y − ys
x− xs

) , (6)

the range is
d =

√
(x− xs)2 + (y − ys)2 , (7)

and the ground site is specified by coordinates (xs, ys).

MOTIVATIONAL EXAMPLE

This section presents a simple example to test our intuition that the UKFs which estimate the
density should have less error (i.e. bias) in the estimated position and velocity than the UKF which
does not estimate the density, but rather uses an a priori assumed value for the model (which is
slightly in error from truth). Monte Carlo (MC) simulations are performed with 100 runs, assuming
a single satellite and a single ground site at (xs, ys) = (R, 0). The initial truth state is the same
in each run, with a satellite having semi-major axis of 6778 km, eccentricity of 0.001, and all the
other Keplerian elements set to zero. In all the examples in this paper, the satellites have the same
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assumed values for A = 1 m2, m = 1000 kg, and CD = 2.2. The measurements are synthesized
from the truth state with 1σ zero-mean additive Gaussian noise of 1 m in range and 10 arcseconds
in angle. The satellite’s measurements are synthesized such that there are 50 measurements per
pass, with 10 sec between measurements, and one pass every orbit. Because this simulation is only
concerned with comparing filter outputs, and is not concerned with simulating actual operation of a
ground-site, a measurement can take place while the satellite is below the horizon.

Figures 2 and 3 show the resulting error distributions between the final state estimates and the
truth state. The means of the position errors in Fig. 2 for each UKF type are also denoted on the
figure. It is clear that the simple UKF which only estimates the satellite state has the most bias in the
final estimated position. Furthermore, the bias is progressively reduced as the UKFs include more
model information in the density. There are slight differences in the variance of the estimates, but
these differences are not significant in Figs. 2 and 3.

Thus, this example confirms our intuition that the orbit state estimate improves as higher-fidelity
density model parameters are included in the state estimate. Of course, this is a simplified example
that does not consider other sources of bias (e.g. in the tracking measurements, or in the assumed
ballistic coefficient). But the implication is that the previously assumed tomography workflow, in
which orbit estimates are treated as the input measurements, would indeed be using slightly biased
position and velocity estimates if no density states are also estimated in the UKF. The question that
remains, however, is how significant these biases are in the final reconstructed density maps.
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Figure 2. Position error at final measurement time for 100 MC runs, using four
different UKFs (see above for description of filters).
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Figure 3. Velocity error at final measurement time for 100 MC runs, using four different UKFs.

COMPARISON WITH TOMOGRAPHY

Using the same simplified 2-D dynamics, we now compare the UKFs described above with the
satellite orbit tomography method. The full background and derivation of the tomography formula-
tion is not repeated here because this information can be found in previous publications.5 The grid
is defined in 1-D along φ, and the grid spacing is chosen to be ∆φ = 10 deg (Fig. 4). This simple
2-D case with a 1-D grid allows us to easily describe the gradient operator used in the regularization.
As an illustrative example, let the grid contain 4 cells, then the matrix for the gradient operator D
would be formed explicitly as

∇s = Ds =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1



s1
s2
s3
s4

 =


s2 − s1
s3 − s2
s4 − s3
s1 − s4

 (8)

and it is straightforward to extend this formulation to the actual number of cells in s.

In this example, each assumed satellite i ∈ {1, · · · ,M} has an initial Keplerian state described
with [

a e i Ω ω ν
]

=
[

6778km 1× 10−3 0 0 ωi 0
]

(9)

where the argument of perigee ωi is chosen such that the M = 7 satellites in the present simulation
have evenly spaced perigee locations around the 2-D plane. The satellites are simulated with several
ground-station passes, each with duration of 500 sec (with 0.1 Hz measurement frequency), with
passes occurring once per orbit for 4 orbits, followed by a gap of 6 orbital durations, and then
one final pass (Fig. 5). This pass setup is meant to be somewhat representative of the anticipated
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application of the tomography method, where the first several passes are used to obtain a good
estimate of the position and velocity, and then a gap of several hours (or more) is allowed, after
which the next pass is used to again estimate the position and velocity to derive the measured
change in mechanical energy. Note, however, the measurements are assumed to be synchronous
across all satellites, and thus some satellite “passes” are allowed to occur then the target is below
the horizon (i.e. a “glass Earth” is assumed). Zero-mean Gaussian measurement noise having 1σ
variance of 10 arcsec in the angles and 1 m in the range is added to the synthesized measurements.
The UKFs use this same pass setup to process measurements and sequentially estimate the state.

Figure 4. Illustration of 2-D grid.

Figure 5. Sketch of assumed pass timing and tomography time span ∆t = t2 − t1.

The truth density model in the simulation uses a Fourier series withK = 3, where the coefficients
are defined as[

a0 a1 a2 a3 b1 b2 b3
]

=
[

2.1 0.2 0.05 0.1 0.1 0 0
]

(10)

Conversely, the UKFs at most use K = 2, and the initial state estimates of these coefficients (where
applicable in the given UKF) are defined as[

â0 â1 â2 b̂1 b̂2

]
=
[

2.0 0.0 0.0 0.0 0.0
]

(11)

The initial covariance estimate is populated with the radial and along track position 1σ being 4 m and
78 m, respectively, and the corresponding velocities being 1 cm/s and 10 cm/s. The simulated range
and angle measurement noise are the same as above. Each UKF uses an initial state estimate that is
constructed by taking the true cartesian state and adding noise sampled from a normal distribution
having a variance in each component described by the initial covariance matrix defined above. The
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initial state estimate for the density, as defined above in Eq. 11, yields s = 1.0 in Eq. 3. The initial
covariance estimate for the Fourier series coefficients uses a diagonal matrix with each state on the
main diagonal having 1σ variance of 0.1.

Figures 6 and 7 show UKF results at the final measurement time (i.e. at the last measurement of
pass #5 in Fig. 5). Figure 6 shows the true density profile and that estimated using the UKF with a
constant global density scalar. It is not surprising that the estimated constant s is close to the mean
of the true s. Figure 7 shows the corresponding plot for the UKF which estimates K = 2 Fourier
series coefficients, and we see that the estimated s(φ) profile matches closely with the true value,
with a maximum deviation of approximately 20%. Recall that the true profile uses K = 3, but we
limit the UKF’s knowledge of the truth dynamics by only including K = 2.
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Figure 6. Comparison of truth s(φ) profile with UKF estimate of profile using con-
stant s (i.e. where K = 0).

Figure 8 shows the results of running the tomography for two difference cases: one uses the posi-
tion and velocity estimates generated from the UKF that does not estimate any density information
(i.e the one which should be most biased, the red line in Fig. 8), as well as one (the blue line in Fig.8)
that uses the position and velocity estimates from the UKF that estimates a constant global s (i.e.
the same one as described in Fig. 6). Two remarks can be made about Fig. 8: (1) The tomography
does fairly well at estimating the density profile s(φ), despite having no inherent modeling of the
parameterization. The maximum error in both tomography cases is approximately 0.2, and the mean
error is approximately 0.1. (2) The tomography case which uses the position and velocity estimates
from the UKF that estimates a constant s global correction (blue line in Fig. 8) has lower error than
the tomography case that uses the other UKF outputs (red line in Fig. 8). In other words, the red line
in Fig. 8 represents the more biased position and velocity estimates being used in the tomography,
compared with the blue line. Thus, this result confirms our intuition that the tomography solution
improves if the input position and velocity estimates are less biased.
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Figure 7. Comparison of truth s(φ) profile with UKF estimate of profile using K = 2.
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Figure 8. Comparison of truth s(φ) profile with satellite orbit tomography (SOT)
using two different UKF results as input measurements.

DISCUSSION

Another point to consider is the minimum number of satellites required to get an acceptable
solution in the tomography method. Figure 9 shows the tomography with the same orbital setup
as described above, but with varying number of target satellites, and where the measurements are
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perfectly formed from the truth states (i.e. the UKFs are not used). Hence, this plot is only concerned
with the effect of satellite number on the tomography solution. As can be seen from the plot, as the
number of satellites is increased, the tomography solution for the density profile s(φ) gets closer
to truth. Conversely, as the number of satellites is reduced, the quality of the solution degrades
as one would expect. However, tests results (which are omitted here) of the UKF with (K = 2)
and decreasing satellite number, showed that the UKF was better able to estimate s(φ) with only a
few satellites. Thus, an advantage of the tomography method is that it does not require an internal
parameterization of the density model, but using a parameterized density model can be advantageous
when one is limited to a small set of target satellites (and assuming the parameterization is a good
match for the truth density, as assumed in this test). It should be noted that this remark is based
on a simplified dynamics scenario in 2-D with a simple density parameterization, thus it remains
to be seen if the above remarks hold for a more general case. Lastly, it should be noted that the
comparisons above (Figs. 6-8) were restricted to a single simulation run, and thus future work
should verify that the same conclusions hold under MC simulations.
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Figure 9. Tomography solution with varying satellite number, assuming perfect measurements.

CONCLUSIONS

This study has presented a simple comparison of satellite orbit tomography with a UKF that
estimates both the satellite orbital state and atmospheric density. It was shown that the tomography
solution for the density improves slightly when the input position and velocity measurements are
less biased, i.e. when the pre-tomography UKF estimates a simple constant scalar to the global
density, versus not estimating any density information. When comparing the UFK which estimates
K = 2 Fourier series coefficients to the tomography, the resulting reconstructed density profiles had
comparable errors. This result assumed M = 7 target satellites. In general, the tomography may be
more suitable as the number of target satellites is increased. In contrast, a UKF formulation to solve
for both satellite states and the density may be more suitable for a low number of satellites, and if
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one is confident in the chosen density model parameterization. Overall, the results in this study are
preliminary in nature, since only a simplified 2-D dynamics scenario was considered. Future work
should consider more detailed MC simulations.
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NOTATION

A drag cross-sectional area, km2

ad drag acceleration vector, km/s2

a, b Fourier series coefficients, unitless
Cd drag coefficient, unitless
D gradient operator
d range measurement, km
H density scale height, km
i satellite index
K degree of Fourier series
k index of Fourier series terms
M number of satellites
m mass
R Earth radius, km
r position vector of satellite, km
r magnitude of position, km
s vectorized density scale factor, unitless
s density model scale factor, unitless
t time, s
v inertial velocity vector, km/s
x state vector

xs, ys ground site coordinates, km
y measurement vector
β drag ballistic coefficient, km2/kg
δ declination angle, rad
µ Earth gravitational parameter, km3/s2

ρ density, kg/km3

ρ0 reference density, kg/km3

φ latitude, rad
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