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ATMOSPHERIC DENSITY RECONSTRUCTION USING SATELLITE
ORBIT TOMOGRAPHY

Michael A. Shoemaker∗, Brendt Wohlberg†, and Josef Koller‡,

Improved thermospheric neutral density models are required to better predict LEO
satellite orbits. This research describes a new method to estimate the density us-
ing a tomography-based approach, where the orbit states of satellites serve as the
measurements. The variational equation for the semimajor axis due to perturbing
drag acceleration is used to relate the change in osculating specific mechanical
energy of the orbit to the integrated density over the orbit. Using several such
measurements from a number of satellites, one can estimate the density scale fac-
tor (i.e. a correction to an assumed density model). The problem considered here
uses measurements from 100 satellites and solves for the spatially resolved global
density scale factor discretized over 324 grid elements spanning 300 to 500 km
altitude. This ill-posed problem is solved using Tikhonov regularization, with the
3D gradient chosen as the regularization operator, resulting in a penalty on the
spatial smoothness of the estimated density. Preliminary simulation results show
that the true time-averaged density can be reconstructed to within approximately
10%, using only simulated ground-based tracking measurements separated over 5
orbital revolutions.

INTRODUCTION

Inaccurate atmospheric drag models are the largest remaining error source affecting orbit predic-
tion accuracy for most low-Earth orbit (LEO) satellites. Error in the modeled atmospheric density
is a major contributing factor. Several authors1, 2 have noted that little progress had been made in
reducing the errors in modeled density from the 1960s until recently, during which time errors of
15% or more were common. Drag models errors of this magnitude can result in predicted satellite
position errors on the order of 1 km or more after a single day.3, 4 There has thus been much research
attention in recent years on further improving density modeling for drag estimation.

Some examples of papers that give a good overview of the history and recent advancements
in density modeling using satellite measurements include Refs. 2, 3, and 5. Broadly speaking,
methods of estimating atmospheric density can be divided into those that use the motion of the
satellite in the atmosphere, and those that use remote sensing methods (e.g. onboard spectroscopic
sensing of upper atmospheric airglow6). The methods based on satellite motion can be further
categorized into two groups: (1) those using tracking measurements, usually ground-based, of a
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large number of satellites, (2) and those using specialized onboard measurements, such as high-
accuracy accelerometers and GPS receivers, on a small number of satellites.

Satellites with specialized onboard instruments have provided much useful data on density mod-
eling. For example, the CHAMP and GRACE satellites are equipped with accelerometers and
high-precision orbit estimation systems (e.g. GPS), which allow nearly continuous measurements
of drag accelerations.7–10 Because the other factors that affect drag are fairly well known for these
satellites (mass, area, drag coefficient), the local density can be accurately estimated along the or-
bit. For example, McLaughlin et al.4 demonstrated a sequential estimation scheme to estimate
simultaneously the density and ballistic coefficient using high precision orbit ephemerides from the
CHAMP satellite. A disadvantage of these approaches is that they are limited to a small number of
specialized missions, making it difficult to apply the results to a global density model correction.

The other category, using tracking measurements (e.g. ground-based radar and optical) is often
called the Dynamic Calibration of the Atmosphere (DCA) method, because they estimate correc-
tions to a given density model. Thus, in contrast with the accelerometer methods described above,
this category uses sparse measurements having lower accuracy, but on a larger set of satellites. Much
work in this area has been performed by the U.S. Air Force in support of its High Accuracy Satel-
lite Drag Model (HASDM),11–16 which uses tracking measurements to estimate a correction to the
Jacchia 70 empirical density model. Corrections to the exospheric and inflection point temperatures
in the vertical temperature profile are represented as two separate spherical harmonic expansions,
varying in the literature from second degree and order13 up to a 4×0 expansion.15 Sutton et al.16

improved on this method by using a different set of basis functions to compute the temperature
corrections. The number of tracked objects used by HASDM varies in the literature as well, but has
ranged from around 70 satellites12 up to 144 satellites.15 Accurate estimates of the ballistic coeffi-
cients for the target calibration satellites are required.11 These target satellites are tracked multiple
times per orbital revolution12 by the Space Surveillance Network of radar and optical sensors,17 and
a weighted least squares differential correction method is used across all targets that simultaneously
solves for the density corrections and a state vector for each target.14 The final estimated density
corrections, in the form of 3-hour fits to the data, are claimed to be within a few percent of the true
density.14

The contribution of the present paper is the description of a new method, inspired by tomography,
to correct atmospheric density models . Tomography is an inverse problem, with various applica-
tions in science and engineering, involving the infererence of the properties of the material within
a body using only measurements taken external to the body.18 A good example is X-ray computed
tomography (CT) widely used in medical imaging (Figure 1). Here, X-rays with known intensities
are emitted at various angles through a patient’s body, where the final intensities of the rays are mea-
sured at a detector on the opposite side of the body. Let f(x) be the X-ray attenuation coefficient of
the tissue at point x, then an X-ray traveling a distance ∆x will have a relative intensity loss of19

∆I

I
= f(x)∆x. (1)

Integrating over the ray’s path yields ∮
dI

I
=

∮
f(x)dx, (2)

and given the known initial intensity I0 and measured final intensity I1 of the ray, the above integral
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becomes
ln (I1/I0) =

∮
f(x)dx. (3)

The inverse problem then involves: (1) discretizing the volume into cells, (2) rewriting the integral
in Eq. (3) as a summation, (3) collecting the cell quantities and measurement for each ray into a
linear equation, and (4) solving for the discretized f(x) by inversion of the resulting system of
linear equations. Since f(x) is related to the density of the tissue, one can then construct a map of
the internal density. Note also that because the matrix normal equation in the linear system derived
from Eq. (3) is often ill-posed, it is common to use regularization to stabilize the system.

Our approach is motivated by the analogy between the path of an X-ray beam through a solid
object and the orbital path of a satellite through the upper atmosphere. In the case of the X-ray
beam, the log of the attenuation factor is simply the integral of the attenuation coefficient along the
path. At a more abstract level, a measurable quantity can be expressed as a path integral over the
spatially varying quantity to be estimated. Since the state of a satellite along its orbit is continuously
changing as a result of drag, which depends on the atmospheric density, we find a relationship
between measurable orbital parameters and density that can be written in the form of a path integral
over the density, allowing us to apply tomographic reconstruction methods.
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Figure 1. Illustration of standard computed tomography: the region (gray box) con-
taining an object of interest (blue shape) is discretized into many cells, and a known
beam source (e.g. X-ray) is emitted towards a sensor at various angles. The red bars
indicate the relationship between a sensor element and the cells (sometimes fractional)
traversed by the part of the beam detected by that sensor. This relationship deter-
mines the linear equations that connect the cell densities with the measured values for
each arrangement of the sensor with respect to the density grid.

This sort of tomography approach has never been applied to satellite orbital motion to deduce
atmospheric density. Several studies have used satellite-based measurements with tomography and
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regularization (e.g. Refs. 20–24 ), but usually the measurements involve radiometric observables
from specialized onboard instruments (e.g. infrared, microwave), rather than the satellite orbital
elements themselves. The main advantage of the tomography approach in this paper is that sparse
tracking data is assumed, in contrast to the HASDM method described above where the target
satellites are tracked every revolution. Thus, it may be feasible to achieve similar results with fewer
sensors.

TOMOGRAPHY APPLIED TO SATELLITE ORBITS

This section describes how the tomography method is applied to a set of satellite tracking mea-
surements. First, a grid is defined within a certain range of radial (r), latitude (θ), and longitude
(φ) values. For simplicity, the grid’s latitude and longitude coordinates are defined in the inertial
(J2000) reference frame, since the satellite positions will also be described in this frame. Thus,
the grid will be nearly fixed relative to the Sun∗ over the time spans of interest in this study (i.e.
∼ 1 day).

Figure 2. Sketch of orbit estimation scheme, illustrating several satellites having
time-varying orbital states and being in view of ground sites at certain times (gray
regions).

A set of target satellites are assumed, which have trajectories passing through the grid, either
partially (e.g. an eccentric orbit with perigee falling within the grid) or in full (e.g. a nearly-circular
LEO orbit). We assume that each satellite will be visible to a ground-based tracking sensor for
a minimum time span of a few minutes. During this “pass”, the satellite is tracked by the sensor
and measurements such as range, range rate, and angles are recorded . Although the details of the
given sensor and orbit estimation scheme are unimportant for the current discussion, we assume a
∗The direction to the Sun will have a drift of approximately 1 degree per day in the inertial longitude direction using

this grid definition. This can be alleviated in future studies by using the local solar time in place of the longitude.
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sequential estimator, such that the measurements are processed and a final orbit estimate (OE) is
generated at the pass stop time. This OE consists of the J2000 position and velocity vectors. The
OE at the end of the first pass is then propagated to the start time of the next pass, where it is used
as the initial state estimate for the second pass. The sequential estimation process then continues,
processing the measurements during pass 2, and producing a new state estimate at the second pass
stop time.

This sequential estimation scheme is applied to each of the satellites. The sketch in Figure 2
shows this for several satellites. Thus, for a given satellite, we will have estimates of the semimajor
axis a at t1 (pass 1 stop time), and a at t2 (pass 2 stop time). We now treat the change in a over the
time span from t1 to t2 to be the measurement for the tomography. The final estimated density from
the tomography will effectively be an estimate of the time-average of the temporal variations of the
true density. The pass times do not need to occur simultaneously for all satellites, and depending on
the number of sensors and their placement, these pass times may have some variation in time. Thus,
we can say that the tomography is effectively measuring the time-average density between the mean
pass 1 stop time and the mean pass 2 stop time.

It is important to note that there are no constraints on the satellites’ spatial position at t1 and t2,
other than the visibility constraints of the chosen sensor geometry. For example, Satellite 1 could be
observed at t1 over the north pole, and several revolutions later it is observed at t2 near the equator,
whereas Satellite 2 could be observed at both times at the same ground station at the south pole.
However, it is assumed that there is a sufficient number of satellites with varying orbit orientation
such that a global density field can be recovered.

METHODOLOGY

The measurement in this tomography application is derived from the change in a due to drag. It
is first required to write the total change in a due to all modeled perturbing acceleration, and then
isolating only that due to drag. Using the Poisson brackets to derive the osculating orbit element
rates from Lagrange’s planetary equations,25 the variational equation for a is

da

dt
=
∂a

∂v
ap , (4)

where ap is the perturbing acceleration (i.e. all accelerations other than the two-body gravitational
acceleration), and

∂a

∂v
=

2a2

µ
vT . (5)

For the present discussion, ap is split into the component due to drag, ad, and the component due to
non-drag accelerations, and

ap = ad + and . (6)

The acceleration and need not be specified yet, but in general these non-drag perturbations (e.g.
non-spherical gravity, third-body gravity, solar radiation pressure) will be a function of position,
and = and(r). The drag acceleration is written as

ad(r,v) = −1

2
βsρmodvrvr , (7)

where β ≡ CdA/m is the ballistic coefficient relating the satellite’s drag coefficient (Cd), drag
cross-sectional area (A), and mass (m); vr = |vr| is the magnitude of the wind-relative velocity
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vector; and the modeled atmospheric density is related to the true atmospheric density via a correc-
tion factor s ≡ ρtrue/ρmod.

Therefore, combining Eqs. (4), (5), and (6) and integrating both sides∫ a(t2)

a(t1)

da

a2
=

2

µ

∫ t2

t1

vTad(r,v)dt+
2

µ

∫ t2

t1

vTand(r)dt . (8)

The second term on the right-hand side of Eq. (8) can be thought of as a correction factor for the
non-drag perturbations

Cnd(r,v) ≡ 2

µ

∫ t2

t1

vTand(r)dt . (9)

After solving the definite integral on the left-hand side of Eq. (8) and rearranging, the result is

1

a(t2)
− 1

a(t1)
− Cnd(r,v) = − 2

µ

∫ t2

t1

vTad(r,v)dt . (10)

For ease of notation, define w such that

w(r(t),v(t))s(r(t)) = − 2

µ
[v]T ad(r,v) , (11)

hence w represents all quantities under the integral except s. Now rewriting the integral on the
right-hand side of Eq. (10) to account for times inside the grid and outside the grid, so for points
outside the grid we assume s = 1,

1

a(t2)
− 1

a(t1)
− Cnd(r,v) =

∫
tin

w(r(t),v(t))s(r(t))dt+

∫
tout

w(r(t),v(t))dt . (12)

The second term on the right-hand side of Eq. (12) can be thought of as another correction factor,
this time for the change in a due to drag effects occurring outside of the grid

Cout(r,v) ≡
∫
tout

w(r(t),v(t))dt (13)

and rearranging

1

a(t2)
− 1

a(t1)
− Cnd(r,v)− Cout(r,v) =

∫
tin

w(r(t),v(t))s(r(t))dt . (14)

It is now important to distinguish which quantities are measured, assumed known, and to be
solved. The semimajor axis at t1 and t2 are considered measured quantities, since they come from
the assumed OE scheme, and are denoted as ã2 and ã1. The density scale factor s is the quantity
to be solved via tomography. However, there is still dependence on r(t) and v(t) over the time
span from t1 to t2, which are unknown. Given the initial state estimates (from the OE results)
and modeled forces and assuming s = 1, we can numerically integrate the equations of motion to
give an estimate of the position and velocity which we denote as r∗ and v∗. The density ρmod is
dependent on the position, which is here evaluated on r∗. Furthermore, β is not known perfectly,
and thus must be assumed as β∗ (e.g. via modeling26 or prior fitting11).
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Taking the above discussion into consideration, Eq. (14) is now written as

1

ã2
− 1

ã1
− Cnd(r∗,v∗)− Cout(r

∗,v∗) =

∫
tin

w(r∗(t),v∗(t))s(r∗(t))dt . (15)

We can therefore define the net derived measurement y as the left-hand side of Eq. (15), resulting
in

y =

∫
tin

w(r∗(t),v∗(t))s(r∗(t))dt . (16)

Equation (16) has the form of a Fredholm integral of the first kind, wherew is the kernel representing
the physical relationship between the unknown model s and observed data y.27

Further physical insight into the quantity 1/ã2 − 1/ã1 in Eq. (15) can be obtained by recalling
the definition ξ = −µ/(2a) of the specific mechanical energy for a Keplerian orbit. By rearranging
the −2/µ appearing in the definition of w in Eq. (11), then Eq. (15) can be modified such that the
measured quantity in y is actually the change in the specific mechanical energy, ξ2 − ξ1, as defined
by the osculating semimajor axis. This insight is useful when recalling the original tomographic
inspiration: rather than measuring the decay in X-ray intensity, we are effectively measuring the
decay in orbital specific mechanical energy.

The linear system in Eq. (16) is solved by first discretizing the integral and then writing in matrix
form. A spatial grid with cell indices n ∈ {1, . . . , N} is defined, where sn = s(dn) and dn
specifies the center of cell n (also sn is assumed uniform in each cell). For satellite i ∈ {1, . . . ,M},
the equations of motion are numerically propagated, with time step ∆t, as described above, resulting
in discrete values of r∗k and v∗k. Here, k ∈ {Ki,n} represents the time instances that satellite i is in
cell n, and is a subset of this satellite’s total propagated times. The integral in Eq. (16) is replaced
by a summation by discretizing along the satellite’s trajectory through the grid (Figure 3)

yi =
[
wi,1∆ti,1 · · · wi,N∆ti,N

] [
s1 · · · sN

]T (17)

where ∆ti,n is the time spent by satellite i in cell n, and wi,n is the averaged quantity w(t, r∗,v∗)
for satellite i in cell n, i.e.

wi,n =
1

Ni,n

∑
k∈Ki,n

w(tk, r
∗
k,v
∗
k) (18)

where Ni,n is the number of times satellite i is in cell n.

Using the approximation ∆ti,n ≈ Ni,n∆t, then from Eq. (18):

wi,n∆ti,n ≈ ∆t
∑

k∈Ki,n

w(tk, r
∗
k,v
∗
k) . (19)

For ease of notation, define
hi,n ≡

∑
k∈Ki,n

w(tk, r
∗
k,v
∗
k) (20)

then the matrix form of Eq. (17) that includes all satellites M is y1
...
yM

 = ∆t

 h1,1 · · · h1,N
...

. . .
...

hM,1 · · · hM,N


 s1

...
sN

 . (21)
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Figure 3. Illustration of grid (gray) with satellite orbit (black) propagated at finite time tk.

Note that in general a given satellite will not pass through each cell in the grid. If a satellite does
not pass through a cell, then hi,n = 0 for that cell.

Equation (21) is then written concisely as y = Hs. In general, this is an ill-posed problem
because N > M and the matrix H is sparse (i.e. most entries are zero). We solve this problem
using Tikhonov regularization28

argmin
s

1

2
‖Hs− y‖22 +

λ

2
‖Ds‖22 , (22)

the solution for which can be expressed in closed-form as

(HTH + λDTD)s = HTy , (23)

which can be solved using a variety of standard methods.29 We choose the regularization operator
D as a discretization of the 3D gradient∇s since we expect s to be a spatially smooth field. (We do
not apply Total Variation regularization30 since discontinuities are not expected.)

Although reasonable results are obtained using the simple gradient in Cartesian coordinates

∇s =

(
∂s

∂x
,
∂s

∂x
,
∂s

∂z

)
, (24)

we have obtained somewhat better results using the correct gradient for the spherical coordinates in
which our problem is represented

∇s =

(
∂s

∂r
,

1

r

∂s

∂θ
,

1

r sin(θ)

∂s

∂φ

)
. (25)

For notational simplicity Eq. (22) is defined using a single regularization parameter λ, but for addi-
tional flexibility we express this problem using individual terms for each component of the gradient
and allow individual regularization parameters, which we denote λr, λθ, and λφ, for each of these
terms.
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SIMULATION SETUP

We define a grid as follows: radial direction is 6678 to 6878 km (300 to 500 km altitude), with
100 km uniform spacing; (inertial) longitude direction is -180◦ to 180◦, with 20◦ uniform spacing;
(inertial) latitude direction is -90◦ to 90◦, with 20◦ uniform spacing. The resulting number of grid
cells is N = 324.

The initial ground truth Cartesian states r(t0) and v(t0) are generated from a random sampling
of M = 100 satellite orbits (Figure 4) as follows. First, the radius of perigee rp and radius of
apogee ra are sampled from a uniform distribution between two ranges, depending on whether they
are categorized as low-eccentricity or high-eccentriciy. The low-eccentricity orbits have two radial
distances sampled from a uniform distribution from 6703 to 6853 km (325 to 475 km altitude),
where the lower of the two is set to rp. The high-eccentricity orbits have one radial distance sampled
from a uniform distribution from 6703 to 6853 km (325 to 475 km altitude), and the other radial
distance is sampled from a uniform distribution from 6703 to 10378 km (325 to 4000 km altitude).
The initial semimajor axis a0 and eccentricity e0 then follow from a0 = (rp+ra)/2 and e0 = (ra−
rp)/(ra + rp). The initial elements i0, Ω0, ω0, and f0 are all sampled from a uniform distribution
from 0 to 2π rad. These initial osculating Keplerian elements are then converted to r(t0) and v(t0).
In this simulation, we do not specify any actual ground sites for tracking, and instead for simplicity
assume that the orbits are measured at t0, and again 5 orbital revolutions later (i.e. ≈ 8.5 hours).

Each satellite is propagated twice. One propagation represents the ground-truth, where the force
model parameters are known. The other propagation represents the assumed trajectory (r∗,v∗),
where some of the force model parameters are changed slightly from ground-truth (e.g. to simu-
late our imperfect knowledge of β), and where [r∗(t1),v

∗(t1)] are slightly in error compared with
[r(t1),v(t1)] to simulate the OE errors (and similarly at t2). The OE errors are assumed to be Gaus-
sian with 5 m (1σ) position and 1 mm/s (1σ) velocity variance in each Cartesian component, as well
as having β knowledge errors of 5% (1σ).

The numerical propagator is a special perturbations propagator using Cowell’s formulation with
the Cartesian position and velocity. For the Earth’s nonuniform gravity, it uses a 7x7 spherical
harmonic expansion with the EGM96 coefficients. Also included are third-body effects from the
Sun and Moon, and solar radiation pressure accelerations (where these force model parameters are
assumed known). The GITM model31 is used in our simulations to represent the true density ρtrue,
and the MSIS model32 is used as the modeled density ρmod. The current simulation assumes no
winds for both the ground-truth and the reference orbits (r∗,v∗), and instead uses a simple co-
rotating atmosphere model in the calculation of vr.

SIMULATION RESULTS

Figure 5 shows the time-average of the true s = ρtrue/ρmod value, evaluated over the same grid
as defined above, where a slice is taken at 350 km altitude. Figure 6 shows the corresponding slice
of the estimated s field, using λθ = 1 × 10−17, λφ = 1 × 10−17, and λr = 1 × 10−12. We see
that overall there is good agreement between the two: the “bulge” of s ≈ 0.9 is apparent in both
figures centered around 0 deg latitude and -100 deg longitude, and the rest of the field is matching
near s ≈ 0.7. However, there are some finer structures apparent in Figure 5 that are not quite visible
in Figure 6. Figures 7 and 8 show the corresponding results for the slice at 450 km altitude, and
the overall results are the same. The RMS error over the entire 3-D grid between the time-averaged
ground-truth s and the estimated s was 0.07 (unit-less).
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Figure 4. Simulated random orbits, M = 100 satellites.

DISCUSSION

Considering the RMS error of 0.07 in s mentioned above, and that the nominal value for the true
s is around 1, then the true time-averaged density can be reconstructed using our estimated s to
within approximately 10%. Of course, we must also consider that the true density will also have
small variations in time relative to the time-averaged value, so that there would be some additional
errors if we were to compare our estimated time-average s with the instantaneous true density. For
example, in the simulation scenario discussed above, the instantaneous density varied only by a few
percent relative to the time-averaged value. However, addition simulations will have to be performed
in future work to ensure that the tomography method described here would also be feasible in cases
where the instantaneous density varies greatly about its time-averaged value.

The density reconstruction method described in this paper has some practical advantages over
existing methods. Unlike a weighted least squares approach where the orbit states and density
corrections are estimated simultaneously from tracking data (e.g. like HASDM’s approach), where
the partial derivatives of the system dynamics and measurements with respect to the state must
be found, our method requires no such partial derivatives. Likewise, no effort needs to be spent
on parameterizing the density model corrections to allow them to be easily estimated along with
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Figure 5. True time-averaged s = ρtrue/ρmod, slice at 350 km alt.
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Figure 6. Estimated time-averaged s = ρtrue/ρmod, slice at 350 km alt.
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Figure 7. True time-averaged s = ρtrue/ρmod, slice at 450 km alt.
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Figure 8. Estimated time-averaged s = ρtrue/ρmod, slice at 450 km alt.
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the orbits. For example, Hinks and Psiaki33 used a unique spline-based density parameterization for
another study of density estimation using telemetry from a cross-linked constellation like Iridium. In
fact, our method is essentially density-model-agnostic: given a function that describes the modeled
density ρmod as a function of position and time, it is trivial to use this function in the numerical
evaluation of the term w that appears in Eqs. (13) and (16). Furthermore, it is straightforward to
change the desired resolution of the estimated s field by simply changing the grid spacing. This is
analogous to using a higher degree and order spherical harmonic expansion, if we were to use such
an expansion to parameterize the density corrections. Lastly, assuming we are satisfied with the
time-averaged density estimate between t1 and t2, we have demonstrated that we can sufficiently
reconstruct this density using only the measured orbit states at t1 and t2, rather than requiring
tracking data between those times.

There are several areas where the simulation fidelity could have been improved in this study,
e.g. we assumed perfect knowledge of winds and solar radiation pressure force model parameters.
Future studies will be required to verify that we can achieve similarly feasible results when uncer-
tainty in these effects are also included. Additionally, we considered only the aerodynamic drag
forces (i.e. in the direction of the relative velocity) and ignored aerodynamic forces perpendicular
to the relative velocity direction (i.e. lift and side forces). For general studies on the effects of the
atmosphere on satellite motion, it is common to assume (e.g. Ref. 34) that the effects of lift and side
forces on the orbit will be small compared to those of drag. This result is due to the blunt or irregular
shape of most space objects, and the fact that the direction of these forces may vary widely over an
orbital revolution and thus tend to average out. However, these other forces cannot be ignored for
detailed studies using precise measurements such as accelerometers (e.g. Ref. 10).

CONCLUSIONS

This paper has introduced a new tomography-based method to reconstruct the atmospheric den-
sity, which uses satellite orbital states as measurements. This method allows the use of temporally-
sparse measurements (e.g. ground-based tracking) to find a time-averaged, yet spatially resolved,
global density correction. Because the density corrections are in the form of scale factor adjust-
ments to an assumed density model, it is straightforward to substitute any number of desired density
models into the formulation. Based on the initial feasibility study performed in this paper, the
method requires a number of satellites (∼ 100) in spatially diverse orbits and with well-known drag
properties (e.g. ballistic coefficient). However, this requirement on the tracking targets is similar
in principle to existing methods like the U.S. Air Force’s HASDM method. The simulation results
show that the time-averaged density over ∼ 8.5 hours can be reconstructed to within ∼ 10%. Fur-
ther feasibility studies are required to ensure that this method can be applied to increasingly realistic
scenarios, and eventually actual observational data.
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NOTATION

A drag cross-sectional area, km2

a semimajor axis, km
ad drag acceleration vector, km/s2

and non-drag acceleration vector, km/s2

ap perturbing acceleration vector, km/s2

Cd drag coefficient, unitless
D discretized regularization operator
d position vector of cell, km
e0 initial eccentricity
f X-ray attenuation coefficient
f0 initial true anomaly, rad
H linear measurement matrix
h summed kernel, km-1 s-1

i satellite index
i0 initial inclination, rad
K set of times in a given cell
k discrete time index
I X-ray intensity
M number of satellites
m mass, kg
N number of cells in grid
n cell index
r position vector of satellite, km
r radial direction, km
ra radius of apogee, km
rp radius of perigee, km
s vector of density model scale factors, unitless
s density model scale factor, unitless
t time, s
v inertial velocity vector, km/s
vr wind-relative velocity vector, km/s
w kernel, km-1 s-1

x generalized distance
y measurement vector, km-1

y net derived measurement, km-1

β drag ballistic coefficient, km2/kg
θ latitude, rad
λ smoothness constraint
µ Earth gravitational parameter, km3/s2

ξ orbit specific mechanical energy, km2/s2

ρmod modeled density, kg/km3

ρtrue true density, kg/km3

φ longitude, rad
Ω0 initial right-ascension of the ascending node, rad
ω0 initial argument of perigee, rad
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