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ABSTRACT

In video background modeling, ghosting occurs when an object that
belongs to the background is assigned to the foreground. In the
context of Principal Component Pursuit, this usually occurs when a
moving object occludes a high contrast background object, a moving
object suddenly stops, or a stationary object suddenly starts moving.

Based on a previously developed incremental PCP method, we
propose a novel algorithm that uses two simultaneous background
estimates based on observations over the previous n1 and n2 (n1 �
n2) frames in order to identify and diminish the ghosting effect. Our
computational results show that the proposed method greatly im-
proves both the subjective quality and accuracy as determined by
the F-measure.

Index Terms— Incremental Principal Component Pursuit,
Ghosting

1. INTRODUCTION

Video background modeling consists of segmenting the moving ob-
jects or “foreground” from the static “background”. Ghosting occurs
when the foreground estimate includes phantoms or smear replicas
from actual moving objects, or from objects that really belong to the
background. An example of ghosting is shown in Fig. 1. Ghosting
not only visually degrades the foreground estimation, but also has a
negative impact when estimating a binary foreground mask, which
is a key pre-processing task for target tracking, recognition and be-
havior analysis in digital videos.

The Principal Component Pursuit (PCP) method is currently
considered to be one of the leading algorithms for video back-
ground modeling [1]. Although the PCP method is inherently a
batch method (for a complete list of algorithms, see [1]) in that
a large number of frames have to be observed before starting any
processing, there exits a handful of incremental/on-line alternatives
[2, 3, 4, 5, 6], for which the processing is performed one frame at
a time. While these alternatives have some advantages over their
batch counterparts, mainly their low computational cost and mem-
ory footprint, which could allow real-time processing of live-feed
videos, they exhibit ghosting effects that are not usually observed in
the PCP batch methods.

In this paper, we exploit a feature that is common in the
incremental/on-line PCP-like algorithms1: the current background
estimate is the result of observing a limited number of past frames.
While the particular details of how this is handled by [2, 3, 4, 5, 6]

1Algorithms [2, 3, 4, 5, 6] use different terms to refer to the same general
property; in this paper, from this point onwards, we choose to use the term
“incremental”.

varies, this feature allows these type of algorithms to adapt to
changes in the background on the fly. The key and novel idea of the
proposed ghosting suppression method is to simultaneously use two
background estimates derived from the previous n1 and n2 frames
respectively (n1 � n2) to reduce the ghosting effect.

Our computational results, which are carried out with the in-
cPCP algorithm [6], show that our proposed algorithm efficaciously
diminishes the ghosting effect observed in the foreground estimate
and at the same time attains better accuracy (F-measure) than other
incremental PCP algorithms when estimating a binary foreground
mask, even when the mask is computed via a simple global thresh-
olding per frame.

2. PREVIOUS RELATED WORK

2.1. Ghost removal methods

Ghosting removal methods have attracted some attention over the
past few years; in this section we give a brief overview of several
works [7, 8, 9, 10, 11, 12, 13] that are based on different video back-
ground modeling approaches and that explicitly target the ghosting
problem.

In the context of Gaussian Mixture Models (GMM), [10] pro-
posed a method to detect ghosts and stationary foreground by dual-
direction (observing “past” and “future” frames) background mod-
eling. Instead, [8] incorporated an adaptive parameter adjustment to
GMM. In both cases, superior results are obtained when compared
to the traditional GMM.

Pixel-level methods, for which a model of the recent history is
built for each pixel location, are also popular alternatives for video
background modeling. In this context, [11] estimated the relevance
of the pixel’s historical background values, selectively adapting to
background changes with different timescales and thus mitigating
the ghosting effect. Instead, in [12] context features for each pixel
were compressively sensed from local patches, and the background
model was renewed in order to handle the ghosting effect. Adap-
tive median filtering and background update, based on the motion
information, was used in [9] to remove the ghosting effect.

In the context of batch PCP-based methods, [13] proposed to
minimize the partial sum of singular values, in place of the nuclear
norm (see (1)); among other effects of this modification to the orig-
inal problem, the authors claim that it delivers a ghost-free sparse
representation.

In a more general context, [7] presented a fast and effective
algorithm for ghost detection and removal, using edge comparison
for ghost detection and removal during tracking. It is claimed that
this method can be integrated into any video background modeling



method that estimates a difference map between the current frame
and a background estimates.

Finally we mention that there are several PCP-based methods
(some of them incremental), see for instance [14, 15] among others,
that usually include an extra foreground contiguity term which is
used to directly estimate a binary foreground mask. However, such
methods do not explicitly target the elimination of the ghost effect in
the sparse component.

2.2. Incremental PCP methods

To the best of our knowledge, recursive projected compressive sens-
ing (ReProCS) [2, 16] along with Grassmannian robust adaptive sub-
space tracking algorithm (GRASTA) [3], `p-norm robust online sub-
space tracking (pROST) [4], Grassmannian online subspace updates
with structured sparsity (GOSUS) [5] and the incremental PCP (in-
cPCP) [6] are the only PCP-like methods for the video background
modeling problem that are considered to be incremental. However,
except for incPCP, these methods have a batch initialization/training
stage as the default/recommended initial background estimate2.

(a) Video V640: Frame 50. (b) Video V640: Frame 310.

(c) incPCP sparse component. (d) incPCP sparse component.

(e) GRASTA sparse component. (f) GRASTA sparse component.

Fig. 1. Original frames and corresponding sparse components for
video V6403 when analyzed with the incPCP4 and GRASTA5 algo-
rithms. The ghosting effect is mainly noticeable in the upper left
corner, where some vehicles are stopped for a while between frames
50 and 310.

2GRASTA and GOSUS can perform the initial background estimation
in a non-batch fashion, however the resulting performance is not as good
as when the default batch procedure is used; see [6, Section 6]. pROST is
closely related to GRASTA, and it shares the same restrictions. All variants
of ReProCS also use a batch initialization stage.

2.3. Intuitive description of the incPCP algorithm

Since the proposed ghosting suppression method is implemented via
the incPCP algorithm [20, 21, 6, 22, 23], here we give a succinct
description of this algorithm. We first recall that the PCP problem

arg min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S (1)

is derived as the convex relaxation of the original problem [24, Sec-
tion 2]

arg min
L,S

rank(L) + λ‖S‖0 s.t. D = L+ S , (2)

based on decomposing matrix D such that D = L + S, with low-
rankL (background) and sparse S (foreground). While most PCP al-
gorithms, including the Augmented Lagrange Multiplier (ALM) and
inexact ALM (iALM) algorithms [25, 26] are directly based on (1),
this is not the only possible tractable problem that can be derived
from (2). In particular, changing the constraint D = L + S to a
penalty, the rank penalty to an inequality constraint, relaxing the `0
norm by an `1 norm, leads to the problem

arg min
L,S

1

2
‖L+ S −D‖2F + λ‖S‖1 s.t. rank(L) ≤ r . (3)

A computationally efficient solution can be found via an alter-
nating optimization (AO) [27] procedure, since it seems natu-
ral to split (3) into a low-rank approximation, i.e. arg minL
1
2
‖L + S − D‖2F s.t. rank(L) ≤ r, with fixed S, followed by

a shrinkage, i.e. arg minS
1
2
‖L + S − D‖2F + λ‖S‖1, with fixed

L computed in the previous iteration. The solution obtained via the
previously described AO procedure is of comparable quality to the
solution of the original PCP problem (see [28] for details), being
approximately an order of magnitude faster than the iALM [26]
algorithm to construct a sparse component of similar quality.

Furthermore, the low-rank approximation sub-problem can be
solved via a computationally efficient incremental procedure, based
on rank-1 modifications for thin SVD ([29] and references therein),
and thus (3) can also be easily solved incrementally, since the shrink-
age step can be trivially computed in an incremental fashion.

In [6] it was shown that the resulting algorithm, called incPCP,
is a fully incremental PCP algorithm for video background model-
ing, which is able to processes one frame at a time, obtaining sim-
ilar results to batch PCP algorithms, while being able to adapt to
changes in the background. Furthermore, in [6] extensive computa-
tional comparisons with state-of-the-art methods were also given.

3. PROPOSED ALGORITHM

In this section we first describe the general ideas for our propose
ghost removal method, that could be adapted to any incremental PCP
algorithm, and then proceed to give the particular adaptation of such
ideas for the incPCP algorithm [6].

Given an incremental PCP algorithm, for any frame k, the low-
rank (l) and sparse (s) components satisfy

dk ≈ l
(n)
k + s

(n)
k , (4)

where dk is the current frame from the observed video; in (4) we use
the super-script n to differentiate low-rank and sparse components

3A 640× 480 pixel, 400-frame color video sequence at 15 fps, from the
Lankershim Boulevard traffic surveillance dataset [17, cam. 3]

4Matlab code is publicly available [18].
5Publicly available Matlab code [19] can only process grayscale videos.



that have been obtained using the information of the past n frames.
It is also worth recalling that in the context of PCP, once the low-
rank component is available, the sparse component is computed via
the soft-thresholding shrinkage

s
(n)
k = shrink(dk − l

(n)
k , λ), (5)

where shrink(x, λ) = sign(x) max{0, |x| − λ}.
Two simultaneous low-rank components, l(n1)

k and l
(n2)
k , with

n1 � n2 will be different if a video event’s interpretation differs
over a longer/shorter time frame observation6: a typical example (al-
beit not the only one) would occur when an object that is considered
“background” for a short time frame observation, is identified as a
mobile object that swiftly stops or as a stationary object that swiftly
starts moving when a larger time frame observation is considered.

Furthermore, the sparse components, s(n1)
k and s

(n2)
k , will re-

flect the above mentioned differences as ghosts, which would be
more or less prominent depending on the level of intensity of the
non-background objects that do appear on the low-rank component;
this is depicted in Fig. 2.

(a) Frame 310 (V640 video) low-
rank component when n1 = 20.

(b) Frame 310 (V640 video) low-
rank component when n2 = 200.

(c) Frame 310 (V640 video) sparse
component when n1 = 20.

(d) Frame 310 (V640 video) sparse
component when n2 = 200.

Fig. 2. Two sets of low-rank / sparse components of frame 310, from
the V640 test video, are shown. (a), (c) and (b), (d) are derived from
the previous 20 and 200 frames respectively. Differences and ghosts
are mainly observed in the upper left corner (see also Fig. 1).

If a foreground binary mask is estimated from each sparse com-
ponent, i.e. m

(n1)
k and m

(n2)
k , these masks will include the mov-

ing objects as well as ghosts. However, as can be surmised from
Fig. 2, the intersection of these binary masks will, with high confi-
dence, only include the moving objects; likewise, Bk =∼m

(n1)
k ∪ ∼

m
(n2)
k , the union of the masks complement, will include all the pix-

els of the background that are not occluded by a moving object.
Provided that the previous statement is true, then Bk can be

used (i) to generate a spatially varying λ value for frame k (oppose
to a fixed global value as used in (5)) to heavily penalize the high

6Here we are ruling out dramatic changes in the background, such when
the camera is moved, when a sudden illumination change occurs, etc.

confidence background pixels, (ii) to generate a “new” input frame
d̂
(n)
k = dk �Bk + l

(n)
k � (1−Bk), where � is element-wise mul-

tiplication (Hadamard product), in order to replace the effect of the
previously processed original frame dk. It is worth noting that the
previously described actions, implicitly assume that a particular in-
cremental PCP algorithm has the ability to “forget” or “replace” the
effect of a given frame in the low-rank component, or has the ability
to feedback an improved background estimate.

As mentioned in section 2.3, the incPCP algorithm [6], makes
use of rank-1 modifications for thin SVD, which includes the “up-
date”, “replace” and “downdate” (“forget”) operations (see [29] for
details). Based on such operations, in Algorithm 1 we describe
the specific details on how to implement the above mentioned ideas
for the incPCP algorithm, where [U

(n)
k , Σ

(n)
k , V

(n)
k ] represents the

SVD decomposition of the low-rank component as observed for the
last n frames, dwnSVD(.) and incSVD(.) represent the “down-
date” and “update” operations.

Inputs : observed video frame dk, regularization parameter λ,
low-rank components l(n1)

k and l
(n2)
k , sparse components

s
(n1)
k and s

(n2)
k , scalar α > 1.

Compute: considering n = {n1, n2}
1 m

(n)
k = mask(s

(n)
k ) (see comments in Section 4)

2 Bk = ∼m
(n1)
k ∪ ∼m

(n2)
k

3 d̂
(n)
k = dk � Bk + l

(n)
k � (1− Bk)

4 λk = λ · (1− Bk) + α · λ · Bk (spatially varying λ value)
5 [U

(n)
k ,Σ

(n)
k , V

(n)
k ] = dwnSVD(“last col.”, U (n)

k , Σ
(n)
k , V

(n)
k )

6 [U
(n)
k ,Σ

(n)
k , V

(n)
k ] = incSVD(d̂

(n)
k , U

(n)
k ,Σ

(n)
k , V

(n)
k )

7 l
(n)
k = U

(n)
k · Σ(n)

k · V (n)
k (end, :)

T

8 s
(n)
k = shrink(dk − l

(n)
k ,λk)

Algorithm 1: Ghosting suppression incremental PCP (gs-incPCP).

4. COMPUTATIONAL RESULTS

We present F-measure based accuracy results (see Table 1) for the
I2R dataset7 [30] and from two challenging videos8 from the CDnet
dataset [31]. The F-measure, which makes use of a binary ground-
truth, is defined as

F =
2 · P ·R
P +R

, P =
TP

TP + FN
, R =

TP

TP + FP
(6)

where P and R stands for precision and recall respectively, and TP,
FN and FP are the number of true positive, false negative and false
positive pixels, respectively.

In order to compute the F-measure for incPCP (original and
ghosting suppression variants) as well as for GRASTA and GOSUS,
a threshold is needed to compute the binary foreground mask. For
the results presented in this section, this threshold has been com-
puted via an automatic unimodal segmentation [32] since the abso-
lute value of the sparse representation has an unimodal histogram.
This approach, although simple, adapts its threshold for each sparse
representation and ensures that all algorithms are fairly treated.

7The number of available ground-truth frames is 20 for all cases.
8V320: 320 × 240 pixel, 1700-frame color video sequence, with 1230

ground-truth frames, from a highway camera with lots of cars passing by;
V720: 720× 576 pixel, 1200-frame color video sequence, 900 ground-truth
frames, of a train station with lots of people walking around.



Video

F-measure
grayscale color

incPCP gs- GRASTA incPCP gs- GOSUSincPCP incPCP
Bootstrap – I2R

0.587 0.611 0.608 0.636 0.669 0.659(120×160×3057,
crowd scene)

Campus – I2R
0.244 0.771 0.215 0.281 0.821 0.166(120×160×1439,

waving trees)
Curtain – I2R

0.741 0.757 0.787 0.758 0.783 0.870(120×160×2964,
waving curtain) (n1=100) (n1=100)
Escalator – I2R

0.481 0.627 0.539 0.472 0.622 0.405(130×160×3417,
moving escalator)

Fountain – I2R
0.627 0.769 0.662 0.632 0.789 0.677(128×160×523,

fountain water)
Hall – I2R

0.570 0.601 0.625 0.609 0.677 0.464(144× 176× 3548,
crowd scene)
Lobby – I2R

0.550 0.466 0.567 0.713 0.657 0.185(128×160×1546,
switching light) (n1=150) (n1=150)

Mall – I2R
0.693 0.718 0.692 0.746 0.772 0.715(256×320×1286,

crowd scene)
WaterSurface – I2R

0.636 0.818 0.772 0.632 0.829 0.787(128×160×633,
water surface)
V320 – CDnet

0.745 0.864 0.773 0.794 0.891 0.549(320×240×1700,
highway camera)

V720 – CDnet
0.687 0.765 0.169 0.728 0.802 0.426(720×576×1200,

train station)

Table 1. Accuracy performance via the F-measure on the I2R and
CDnet datasets for the incPCP, original and ghosting suppression
(gs-incPCP, Matlab code available [18]) variants, GRASTA and GO-
SUS algorithms. Below each video’s name we include the size and
total number of frames (rows × columns × frames) along with a
short description. The bold values are the largest F-measure values
(grayscale and color cases are treated independently).

Unless otherwise noted, the ghosting suppression incPCP algo-
rithm uses9 n1 = 20, n2 = 200 and α = 2 (see Algorithm 1).
Furthermore, for the GRASTA and GOSUS algorithms we use their
default batch procedure for the initial background estimation, since
they gives the best F-measure results.

The accuracy results for the I2R and CDnet datasets, listed in
Table 1, show that the proposed method (gs-incPCP, Matlab code
available [18]) gives superior performance when compared to the
considered alternatives. Moreover, gs-incPCP is particularly effec-
tive when the analyzed video has an moving background, such as
in the case of (i) the “Campus”10 and “V320” videos, where wav-
ing trees/leaves are observed, (ii) the “WaterSurface” video, where
the background is mainly waving ocean, (iii) the “Fountain” video,
where a large fountain waterfall is located behind a walkway, and
(iv) the “Escalator” video, where a large part of the scene is an esca-
lator used by people passing by.

9As a rule of thumb n2 = 10 × n1. The value of n1 depends on video
event’s interpretation over a short time frame observation; for most of the
considered test videos “short time” is about one second, and thus n1 = 20.

10For the “Campus” test video, the gs-incPCP’s F-measure is largely better
than those of all alternatives. In Fig. 3 we depict some of the related results.

(a) Frame 813. (b) Frame 832.

(c) gs-incPCP sparse component. (d) gs-incPCP sparse component.

(e) Ground-truth binary mask. (f) Ground-truth binary mask.

(g) Estimated binary mask. (h) Estimated binary mask.

Fig. 3. Original 813 (a) and 832 (b) frames of the “Campus” video,
along with the corresponding ground-truth binary masks (e)-(f) and
estimated masks (g)-(h) and sparse component (c)-(d) via the gs-
incPCP algorithm.

5. CONCLUSIONS

The proposed method, ghosting suppression incremental PCP, is
an effective algorithm that identifies and diminishes ghosting arti-
facts, including those in videos with a moving background, e.g. (i)
waving trees and ocean, such as in the “Campus”, “WaterSurface”
and “V320” test videos, (ii) for repetitive movement, such as in the
“Fountain” and “Escalator” test videos. The proposed method gives
superior quality and accuracy as determined by the F-measure when
estimating a binary foreground mask which is computed via a simple
global thresholding per frame.

The proposed method is approximately four to five times slower
than baseline incPCP, however it can attain a processing frame rate
throughput of 3 ∼ 10 f.p.s. for the considered test videos on an Intel
i7-4710HQ (2.5 GHz, 6MB Cache, 32GB RAM) based laptop.
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