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ABSTRACT

Video background modeling, used to detect moving ob-
jects in digital videos, is a ubiquitous pre-processing step in
computer vision applications. Principal Component Pursuit
(PCP) PCP is among the leading methods for this problem.
In this paper we proposed a new convex formulation for PCP,
substituting the standard ¢; regularization with a projection
onto the ¢;-ball. This formulation offers an advantage over
the known incremental PCP methods in practical parameter
selection and ghosting suppression, while retaining the abil-
ity to be implemented in a fully incremental fashion, keeping
all the desired properties related to such PCP methods (low
memory footprint, adaptation to changes in the background,
computational complexity that allows online processing).

Index Terms— Incremental Principal Component Pur-
suit, #1 Ball projection, Video Background Modeling.

1. INTRODUCTION

Video background modeling, which consists of segmenting
the moving objects or “foreground” from the static “back-
ground”, is an important task in several applications. Princi-
pal Component Pursuit (PCP) is currently considered to be the
most effective formulation for this problem [1]. PCP was in-
troduced in [2] as the non-convex optimization problem given

by (1)

argmin rank(L) + A|S|lp st. D=L+S, (1)
L,S

s

where A > 0 is a fixed and global regularization parameter,
D € R™*™ js the observed video of n frames, each of size
m = N, X N, X Ny (rows, columns and depth or channels re-
spectively), L € R™*™ is a low rank matrix representing the
background and S € R™*" is a sparse matrix representing
the foreground, i.e. moving objects.
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While most PCP algorithms (for a complete list see [1, 3]),
including the Augmented Lagrange Multiplier (ALM) and in-
exact ALM (1ALM) algorithms [4, 5] are directly based on the
original convex relation (2)

argmin ||L||« + A|S|1 st D=L+ S, (2)
L,S

this is not the only possible tractable problem that can be de-

rived from (1) [3]. Although theoretical guidance is available

for selecting a minimax optimal regularization parameter A in

(2) [6], practical problems do not fully satisfy the idealized

assumptions, and thus \ often has to be heuristically tuned.
In this paper we propose the novel' decomposition

1
argmin§\|L+S—D||2F s.t. [|S]]h < 7, rank(L) <7, (3)
LS

which is a convex relaxation of (1). We show that a simple
practical scheme can be derived to adaptively select the pa-
rameter 7, and that (3) can be easily solved in an incremental
fashion (i.e. one frame at a time), and thus the 7 parameter
can be adaptively estimated for every frame. Interestingly,
the 7 parameter can also be spatially adapted, dramatically
reducing the ghosting effects? that are usually observed in
incremental methods (see [7] for a recent discussion of this
topic).

2. PREVIOUS RELATED WORK

In this section we give a brief overview of other incremental
PCP methods, with a particular focus on the incremental PCP
algorithm [8] since, like our proposed algorithm (see Sec-
tion 3), it also uses rank-1 modifications [9] for thin singular
value decomposition (SVD) to achieve its computational effi-
ciency. Finally we also describe the ¢;-ball projection prob-
lem, which is central to our proposed method.

The known decompositions for the PCP problem are listed in [3, Table
4]. The most closely related alternatives are GoDec and DRMF; they both
used the /g (additionally DRMF also used the mix £2, o) norm as constraint,
resulting in algorithms fundamentally different from ours (see Section 3).

2Ghosting occurs when the foreground estimate includes phantoms or
smear replicas from actual moving objects, or from objects that really be-
long to the background.



2.1. Incremental PCP methods

To the best of our knowledge, recursive projected compres-
sive sensing (ReProCS) [10, 11] along with Grassmannian
robust adaptive subspace tracking algorithm (GRASTA)
[12], £,-norm robust online subspace tracking (pROST) [13],
Grassmannian online subspace updates with structured spar-
sity (GOSUS) [14] and the incremental PCP (incPCP) [8] are
the only PCP-like methods for the video background model-
ing problem that are considered to be incremental. However,
except for incPCP, these methods have a batch initializa-
tion/training stage as the default initial background estimate®.

2.2. Intuitive description of the incPCP algorithm

The incPCP algorithm [15, 8, 16] is a computationally effi-
cient solution to the amFastPCP algorithm [17]. The amFast-
PCP algorithm proposed the convex relaxation

1
argmin§||L +S—D[%+\|S|l; st rank(L) <7 (4)
LS

as an alternative to the original relaxation presented in (2).

In [17], it was shown that (4) can be solved via an alternat-
ing optimization (AO) [18] procedure, since it seems natural
to split (4) into a low-rank approximation®, i.e. argmin;
i|L + S — D||% st rank(L) < r, with fixed S, soft-
thresholding’, i.e. argming 3|/ L + S — D||% + A||S||1, with
fixed L computed in the previous iteration. The solution ob-
tained via this AO procedure is of comparable quality to the
solution of the original PCP problem [17].

Furthermore, the low-rank approximation sub-problem
can be solved via a computationally efficient incremental
procedure, based on rank-1 modifications for thin SVD (see
[9] and the many references therein) and thus (4) can also be
easily solved incrementally, since the soft-thresholding step
can be trivially computed in an incremental fashion. The
resulting incPCP algorithm [8] is a fully incremental PCP
algorithm for video background modeling, obtaining similar
results to batch PCP algorithms by processing one frame at a
time, and being able to adapt to changes in the background.

2.3. Projection onto the /; ball

The ¢;-ball projection problem, which is used in several imag-
ing and machine learning problems, is defined as

. 1
projj., (W) = min o [x —ufl3 st x|y <7, )

3GRASTA and GOSUS can perform the initial background estimation
in a non-batch fashion, however the resulting performance is not as good
as when the default batch procedure is used; see [8, Section 6]. pROST is
closely related to GRASTA, and it shares the same restrictions. All variants
of ReProCS also use a batch initialization stage.

“The solution is given by L = UX,.V’, where [U, X, V] = SVD(D —
S) and X, keeps the r largest singular values of the diagonal matrix 3.

3The solution is given by (6), with A(7) = .

where x,u € R™ and 7 > 0.

If ||uljy < 7, then x* = u is the solution to (5). When
|lul|y > 7, the optimal solution to (5) must satisfy ||x*|; = 7
and it is given by soft-thresholding [19, 20]:

x* = shrink(u, A(7)) = sign(u) - max{0, ju| — A(1)}, (6)

where A(7) is a threshold that depends on the parameter 7,
and it is usually found by performing a sorting of the elements
of u in decreasing order.

There are several efficient algorithms to solve (5). While
[19] and [20] are the most well-known ones ([20] being faster
than [19]), for our computational results in Section 4 we use
a novel algorithm based on an accelerated Newton’s method
applied to (5) [21] that does not perform any type of sorting,
and that can be easily parallelize in several architectures, in-
cluding CUDA.

3. PROPOSED ALGORITHM

We start our description assuming that we have computed the
solution to (3) up to frame k& — 1, i.e. Lg_; (low-rank) and
Sk_1 (sparse), where Ly_1 + Sx—1 = Dp_1 and Dy, =
D(:,1 : k — 1) and that we know the partial (thin) SVD of
Li_1= UTETVTT, where X, € R"*". This initialization can
be trivially computed when k& = 2.

If we were to solve (3) from scratch when the next frame
d;, is available, then we would need to minimize

1
3 1Lk + Sk = Di||% st ISk < 7, rank(Ly) <7, (7)
which can be iteratively done via the AO
L,(fﬂ): argmin || Ly + S,gj) — Dg||% s.t. rank(Ly) <7 (8)
L

SUH= arg min 1LY + Sk — Dell? st 1Skl < 7,(9)

where Lk = [Lk—l lk], Sk = [Sk—l Sk] and Dk = [Dk—l dk}.
When j = 0, the minimizer of (8) is given by

LV = partialSVD(Dy, — S\ . (10)
Since Dk — S,(CO) = [Dk—l‘Sk—l dk] = [Lk—l dk], and we
know that L1 = UTErVTT, then (10) can be computed via
the incremental thin SVD [9] procedure.

The minimizer of (9) is the projection onto the ¢; ball (see
(5)) and it would be only applied to the current estimate (since
Si_1 is known) i.e. s,(:) = proj|.|, (d — l,(cl)), where 1,21) is
the last column of the current estimate L,il). In the next inner
loop (j = 1) for solving (8) we have a similar situation to
(10), i.e. L,(f) = partialSVD(Dy, — S,El)), and noting that
Dy — S,(Cl) = [Dg—1— Sk—1 dg fs,(gl)}, then the solution
can be effectively computed using the thin SVD replace [9]



procedure, since in the previous step we have computed the
partial SVD for [Dy,_1-Sk—1 dg]-

The procedure described above is very similar to the in-
cPCP algorithm [8]. The key difference is that in the present
case we solve (9), whereas [8] solves

Sy = argsmin LYY + Si = Dell% + ISkl (1)

For instance, given an oracle that provides the ideal solution
to (8) at frame k, i.e. 13, it is not clear how to choose \ for
(11). However, for (9) it is straightforward to set 7 = ||dj —
15|11, which amounts to adaptively estimate the best threshold
at every frame. Since the solution to (8) is not ideal, we use
(12). In our experimental results (see Section 4), we use o €
[0.5, 0.75].

T = a~||dk—lk||1. (12)

Furthermore, 7, can be spatially adapted: given the dif-
ference between the current and past sparse approximations,
i.e. z = S — Si_1, it is expected that, in the ideal case, z,
must be zero except in the boundaries of the moving objects,
but, due to ghosting effects, this is not the case in practice.

Based on |z|, a binary mask my, can be found that is set
to one in the areas with high probability of being affected by
ghosting, and thus

sk, = (1—my)-8; +my S, (13)

where ék = proJ”Hl(dk — lk;), ék = pI‘OJth (mk . ék) and

T,gg) = [ - |lmg - Sg|l1- In our experimental results we use
Bel01,0.3].

4. COMPUTATIONAL RESULTS

In Table 1 we present F-measure based accuracy results for
two challenging videos® from the CDnet dataset [23]. The
F-measure, which makes use of a binary ground-truth, is de-
fined in (14), where P and R stands for precision and recall
respectively, and TP, FN and FP are the number of true posi-
tive, false negative and false positive pixels, respectively:

2.-P-R TP R— TP
P+R " TP +FN ~ TP+FP

In order to compute the F-measure for the proposed algo-
rithm, called ¢;B-PCP, as well as for incPCP, GRASTA and
GOSUS, a threshold is needed to compute the binary fore-
ground mask. For this purpose we use an automatic segmen-
tation [24] that adapts its threshold for each sparse represen-
tation and ensures that all algorithms are fairly treated.

F= (14)

6V320: 320 x 240 pixel, 1700-frame color video sequence, with 1230
ground-truth frames, from a highway camera with lots of cars passing by;
V720: 720 x 576 pixel, 1200-frame color video sequence, 900 ground-truth
frames, of a train station with lots of people walking around. Results for other
datasets are not included here due to space limitations, however they can be
found in [22] along with the corresponding Matlab code.

All simulations presented here were run on an Intel i7-
4710HQ (2.5 GHz, 6MB Cache, 32GB RAM) based laptop.
The GRASTA’ and GOSUS’ implementations are Matlab
based with MEX interfaces, while the Matlab implementa-
tion of incPCP and ¢;B-PCP [22] takes advantage of GPU-
enabled (CUDA) Matlab functions (mainly linear algebra).
Our ¢;B-PCP algorithm uses @ = 0.75 and 8 = 0.3 (see
Section 3) for the considered videos.

F-measure / (f.p.s.)
Video grayscale color
incPCP | £,B-PCP | GRASTA || incPCP| ¢, B-PCP | GOSUS
V3201l 0745 | 0799 | 0773 | 0794 | 0.832 | 0.549
76.9) | 23.9) | 294 | 588)| 212 | (03)
V72011 0687 | 0741 | 0.169 || 0728 | 0784 | 0.426
G12) | 61) | @40 | 303 | @) | 002

Table 1. Accuracy performance via the F-measure on the CD-
net dataset for the ¢;B-PCP, incPCP, GRASTA and GOSUS
algorithms. V320 is a 320 x 240 x 1700 video from a highway
camera, and V720 1is a 720 x 576 x 1200 video from a train sta-
tion (sizes are indicated in the form rows x columns X frames).
The bold values are the largest F-measure values (grayscale
and color are treated independently). The inverse of the av-
erage processing time per frame, i.e. the average number of
frame per seconds (f.p.s.) is also shown for each case.

The accuracy and inverse of the average processing time
per frame, i.e. average frame per seconds (f.p.s.) results
for the CDnet dataset, listed in Table 1, show that the ¢1B-
PCP gives superior performance when compared to the con-
sidered alternatives. Moreover, ¢1B-PCP is equally effective
for videos with a moving background, such as in the case
of “V320”, where waving trees/leaves are observed or fully
static background, such as in the case of “V720”.

5. CONCLUSIONS

We have presented an incremental PCP algorithm that uses a
novel convex formulation for the PCP problem, which instead
of using the standard ¢; regularization term for the sparse
component, uses a projection onto ¢1-ball as a restriction.
Our algorithm, called ¢, B-PCP, offers an advantage over
the known incremental PCP methods in practical parameter
selection and ghosting suppression as shown in our compu-
tational results, where the ¢1B-PCP achieves the best recon-
struction metrics when compared to other leading incremental
PCP methods (incPCP, GRASTA and GOSUS). Future work
will focus on improving the computational performance of
the ¢1B-PCP algorithm, which, although two orders of mag-
nitude faster than GOSUS and competitive with GRASTA, is

7While the GRASTA and GOSUS algorithms are able to process both
grayscale and color video, the GRASTA software implementation [12] can
only process grayscale video, and the GOSUS implementation [14] can only
process color video, which places some restrictions on our comparisons.




currently [2 ~ 5] times slower than incPCP, the fastest incre-
mental PCP algorithm.
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