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Improved thermospheric neutral density models are required for the reduction of
orbit prediction errors for satellites experiencing atmospheric drag. This research de-
scribes a new method to estimate density using a tomography-based approach, inspired
by X-ray computed tomography from the medical imaging field. The change in specific
mechanical energy of the orbit is used as the measurement, which is related to the
integrated drag acceleration over the orbit. Using several such measurements from a
number of satellites, one can estimate a spatially resolved multiplicative correction to
an assumed density model. The problem considered here uses simulated measurements
from 50 low-Earth orbit satellites and solves for the correction factor discretized over
324 grid elements spanning 300 to 500 km altitude. This ill-posed problem is solved us-
ing Tikhonov regularization, with the three-dimensional gradient as the regularization
operator, resulting in a penalty on the spatial smoothness of the estimated density.
Simulation results show that the true time-averaged density can be reconstructed to
within approximately 10%, using only assumed ground-based tracking measurements
separated over 12 hours.

Nomenclature

A = cross-sectional area, km2

a = semimajor axis, km
a = perturbing acceleration vector, km/s2

C = satellite trajectory
Cd = drag coefficient, unitless
D = discretized regularization operator
E = specific mechanical energy, km2/s2

E = eccentric anomaly, rad
e = eccentricity, unitless
f = X-ray attenuation coefficient
H = linear measurement matrix
H = scale height, km
h = summed kernel, km2/s3

i = satellite index
K = set of times in a given cell
k = discrete time index
I = X-ray intensity
M = number of satellites
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m = mass, kg
N = number of cells in grid
n = cell index
P = number of satellite points in a cell
p = semilatus rectum, km
R = Earth radius, km
r = position vector of satellite, km
r = radial distance, km
ra, rp = radius of apogee and perigee, km
s = vector of density model scale factors, unitless
s = density model scale factor, unitless
T = specific kinetic energy, km2/s2

t = time, s
U = specific gravitational potential energy, km2/s2

v, vr = inertial and wind-relative velocity vectors, km/s
v, vr = magnitude of inertial and wind-relative velocities, km/s
W = specific work, km2/s2

w = kernel, km2/s3

x = generalized distance
y = measurement vector, km2/s2

y = net derived measurement, km2/s2

β = drag ballistic coefficient, km2/kg
∆τ = time spent by satellite in a cell, s
ε = error
ηβ = ratio of reference to true β
θ = inertial latitude, rad
λ = smoothness constraint
µ = Earth gravitational parameter, km3/s2

ξ = two-body specific mechanical energy, km2/s2

ρ = density, kg/km3

ρ0 = scale height density, kg/km3

φ = inertial longitude, rad

Subscript
1 = pass 1 stop time
2 = pass 2 stop time
d = drag acceleration
in = time inside the grid
meas = measurement error
mod = modeled density
model = measurement model
ng = non-gravitational acceleration
out = time outside the grid
per = change per period
pg = perturbing gravity
srp = solar radiation pressure
true = true density, true measurement

Superscript
* = reference˜ = measured

I. Introduction

Inaccurate atmospheric drag models are the largest remaining error source affecting orbit predic-
tion accuracy for most low-Earth orbit (LEO) satellites. The drag acceleration is typically modeled
with

ad = −1

2
βρvrvr , (1)
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where β ≡ CdA/m is the ballistic coefficient containing the satellite’s drag coefficient (Cd), drag
cross-sectional area (A), and mass (m); vr = |vr| is the magnitude of the wind-relative velocity
vector; and ρ is the density. Error in the modeled atmospheric density is a major contributing
factor to errors in ad. Several authors (e.g. [1–3]) have noted that little progress had been made
in reducing the errors in modeled density from the 1960s until recently, during which time errors of
15% or more were common. Drag model errors of this magnitude can result in predicted satellite
position errors on the order of 1 km or more after a single day [2, 4]. There has thus been much
research attention in recent years on further improving density modeling for drag estimation.

Satellites have been used to study the upper atmosphere since the early days of space launches.
References [2, 3, 5] contain some examples of historical overviews and recent advances in density
modeling using satellite measurements. Broadly speaking, methods of estimating atmospheric den-
sity can be divided into those that use the motion of the satellite in the atmosphere, and those that
use remote sensing methods (e.g. onboard spectroscopic sensing of upper atmospheric airglow [6]).
The methods based on satellite motion can be further categorized into two groups: (1) those using
tracking measurements, usually ground-based, of a large number of satellites, (2) and those using
specialized onboard measurements, such as high-accuracy accelerometers and GPS receivers, on a
small number of satellites.

Satellites with specialized onboard instruments have provided much useful data on density
modeling. For example, the CHAMP and GRACE satellites are equipped with accelerometers and
high-precision orbit estimation systems (e.g. GPS), which allow nearly continuous measurements
of drag accelerations[7–10]. Because other factors that affect drag (mass, area, drag coefficient)
are fairly well known for these satellites, the local density can be accurately estimated along the
orbit. For example, McLaughlin et al.[4] demonstrated a sequential estimation scheme to estimate
simultaneously the density and ballistic coefficient using high precision orbit ephemerides from the
CHAMP satellite. A disadvantage of these approaches is that they are limited to a small number
of specialized missions, making it difficult to apply the results to a global density model correction.

The other category of density estimation using tracking measurements is often used for at-
mospheric model calibration, where measurement data are typically more sparse in time and less
accurate than those obtained using the onboard instruments described above. Examples in the
literature can be loosely grouped into those using the actual ground-based tracking measurements,
or those using publicly available data products, such as two-line element sets (TLEs) derived from
those tracking measurements. Central to this discussion is the issue of the target satellite shape and
attitude, since these parameters affect β, which can corrupt the density estimates.

TLEs are a well-known and often-studied source of orbit data for resident space objects. Picone
et al. [11] developed a procedure for extracting the integrated density along a satellite’s orbit using
the mean motion contained in TLEs. Emmert et al. [12] used this method with TLEs from 5000
space objects to reconstruct a globally-averaged density value over a 40-year time span.

Nazarenko et al. [13] determined that the errors in estimated ballistic coefficients (i.e. obtained
via an orbit estimation system) relative to their modeled values can be attributed to relative errors
in the modeled density. These density model errors were parameterized using a polynomial function
of altitude, and the polynomial coefficients were solved using a least-squares method, where the
deviations in estimated and modeled ballistic coefficients from a set of satellites served as the
measurements[14, 15]. Cefola et al. applied the method to TLEs as well[16].

The U.S. Air Force uses tracking measurements to estimate directly a correction to the
Jacchia-70 (J70) empirical density model, in support of its High Accuracy Satellite Drag Model
(HASDM)[17–21]. Corrections to the exospheric and inflection point temperatures in the vertical
temperature profile are represented as two separate spherical harmonic expansions; the degree and
order of these expansions vary in the literature, e.g. 2× 2 in [17] and 4×0 in [18]. Sutton et al. [19]
improved on this method by using a different set of basis functions to compute the temperature
corrections. The number of tracked objects used by HASDM varies in the literature as well, but has
ranged from around 70 satellites [17] up to 144 satellites [18]. Accurate estimates of the ballistic
coefficients for the target calibration satellites are required[20]. These target satellites are tracked
multiple times per orbital revolution[17] by the Space Surveillance Network (SSN) of radar and
optical sensors[22], and a weighted least squares differential correction method is used across all
targets that simultaneously solves for the density corrections and a state vector for each target [21].
The final estimated density corrections, in the form of 3-hourly fits to the data, are claimed to be
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within a few percent of the true density[21].
Both the HASDM approach and the work of Nazarenko, Cefola, et al. [14] are often called a

Dynamic Calibration of the Atmosphere (DCA), because the methods are designed to provide time-
varying density corrections. Vallado [23], pp. 569-570, gives additional overview and references
related to DCA methods.

The contribution of the present paper is the description of a new DCA method, inspired by
computed tomography (CT) methods, to correct atmospheric density models. Tomography is an
inverse problem, with various applications in science and engineering, involving the inference of the
properties of the material within a body using only measurements taken external to the body [24].
A good example is X-ray CT widely used in medical imaging (Figure 1). Here, X-rays with known
intensities are emitted at various angles through a patient’s body, where the final intensities of the
rays are measured at a detector on the opposite side of the body. Let f(x) be the X-ray attenuation
coefficient of the tissue at point x, then an X-ray traveling a distance ∆x will have a relative intensity
loss of [25]

∆I

I
= f(x)∆x . (2)

Integrating over the path of the ray yields∫
dI

I
=

∫
f(x)dx , (3)

and given the known initial intensity I0 and measured final intensity I1 of the ray, the above integral
becomes

ln (I1/I0) =

∫
f(x)dx . (4)

The inverse problem then involves: (1) discretizing the volume into cells, (2) rewriting the integral
in Eq. (4) as a summation, (3) collecting the cell quantities and measurement for each ray into a
linear equation, and (4) solving for the discretized f(x) by inversion of the resulting system of linear
equations. Since f(x) is related to the density of the tissue, one can then construct a map of the
internal density. Note also that because the matrix normal equation in the linear system derived
from Eq. (4) is often ill-posed, it is common to use regularization to stabilize the system.

The approach in this paper is motivated by the analogy between the path of an X-ray beam
through a solid object and the orbital path of a satellite through the upper atmosphere. In the
case of the X-ray beam, the log of the attenuation factor is simply the integral of the attenuation
coefficient along the path. At a more abstract level, a measurable quantity can be expressed as a
path integral over the spatially varying quantity to be estimated. Since the state of a satellite along
its orbit is continuously changing as a result of drag, which depends on the atmospheric density,
a relationship is found between measurable orbital parameters (i.e. decay in specific mechanical
energy) and density that can be written in the form of a path integral over the density, allowing
tomographic reconstruction methods to be applied. No examples were found in the literature of this
sort of tomography approach being applied to satellite orbital motion to deduce atmospheric density.
Several studies have used satellite-based measurements with tomography and regularization (e.g.
[26–30]), but usually the measurements involve radiometric observables from specialized onboard
instruments (e.g. infrared, microwave), rather than the satellite orbital states themselves.

Others have used the decay in specific mechanical energy to study atmospheric density. Storz[31]
used the measured energy dissipation extracted from the estimated ephemerides of a number of
satellites, but the final estimated states in that study were similar to those used in HASDM (i.e.
the spherical harmonic coefficients of the nighttime minimum exospheric temperature in the J70
model). This method was also used to validate the results of HASDM[32]. However, the estimator
in [31, 32] used a least-squares differential corrector, in contrast with the regularization approach
used here.

There are several advantages to the tomography approach described in this paper: 1) temporally
sparse tracking data is assumed, in contrast to the HASDMmethod described above where the target
satellites are tracked every revolution, 2) the method does not depend on a specific density model
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Fig. 1 Illustration of standard computed tomography: the region (gray box) containing an
object of interest (blue shape) is discretized into many cells, and a known beam source (e.g.
X-ray) is emitted towards a sensor at various angles. The red bars indicate the relationship
between a sensor element and the cells (sometimes fractional) traversed by the part of the
beam detected by that sensor. This relationship determines the linear equations that connect
the cell densities with the measured values for each arrangement of the sensor with respect
to the density grid.

parameterization, and hence it is straightforward to substitute any number of density models for
which a scale factor is to be estimated, 3) Jacobians for the system dynamics or measurement model
(e.g. describing the sensitivity of the dynamics with respect to the density states) are not needed,
in contrast with typical differential corrector methods.

II. Tomography Applied to Satellite Orbits

This section describes how the tomography method is applied to a set of satellite tracking
measurements. First, a grid is defined within a certain range of radial (r), inertial latitude (θ), and
inertial longitude (φ) values. For simplicity, the latitude and longitude coordinates are defined in
the inertial (J2000) reference frame, since the satellite positions will also be described in this frame.
Thus, the grid will be nearly fixed relative to the Sun.∗

The assumed set of target satellites have trajectories passing through the grid, either partially
(e.g. an eccentric orbit with perigee falling within the grid) or in full (e.g. a nearly-circular LEO
orbit). Each satellite is assumed to be visible to a ground-based tracking sensor for a minimum time
span of a few minutes. During this “pass”, the satellite is tracked by the sensor and measurements
such as range, range rate, and angles are recorded. Although the details of the given sensor and orbit
estimation scheme are unimportant for the current discussion, a sequential estimator is assumed,
such that the measurements are processed and a final orbit estimate (OE) is generated at the pass
stop time. For example, a typical OE would consist of the J2000 position and velocity vectors,
and other solve-for parameters such as the satellite’s ballistic coefficient β. The OE at the end of
the first pass is then propagated to the start time of the next pass, where it is used as the initial

∗ The direction to the Sun will have a drift of approximately 1 degree per day in the inertial longitude direction
using this grid definition.
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state estimate for the second pass. The sequential estimation process then continues, processing
the measurements during pass 2, and producing a new state estimate at the second pass stop time.
This estimation process is then applied to each of the target satellites of interest.

Figure 2 illustrates this concept for several hypothetical LEO satellites (discussed in Section V),
where the vertical axis shows the simulated specific mechanical energy, E . For a given satellite,
estimates of (r,v) are available at its t1 (pass 1 stop time) and t2 (pass 2 stop time). The specific
mechanical energy E is then calculated from (r,v) at these times, and the change ∆E over the time
span from t1 to t2 is treated as the measurement input for the tomography. The final estimated
density output from the tomography will effectively be the time-average of the temporal variations
of the true density. The pass times do not need to occur simultaneously for all satellites, and
depending on the number of sensors and their placement, these pass times may have some variation
in time. Thus, in effect the tomography is estimating the time-average density between the mean
pass 1 stop time and the mean pass 2 stop time.

Fig. 2 Example of E for several LEO satellites, illustrating the orbit estimation scheme where
each satellite has ground-station passes (denoted by gray boxes) occurring at potentially
asynchronous times. Pass 1 stop time (t1) and pass 2 stop time (t2) are shown for the first
satellite.

It is important to note that there are no constraints on the satellites’ spatial position at t1 and
t2, other than the visibility constraints of the chosen sensor geometry. For example, Satellite 1 could
be observed at t1 over the north pole, and several revolutions later it could be observed at t2 near
the equator, whereas Satellite 2 could be observed at both times at the same ground station at the
south pole. However, it is assumed that there is a sufficient number of satellites with varying orbit
orientation such that a global density field can be recovered.
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III. Derivation of Measurement Equations

The measurement used in this tomography application is the specific work due to drag, which is
related to the specific mechanical energy minus the specific work due to any other nonconservative
forces. This section begins with two alternatives for reaching the desired equations: one is a direct
method that uses work-energy principles, and the other is derived from Gauss’s Variations of Pa-
rameters (VOP) for conservative and nonconservative perturbation forces. This section also gives
approximate analytical equations for the measurements useful for designing the estimation system.

A. Specific mechanical energy and work

The change in specific mechanical energy E of a particle is equal to the sum of the changes in
specific kinetic energy T and specific gravitational potential energy U , which in turn is equal to the
specific net work done by the non-gravitational acceleration ang:

∆E = ∆T + ∆U =

∫
C

ang · dr , (5)

where the particle follows the trajectory C ∈ R3 from t1 to t2. The gravitational potential energy
represents that due to the Earth, including higher-order nonspherical effects, as well as that due
to other bodies (e.g. lunisolar third-body effects). Let ang be separated into the component due
to drag, ad, and the component due to all other nonconservative forces. For the level of fidelity
required for the current problem, the only other nonconservative force considered is solar radiation
pressure (SRP):

∆T + ∆U −
∫
C

asrp · dr =

∫
C

ad · dr . (6)

Recognizing that the specific work due to SRP is

Wsrp =

∫
C

asrp · dr, (7)

then Eq. 6 becomes

∆T + ∆U −Wsrp =

∫
C

ad · dr . (8)

One may only be concerned with estimating the density up to a certain altitude, but a satellite
on a high-eccentricity orbit may be passing through higher attitudes that still impart enough drag
to perturb the orbit. Thus, for such cases it is necessary to separate the trajectory into portions
“inside” and “outside” the grid in which the density correction factor will be estimated, hence:∫

C

ad · dr =

∫
Cout

ad · dr +

∫
Cin

ad · dr . (9)

The specific work due to drag outside the grid is

Wdout
=

∫
Cout

ad · dr , (10)
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and Eq. 8 becomes

∆T + ∆U −Wsrp −Wdout
=

∫
Cin

ad · dr . (11)

The modeled atmospheric density is related to the true atmospheric density via the unitless
correction factor

s ≡ ρtrue/ρmod , (12)

and thus Eq. 1 is rewritten as

ad = −1

2
βsρmodvrvr , (13)

The scale factor s is implicitly a function of r from its definition in Eq. 12. The right-hand side of
Eq. 11, i.e. the specific work due to drag inside the grid, can be rewritten as∫

Cin

ad · dr =

∫
tin

ad · vdt (14)

Define w, which has units of specific power, as

w ≡ ad · v
s

= −1

2
βρmodvrvr · v , (15)

which makes Eq. 11 take the form

∆T + ∆U −Wsrp −Wdout
=

∫
tin

wsdt . (16)

The left-hand side of Eq. 16 can then be grouped into a net derived measurement y:

y =

∫
tin

wsdt . (17)

It is now important to distinguish between the quantities that are measured, assumed known,
and to be estimated. As described in Section II, the states (r,v) at t1 and t2 come from the
assumed OE scheme, and from these, the measured changes in kinetic and gravitational potential
energy, ∆T and ∆U , can be calculated. The density scale factor s is the quantity to be estimated
via tomography. However, the terms Wsrp, Wdout , and w are implicitly dependent on r(t) and v(t)
over the time span from t1 to t2, which are unknown. Using the OE output (r1,v1) as the initial
conditions, and assuming force model parameters, one can numerically integrate the equations of
motion to give reference values of the position and velocity, denoted as r∗ and v∗. This process is
described in more detail in Section V. After (r∗,v∗) are calculated, the terms Wsrp and Wdout

can
be calculated using numerical integration (e.g. a trapezoidal method). The term Wdout

is evaluated
using Eq. 13 with s set to unity, i.e. the density scale factor is not estimated outside the grid.
Furthermore, β in Eq. 15 is not known perfectly, and thus must be assumed as the reference value
β∗. The reference value β∗ may be available from the OE scheme as a solve-for parameter, or it may
be available via modeling[33, 34]. The value of β∗ should be chosen carefully to avoid additional bias
(e.g. as a result of inaccurate density models being used in the OE scheme). HASDM has a similar
requirement on accurate ballistic coefficients; estimated values of β from a differential corrector for
each satellite are averaged over many years, and comparisons made with calibrated spherical targets,
to obtain values of β with reported accuracies of a few percent[20].

With this distinction in mind, Eq. 17 has the form of a Fredholm integral of the first kind, where
w is the kernel representing the physical relationship between the unknown model s and observed
data y [35]. Appendix A discusses in more detail the errors caused by assuming a reference trajectory
and force model parameters in the measurement model.
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B. Gauss’s Variations of Parameters

The derivation from Gauss’s VOP is as follows: using the Poisson brackets to derive the oscu-
lating orbit element rates from Lagrange’s planetary equations [36], the variational equation for the
semimajor axis a is

da

dt
=
∂a

∂v
· a , (18)

where

∂a

∂v
=

2a2

µ
v , (19)

and a is the perturbing acceleration besides two-body gravitation. Therefore, combining Eqs. (18)
and (19) and integrating both sides gives∫ a(t2)

a(t1)

da

a2
=

2

µ

∫ t2

t1

a · vdt , (20)

which can be rearranged as

1

a(t2)
− 1

a(t1)
= − 2

µ

∫ t2

t1

a · vdt . (21)

Recalling that the two-body specific mechanical energy is ξ = −µ/(2a), multiply both sides of Eq. 21
by −µ/2 to yield

∆ξ =

∫
a · vdt . (22)

Now, write the perturbing acceleration as

a = apg + asrp + ad , (23)

where apg denotes the acceleration due to perturbing gravity for sources other than two-body. Thus,
rewrite Eq. 22 as

∆ξ −
∫
C

apg · dr−
∫
C

asrp · dr =

∫
C

ad · dr . (24)

Noting that the specific work done by apg on the satellite is∫
C

apg · dr = −∆Upg , (25)

where Upg is the non-two-body gravitational potential energy, and recalling Eq. 7, then Eq. 24
becomes

∆ξ + ∆Upg −Wsrp =

∫
C

ad · dr . (26)

Because

∆ξ =
v22
2
− µ

r2
− v21

2
+
µ

r1
= ∆T − µ

r2
+
µ

r1
, (27)
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then Eq. 26 can be rewritten as

∆T − µ

r2
+
µ

r1
+ ∆Upg −Wsrp =

∫
C

ad · dr . (28)

Now, let U denote the combined gravitational potential energy, i.e. that due to two-body and
perturbing gravity, allowing Eq. 28 to become

∆T + ∆U −Wsrp =

∫
C

ad · dr , (29)

which is the same result as Eq. 8.

C. Approximate measurement

It is instructive to analyze the magnitude of the measured quantity y and its variation with
satellite altitude and ballistic coefficient, because the specific work due to drag is not commonly
encountered in practice. This analysis is simplified by treating the satellite’s trajectory as either
a circle or an ellipse, restricting the analysis to a single orbital period, and ignoring other forces
besides drag and the two-body gravity.

To first examine the circular orbit case, let the drag acceleration from Eq. 1 act parallel to the
velocity, and assume it is constant over the path of the orbit: |a| = ρβv2/2 acting in the anti-velocity
direction. Because the circular orbit velocity is v =

√
µ/r, and over one period the satellite will

travel a distance of 2πr, then from Eq. 26, where Upg and Wsrp are assumed to be zero, the change
in ξ over one period is

∆ξper = −πβµρ . (30)

For this approximate analysis, an exponential model of the density is used:

ρ = ρ0 exp

(
R− r
H

)
, (31)

where the values of H = 59.06 km and ρ0 = 3.875 × 10−9 kg/m3 are obtained by fitting a line to
the density profile above 200 km altitude given in Fig. 2.2(a) of [37], resulting in

∆ξper = −πβµρ0 exp

(
R− r
H

)
. (32)

Thus, under these assumptions, ∆ξper varies linearly with β at a fixed r, and it varies exponen-
tially with r at a fixed β. Figure 3 shows ∆ξper for a circular orbit for a range of values. It can be
seen that over the typical values of β and r of interest (i.e. for satellites in the thermosphere, with
β ∼ 0.01 m2/kg being representative of some HASDM targets[20]), ∆ξ due to drag will be on the
order of 10−4 km2/s2 per orbit.

To obtain the approximate change in energy over one orbital period for an ellipse, it is convenient
to start with the following equation for the derivative of a with respect to the eccentric anomaly E
from pp. 670 of [23], also derived using Gauss’s VOP with drag:

da

dE
= −β ρa

2(1 + e cosE)3/2√
1− e cosE

. (33)

Rearrange to obtain:

da

a2
= −β ρ(1 + e cosE)3/2√

1− e cosE
dE , (34)



11

Fig. 3 Approximate change in ξ due to drag over one period for a circular orbit

Fig. 4 Approximate change in ξ due to drag over one period for an elliptical orbit with fixed
perigee altitude of 300 km, and varying apogee altitude and ballistic coefficient.
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and similar to the development after Eq. 20, integrate both sides and multiple by µ/2 to obtain

∆ξper = −µβ
2

∫ 2π

0

ρ(1 + e cosE)3/2√
1− e cosE

dE . (35)

Recall that here, the simple density model from Eq. 31 is used, and r = a(1− e cosE). The integral
on the right-hand side of Eq. 35 is evaluated numerically using an adaptive Simpson quadrature,
resulting in the surface shown in Fig. 4. This figure shows that, keeping perigee altitude fixed at
300 km and increasing apogee altitude, the corresponding change in energy per orbit will decrease
in magnitude.

The surfaces in Figures 3 and 4 are compared in Section VI to numerical simulations for verifi-
cation, and are useful for determining the approximate magnitude of the measurement signal when
planning observations of actual satellite targets.

IV. Solving for Density Scale Factor

The linear system in Eq. 17 is solved by first discretizing the integral and then writing in matrix
form. A spatial grid with cell indices n ∈ {1, . . . , N} is defined, where sn is assumed uniform in each
cell. For satellite i ∈ {1, . . . ,M}, the equations of motion are numerically propagated, with time
step ∆t, as described above, resulting in discrete values of r∗k and v∗k. Here, k ∈ {Ki,n} represents
the time instances that satellite i is in cell n, and is a subset of this satellite’s total propagated times.
The integral in Eq. 17 is replaced by a summation by discretizing along the satellite’s trajectory
through the grid (Fig. 5)

yi =
[
wi,1∆τi,1 · · · wi,N∆τi,N

] [
s1 · · · sN

]T
. (36)

where ∆τi,n is the time spent by satellite i in cell n, and wi,n is the averaged quantity w(t, r∗,v∗)
for satellite i in cell n, i.e.

wi,n =
1

Pi,n

∑
k∈Ki,n

w(tk, r
∗
k,v
∗
k) , (37)

where Pi,n is the number of times satellite i is in cell n.

Fig. 5 Illustration of grid (gray) with satellite orbit (black) propagated at finite time tk.
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Using the approximation

∆τi,n ≈ Pi,n∆t , (38)

then from Eq. 37:

wi,n∆τi,n ≈ ∆t
∑

k∈Ki,n

w(tk, r
∗
k,v
∗
k) . (39)

For ease of notation, define

hi,n ≡
∑

k∈Ki,n

w(tk, r
∗
k,v
∗
k) , (40)

then the matrix form of Eq. (36) that includes all satellites M is y1
...
yM

 = ∆t

 h1,1 · · · h1,N
...

. . .
...

hM,1 · · · hM,N


 s1

...
sN

 . (41)

Note that in general a given satellite will not pass through each cell in the grid. If a satellite does
not pass through a cell, then hi,n = 0 for that cell.

Equation 41 can be written concisely as y = Hs, where

H ≡ ∆t

 h1,1 · · · h1,N
...

. . .
...

hM,1 · · · hM,N

 , (42)

s ≡
[
s1 · · · sN

]T
. (43)

In general, this is an ill-posed problem because N > M and the matrix H is sparse. This problem
is solved using Tikhonov regularization [38]:

argmin
s

1

2
‖Hs− y‖22 +

λ

2
‖Ds‖22 , (44)

the solution for which can be expressed in closed-form as

(HTH+ λDTD)s = HTy , (45)

which can be solved using a variety of standard methods [39]. The simulations in the present
study solve Eq. 45 using the conjugate gradient method, with a relative error tolerance of 10−7.
A discretization of the three-dimensional gradient ∇s is chosen as the regularization operator D
because s is expected to be a spatially smooth field. (Total variation regularization [40] is not
chosen because discontinuities are not expected.) In Eq. 45, the operation DTDs acting on the
vector s is implemented in practice as a function that takes in a N × 1 vector s, reorders it into
a three-dimensional matrix representing the chosen spatial coordinates, computes the gradients D
and DT using a finite difference, and returns the result as another N × 1 vector.

Although reasonable results are obtained using the simple gradient in Cartesian coordinates,
somewhat better results are obtained in this study by representing the present problem in spherical
coordinates:

∇s =

(
∂s

∂r
,

1

r

∂s

∂θ
,

1

r sin(θ)

∂s

∂φ

)
. (46)

For notational simplicity Eq. 44 is defined using a single regularization parameter λ, but for addi-
tional flexibility this problem can be expressed using individual terms for each component of the
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gradient, denoted as λr, λθ, and λφ:

argmin
s

1

2
‖Hs− y‖22 +

λr
2
‖Drs‖22 +

λθ
2
‖Dθs‖22 +

λφ
2
‖Dφs‖22 . (47)

Hence, Eq. 45 becomes

(HTH+ λrD
T
r Dr + λθD

T
θ Dθ + λφD

T
φDφ)s = HTy . (48)

The angular gradients Dθ and Dφ can be made unitless by replacing the numerator in the 1/r term
in Eq. 46 with a reference radial distance, for example the lower grid boundary. Thus, the units of
λθ and λφ are the same as y2, i.e. km4/s4. The units of the gradient Dr are km-1, and thus λr has
units of km6/s4. The process of selecting suitable values of λ is discussed in Section VII.

V. Simulation Setup

This section describes numerical simulations used to test the tomography method. The grid is
defined as follows: the radial direction boundaries are chosen as 6678 to 6878 km (300 to 500 km
altitude), to capture a reasonable slice of the thermosphere, with 100 km uniform spacing; the
inertial longitude direction is -180◦ to 180◦, with 20◦ uniform spacing; and the inertial latitude
direction is -90◦ to 90◦, with 20◦ uniform spacing. The resulting number of grid cells is N = 324.

Figure 6 shows a flow chart of the tomography process, including the simulated satellite orbits
used in this study. For a given simulation run, the initial ground-truth Cartesian states r(t1) and
v(t1) are generated from a random sampling of M = 50 LEO satellite orbits as follows. First,
the radius of perigee rp and radius of apogee ra are sampled from a uniform distribution between
6703 to 6853 km (325 to 475 km altitude). The initial a and e then follow from a = (rp + ra)/2
and e = (ra − rp)/(ra + rp). The initial values of inclination, right-ascension of the ascending
node, argument of perigee, and true anomaly are all sampled from a uniform distribution from 0 to
2π rad. These initial osculating Keplerian elements are then converted to r(t1) and v(t1). In this
simulation, the actual ground sites for tracking are not specified, and instead the orbits are assumed
to be estimated at t1, and again 12 hours later at t2. In addition to the 50 LEO satellites used
to demonstrate the tomography method, 50 higher-eccentricity orbits are simulated in each run for
comparison in Section VI and Appendix A.

As described in Section II, during actual operation of the system, a given satellite would be
observed during two passes over one or more ground stations, after which two estimates of the
orbital states would be generated (dashed box in Figure 6). These estimated states at t1 and
t2 are denoted with (r̃1, ṽ1) and (r̃2, ṽ2), respectively†. For the current simulations, as shown in
Fig. 6, each satellite is propagated twice. One propagation represents the ground-truth (r,v), where
the force model parameters are known. The other propagation represents the assumed trajectory
(r∗,v∗). To simulate reasonable orbit estimation uncertainty for a typical ground-based sensor (e.g.
optical telescope)[41], Gaussian noise is added to (r,v) to generate (r̃, ṽ), with 1 m (1σ) position and
1 mm/s (1σ) velocity variance in each Cartesian component. Furthermore, to simulate imperfect
knowledge of force model parameters, errors in β∗ of 5% (1σ) are added during the propagation of
(r∗,v∗).

The numerical propagator is a special perturbations propagator using Cowell’s formulation (pp.
523 of [23]) with the Cartesian position and velocity. A 4th order Runge-Kutta method with a
step size of ∆t = 10 s is used to integrate the equations of motion. For the Earth’s nonuniform
gravity, it uses a 7 × 7 spherical harmonic expansion with the EGM96 coefficients (pp. 987 of
[23]). Also included are third-body effects from the Sun and Moon, and SRP accelerations (where
these force model parameters are assumed known). The third-body forces use the DE405 planetary

† Although it is common in the literature to denote estimated quantities with a hat (ˆ), this study uses a tilde (˜)
for measured quantities, to emphasize that the position and velocity serve as measured inputs into the tomography
process, and also because the specifics of the orbit estimation system are not treated here in detail.
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Fig. 6 Flow chart of tomography process, showing operation with both simulated measure-
ments as used in the current study (gray box in upper right), and actual observations (dashed
box in upper left).

ephemerides via JPL’s SPICE toolkit‡. The SRP force calculation uses a simple cannonball model
(i.e. one coefficient of reflectivity of 1.0 for each satellite), using the same area A as the atmospheric
drag, and a cylindrical Earth eclipse model (pp. 577 of [23]). The Global Ionosphere-Thermosphere
Model (GITM) [42] is used to represent the true density ρtrue, and the NRLMSISE-00 model [43] is
used as the modeled density ρmod. A constant ballistic coefficient of 2.2×10−2 m2/kg is used for the
truth value of β for each satellite. The current simulation assumes no winds for the propagation of
both the ground-truth (r,v) and the reference orbits (r∗,v∗), and instead uses a simple co-rotating
atmosphere model in the calculation of vr.

VI. Simulation Results

The simulation was run 10 times over the same time interval, resulting in a total of 1000 random
satellite orbit propagations (i.e. 500 LEO orbits, and 500 higher-eccentricity orbits for comparison).

‡ http://naif.jpl.nasa.gov/naif/toolkit.html, accessed October 1, 2012



16

A given run uses 50 LEO orbits to calculate the tomography solution.
The points in Fig. 7 show the absolute value of the actual work due to drag for each satellite,

calculated using y = ∆E−Wsrp−Wdout . The horizontal axis shows the semilatus rectum p = a(1−e2)
of each truth obit at t1. Also shown in Figure 7 are curves generated using Eqs. 32 and 35 for the
approximate measurement ∆ξper (again using the absolute value). The solid gray line shows the
approximate measurement ∆ξper for a circular orbit, where the line has been scaled by a factor of
8 to account for the approximate number of periods experienced by a LEO satellite over 12 hours.
The dashed and solid black curves represent the corresponding values from Eq. 35, assuming perigee
at 300 and 500 km, respectively, scaled by 6 orbital periods. Note that the curves representing the
approximate relations from Eqs. 32 and 35 use the simple exponential density model from Eq. 31,
whereas the points use the NRLMSISE-00 modeled density. It is apparent from this figure that the
approximate relations developed in Section III C are suitable approximations of the measurement
signal y, especially for the LEO orbits. Also apparent is that the magnitude of y decreases as p
increases.

Fig. 7 Absolute value of measurement signal y for 1000 simulated orbits, and approximate
values of ∆ξ per period.

Figure 8 shows the time-average of the true s = ρtrue/ρmod value, evaluated over the same
grid as defined above, where a slice is taken at 350 km altitude. Figure 9 shows the corresponding
slice of the estimated s field, using the following regularization parameters: λθ = 1× 10−8 km4/s4,
λφ = 1 × 10−8 km4/s4, and λr = 1 × 10−2 km6/s4. It can be seen that overall there is good
agreement between the two, e.g. the region of s ≈ 0.7 is apparent in both figures centered around
0 deg latitude and -100 deg longitude. However, there are some finer structures apparent in Figure 8
that are not quite visible in Figure 9. Figures 10 and 11 show the corresponding results for the slice
at 450 km altitude, and the overall results are similar.

Figures 12 and 13 show the percent error between the estimated s and the time-averaged ground
truth, for each altitude slice, from simulation run 1. It is clear that the density correction in most cells
are estimated to within 0 to 20%, with a few cells at 450 km altitude having higher error around 50%.
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Fig. 8 True time-averaged s = ρtrue/ρmod, at 350 km alt.

Fig. 9 Estimated time-averaged s = ρtrue/ρmod for run 1, at 350 km alt.
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Fig. 10 True time-averaged s = ρtrue/ρmod, at 450 km alt.

Fig. 11 Estimated time-averaged s = ρtrue/ρmod for run 1, at 450 km alt.
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Fig. 12 Percent error in estimated s for run 1, at 350 km alt.

Fig. 13 Percent error in estimated s for run 1, at 450 km alt.

Figure 14 shows the root mean square (RMS) error, between the time-averaged ground-truth s and
the estimated s, for each altitude slice, and for the 10 different runs of the tomography simulation.
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Fig. 14 RMS error in estimated s relative to time-averaged truth s, for 10 different simulation
runs.

The results from Figures 9 through 13 correspond to the first run in Figure 14 (representing a fairly
average result). It is evident that the tomography has similar performance when using different sets
of orbits; the average RMS error in s is approximately 0.07 (unitless). Considering that the spatial
average of the time-averaged truth s is around 0.65 (recall Figures 8 and 10), then the estimated s
agrees to around 10%.

VII. Discussion

The true density will, in reality, have small variations in time relative to the time-averaged
value, so there would be some additional errors if one were to compare the estimated time-average
s with the instantaneous true density. For example, in the simulation scenario discussed above, the
instantaneous density varied only by a few percent relative to the time-averaged value. However,
additional simulations should be performed in future work to ensure that the tomography method
described here would also be feasible in cases where the instantaneous density varies greatly about
its time-averaged value, e.g. during increased solar activity.

One drawback of the method is that setting the numerical value of the smoothness constraints
(λr, λθ, λφ) requires some tuning to produce acceptable results in the final estimated s field. Fig-
ure 15 shows the RMS error in the estimated s with varying values for the smoothness constraints,
which gives an indication of the sensitivity of the solution accuracy to the choice of λ. Larger
values of λ produce more smoothed results, which is an expected result when using the Tikhonov
regularization formulation (recall Eq. 44). In this study, it was found that a good initial guess for
λθ and λφ was to use the square of the approximate measurement value ∆ξ from Figure 7 (this
point is apparent when recalling the discussion on the units of λ in Section IV). In practice (i.e.
when the ground-truth density is unknown), it is fairly straightforward to tune the values of λθ and
λφ by viewing the resulting estimated s field: setting λ too large results in a uniform s field, and
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setting λ too small causes the s field to resemble random noise. This trend is apparent when recall-
ing Figure 15, because using λθ and λφ larger than approximately 10−6 km4/s4 resulted in nearly
uniform s (over-smoothing), and using values smaller than approximately 10−9 km4/s4 resulted in
noisy s (under-smoothing). It was found that using a larger value for λr than that used in λθ and
λφ produced good results. If λr was set too small, the higher altitude density slice was poorly
estimated. Using a larger λr effectively constrains the higher altitude slice to more closely match
the lower altitude slice, where the drag effects are more noticeable on the satellite orbits for a given
time span. Likewise, Fig. 14 shows that the lower altitude slice was more accurately estimated than
the higher altitude slice; for a constant measurement time span (12 hours in this case) independent
of altitude, the drag effects at lower altitude produce a stronger measurement signal.

Fig. 15 RMS error in estimated s from run 1, with varying smoothness constraints λθ, λφ, and
λr.

The error analysis (Appendix A) does not address errors introduced by the approximation in
Eq. 38 or the discretization of the trajectory across the grid. The suitability of the averaged quantity
wi,n (Eq. 37) depends on the number of points Pi,n, which in turn depends on the integration time
step ∆t, size of each cell, and number of orbital revolutions. Thus, these parameters can be tuned
as well to control the overall performance of the method. The uniform latitude and longitude
spacing used in the present study produces smaller cells near the poles; the result is that cells near
the poles see fewer satellite paths, and the resulting values of Pi,n are lower. Future studies may
benefit from using a more equal-area or equal-volume grid representation, such as a geodesic grid[44].
Furthermore, as mentioned in Section II, this study takes the simpler approach of defining the grid
in the inertial (J2000) frame, rather than a sun-fixed frame. Expressing the grid in a sun-fixed frame
may be useful in some cases, e.g. long-term trending of density model errors that are tied to solar
inputs. Additionally, this study has not addressed other ways to solve the linear system in Eq. 45.
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The density reconstruction method described in this paper has some practical advantages over
existing methods. Unlike a weighted least squares approach where the orbit states and density
corrections are estimated simultaneously from tracking data, and where the partial derivatives of
the system dynamics and measurements with respect to the state must be found (e.g. see [32]),
the tomography method described here requires no such partial derivatives. Note that although
the regularization operator (Eq. 45) requires a function to compute the gradient, this gradient is
in the estimated density correction s, and is independent of the chosen orbital dynamics, density
model, or measurement model. Likewise, no effort needs to be spent on parameterizing the density
model corrections to allow them to be easily estimated along with the orbits. For example, Hinks
and Psiaki [45] used a unique spline-based density parameterization for another study of density
estimation using telemetry from a cross-linked constellation like Iridium. In fact, the tomography
method is essentially density-model-agnostic: given a function that describes the modeled density
ρmod in terms of position and time, it is trivial to use this function in the numerical evaluation of
the term w that appears in Eq. 15. The main practical constraint on selecting a density model ρmod

is that it should be spatially smooth and capture the major time-varying dynamics, as achieved by
most modern empirical and physics-based models.

Furthermore, the tomography problem can be easily scaled to accommodate new data or a
different resolution in the solved-for density field. Because the orbit estimates (r̃1, ṽ1) and (r̃2, ṽ2)
are obtained separately and external to the density estimation, it is straightforward to use orbit
estimates generated from different sources. In contrast, a simultaneous estimation scheme that solves
for the orbit states and density together must have the raw tracking measurements available: a task
that can be challenging when sharing data between organizations. Likewise, it is straightforward to
change the desired resolution of the estimated s field by simply changing the grid spacing. This is
analogous to using a higher-order spherical harmonic expansion, if one were to use such an expansion
to parameterize the density corrections.

A valid argument can be made that the tomography-based density estimation described in this
paper should be less accurate than a method that uses raw measurements (e.g. tracking angles) to
estimate simultaneously the orbit states and density. The tomography method here represents a
nested estimation technique, in which the orbit states are first estimated from measurements, and
then these estimated orbit states are treated as measurements in the tomography. In general, an
estimation technique using raw measurements will out-perform one using intermediate steps and
estimated solutions. This paper also did not address measurement weighting, e.g. if the sensor
used at t1 were of better quality than that used at t2, or likewise if one satellite had more accurate
measurements than another satellite. Thus, a more rigorous evaluation of the tomography method
would directly compare the results with those obtained from a simultaneous estimation technique.

VIII. Conclusions

This paper has introduced a new tomography-based method to reconstruct the atmospheric
density, which uses the change in specific mechanical energy of satellite orbits as the measurements.
This method allows the use of temporally-sparse measurements (e.g. ground-based tracking) to find
a time-averaged, yet spatially resolved, global density correction. Because the density corrections
are in the form of scale factor adjustments to an assumed density model, it is straightforward to
substitute any number of desired density models into the formulation, independent of a specific
density parameterization. Based on the simulations performed in this paper, the method requires
a number of satellites (∼ 50) in spatially diverse orbits and with well-known drag properties (e.g.
ballistic coefficient). However, this requirement on the tracking targets is similar in principle to
existing methods. These specific simulation results suggest that the time-averaged density over
12 hours can be reconstructed to within approximately 10%.

Appendix A: Error Sensitivity Analysis

This section analyses the errors in the tomography measurements ∆E caused by errors in the
orbit estimates, and also errors caused by assuming a reference trajectory in the measurement model.
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Let the actual measurement ∆Emeas be related to an assumed true measurement value ∆Etrue (i.e.
that predicted by a perfect measurement model) along with some measurement error εmeas:

∆Emeas = ∆Etrue + εmeas . (49)

The measurement error εmeas results from errors in the orbit estimation system and the calculation
of r and v at times t1 and t2 using the orbit estimates at those times. Let ∆Etrue be described by
a model ∆Emodel; of course, ∆Emodel will not be perfect, and this additional error in the form of
measurement model error (i.e. process noise), εmodel, is defined as

εmodel ≡ ∆Etrue −∆Emodel , (50)

thus Eq. 49 becomes

∆Emeas = ∆Emodel + εmodel + εmeas . (51)

The error εmodel from Eq. 50 can then be rewritten using Eq. 16:

εmodel = Wsrp +Wdout +

∫
tin

wsdt−W ∗srp −W ∗dout
−
∫
tin

w∗sdt . (52)

where the superscript (∗) indicates evaluation on the reference model (i.e. using the reference terms
β∗, r∗, and v∗) . The following error terms can then be defined,

δWsrp ≡Wsrp −W ∗srp (53)

δWdout ≡Wdout −W ∗dout
(54)

∫
tin

δwsdt ≡
∫
tin

wsdt−
∫
tin

w∗sdt =

∫
tin

(w − w∗)sdt , (55)

resulting in

εmodel = δWsrp + δWdout +

∫
tin

δwsdt . (56)

The goal of the remainder of this appendix is to show that, for scenarios described in this
paper, the numerical values of the terms εmodel and εmeas from Eq. 51 will be small compared
with the measured ∆E (Figures 3, 4, and 7). Figure 16 shows the absolute value of the error
terms from Eqs. 53, 54, and 55 making up εmodel, evaluated using the truth (r,v) and reference
(r∗,v∗) trajectories from the 1000 simulated orbits described in Section VI. The two sets of LEO
and higher-eccentricity orbits are visible in these plots. Note that the δWdout

term is zero for the
LEO satellites falling entirely within the grid, and hence does not appear in the logarithmic plot
in Figure 16. Figure 17 shows the absolute value of the errors δr and δv between the truth and
reference orbits at t2, which gives an indication of how much these trajectories deviate over the
12-hour tomography time span. The following two subsections will individually analyze the two
right-most terms in Eq. 56, and compare approximate analytical predictions with the numerical
values shown in Figures 16 and 17. As evident in Figure 16, because the term δWsrp is several
orders of magnitude smaller than the measurement signal (Figure 7), it is not analyzed further.

A. Error in integrated w term

Using Eq. 15, let the term w be written approximately as

w ≈ −1

2
βρmodv

3 (57)
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Fig. 16 Absolute value of the error terms making up model error εmodel, evaluated from the
truth and reference trajectories from 1000 satellite orbits.

(i.e. the effects of a rotating atmosphere are neglected, and the simple exponential density model
from Eq. 31 is used), and thus

y ≈
∫
tin

−1

2
βρmodsv

3dt . (58)

From Eq. 55, ∫
tin

δwsdt =

∫
tin

−1

2

[
ρmod(r)βv3 − ρmod(r∗)β∗v∗3

]
sdt . (59)

One can show that, by linearizing and keeping only first order terms:

ρmod(r)− ρmod(r∗) ≈ ∂ρ

∂r
δr (60)

≈ δr

H
exp

R− r∗

H
=
δr

H
ρmod(r∗) (61)
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Fig. 17 Absolute value of the errors δr and δv between the truth and reference trajectories at
t2 from 1000 satellite orbits.

keeping in mind that H = 59.06 km and δr ∼ 0.1 km (Figure 17), then

ρmod(r) ≈ 0.999ρmod(r∗) (62)

in other words, ρmod(r) and ρmod(r∗) will agree to within three decimal places for reasonable values
of δr. Likewise, to first order for small δv,

v∗3 = (v + δv)3 ≈ v3 + 3v2δv (63)

Because v ∼ 7 km/s and δv ∼ 10−4 km/s (Figure 17), then the term 3v2δv ∼ 10−2 km/s, which
is a small fraction of v3 ∼ 102 km/s. Hence, v∗3 ≈ v3 for the purpose of this error analysis. After
defining ηβ ≡ β∗/β, Eq. 59 becomes∫

tin

δwsdt ≈
∫
tin

−1

2
ρmodsβv

3(1− ηβ)dt (64)

Assuming ηβ is approximately constant in time, and recalling Eq. 58,∫
tin

δwsdt ≈ (1− ηβ)

∫
tin

−1

2
ρmodsβv

3dt = (1− ηβ)y (65)

Thus, for sufficiently small δr and δv, the measurement model error due to the integrated δw term
will be approximately proportional to the measurement signal y scaled by the fractional error in β∗.

The top subplot of Figure 16 shows the absolute value of the error due to the integrated δw
term, evaluated according to Eq. 55. For the set of LEO satellites, the magnitude of this error



26

is around 10−4 to 10−5 km2/s2. Considering that the magnitude of the measurement signal y for
these satellites is around 10−3 km2/s2 (recall Figure 7), then this error is around 1 to 10 percent of
the value of the measurement signal. Furthermore, the simulated orbits used 5% (1σ) error in β∗
relative to β; hence, using 1− ηβ = 0.05, then the approximate analytical prediction in Eq. 65 is in
agreement.

B. Error in Wdout term

The error in the correction factor for the outside-the-grid drag effects, δWdout
, follows directly

from the result of the previous subsection:

δWdout ≈
∫
tout

δwdt ≈ (1− ηβ)

∫
tout

−1

2
ρmodβv

3dt (66)

i.e. the limits of integration now cover the times outside the grid, and s = 1 because the density
is not a solved-for parameter here. At most, the error term δWdout will be similar in magnitude
to Eq. 65. However, considering that the higher-eccentricity orbits are usually chosen such that
perigee falls within the grid and apogee falls above the grid, it is likely that δWdout

will be small,
because it includes the lower-density portions of the atmosphere near apogee. The middle subplot
in Figure 16 supports this analysis; the value of δWdout

for the higher-eccentricity orbits is around
one order of magnitude less than the value of the integrated δw term. Recall that δWdout will be
zero for a LEO satellite entirely within the grid.

C. Measurement error εmeas

As shown in Fig. 6, the measurement ∆E = ∆T (ṽ1, ṽ2) + ∆U(r̃1, r̃2) is derived from the
estimated position and velocity at times t1 and t2 according to

∆E =
ṽ22
2
− ṽ21

2
− µ

r̃2
+
µ

r̃1
+ (Upg(r̃2)− Upg(r̃1)) , (67)

where r̃1 = ‖r̃1‖, ṽ1 = ‖ṽ1‖, and likewise for t2. The measurement error εmeas results from errors
between the true and measured orbit states, i.e. recalling Eq. 49,

εmeas = ∆Emeas −∆Etrue = ∆E(r̃1, ṽ1, r̃2, ṽ2)−∆E(r1,v1, r2,v2) . (68)

For predicting the approximate variance of εmeas, Eq. 67 can be simplified by neglecting the contri-
butions from Upg. If the errors in the measured r̃1, ṽ1, r̃2, and ṽ2 are independent and Guassian,
given by the variances σr1 , σv1 , σr2 , and σr2 respectively, then the variance in the measured change
in specific mechanical energy, σmeas, is given by[46]

σmeas =

√[
∂(∆E)

∂r1
σr1

]2
+

[
∂(∆E)

∂v1
σv1

]2
+

[
∂(∆E)

∂r2
σr2

]2
+

[
∂(∆E)

∂v2
σv2

]2
, (69)

where the superscript tilde is dropped for notational convenience. Without specifying the details of
the orbit estimation system, it is reasonable to assume that σr1 = σr2 and σv1 = σv2 . Evaluating the
partial derivatives of ∆E in Eq. 67, where Upg is neglected, and dropping the t1 and t2 subscripts
on the position and velocity uncertainties results in

σmeas =

√
µ2σ2

r

(
1

r41
+

1

r42

)
+ σ2

v (v21 + v22) (70)

Figure 18 shows the absolute value of the measurement error from Eq. 68 from the simulations, and
the 3σ uncertainty predicted by Eq. 70. The sinusoidal structure apparent in the predicted variance
is caused by the varying position and velocity at different points along an elliptical orbit. For a
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given elliptical orbit (i.e. value of p), a satellite’s position and velocity will depend on true anomaly.
Although each satellite is simulated with a time-of-flight of 12 hours, because the simulated satellite
orbits used different initial values of true anomaly, the corresponding values of (r1, v1) and (r2, v2),
and hence σmeas, can vary substantially, even for orbits with similar p. Figure 18 confirms that
Eq. 70 gives an adequate prediction of the size of the measurement error; for the LEO orbits used
for the tomography example, the 3σ boundary is ≈ 5× 10−5 km2/s2.

Fig. 18 Error in measured ∆ξ caused by orbit estimation error, and predicted 3σ variance.

D. Error analysis summary

A convenient way to summarize the error analysis from this section is to show the total error as
a fraction of the truth measurement signal, (εmeas + εmodel)/y. Figure 19 shows this total fractional
error versus p(t1) for each simulated orbit. A few outliers from the higher-eccentricity orbits (i.e.
fractional errors having magnitude greater than 1) have been removed from this plot for clarity.
The LEO orbits are shown to have total fractional errors within approximately ±0.1. This result
agrees with the tomography result from Section VI, which obtained reconstructed density accuracies
of around 10% using only LEO satellites. Figure 19 also shows that the higher-eccentricity orbits
can have worse fractional errors, attributed to the smaller measurement signals y relative to εmeas.
One way to improve the results for higher-eccentricity orbits is to reduce εmeas, e.g. by taking more
tracking measurements during orbit estimation. Thus, although the present study has not weighted
the measurements y in the regularization according to the expected measurement uncertainty, the
error analysis described here is a useful framework for doing so. These results also provide infor-
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mation for designing the orbit estimation system to deliver the required accuracies on the estimates
(r̃, ṽ) for a required density reconstruction accuracy.

Fig. 19 total fractional error
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