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ABSTRACT
While Principal Component Pursuit (PCP) is currently

considered to be the state of the art method for video back-
ground modeling, it suffers from a number of limitations,
including a high computational cost, a batch operating mode,
and sensitivity to camera jitter. In this paper we propose a
novel fully incremental PCP algorithm for video background
modeling that is robust to translational and rotational jitter.
It processes one frame at a time, obtaining similar results
to standard batch PCP algorithms, while being able to deal
with translational and rotational jitter. It also has extremely
low memory footprint, and a computational complexity that
allows almost real-time processing.

Index Terms— Principal Component Pursuit, Video
Background Modeling, Rigid transformations

1. INTRODUCTION

Video background modeling, which consists of segmenting
the moving objects or “foreground” from the static “back-
ground”, is an important task in several applications. Prin-
cipal Component Pursuit (PCP) is currently considered to be
one of the leading algorithms for this problem [1]. The PCP
optimization problem is defined by

arg min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S (1)

where D ∈ Rm×n is the observed video of n frames, each
of size m = Nr × Nc × Nd (rows, columns and depth or
channels respectively), L ∈ Rm×n is a low rank matrix (r �
m,n) representing the background, S ∈ Rm×n is a sparse
matrix representing the foreground, ‖L‖∗ is the nuclear norm,∑
k |σk(L)|, of matrix L, and ‖S‖1 is the `1 norm of S, seen

as a long vector.
Although PCP provides state of the art performance [1]

in the video background modeling problem, it has several
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limitations [1], three prominent ones being (i) its high com-
putational cost, dominated by a partial SVD computation at
each major outer loop, with a cost of O(m · n · r) where
r = rank(L), (ii) the batch processing mode whereby a large
number of frames have to be observed before starting any
processing, resulting in high memory requirements, and (iii)
its sensitivity to camera jitter, which can affect airborne and
space-based sensors [2] as well as fixed ground-based cam-
eras [1] subject to wind.

In previous work [3, 4, 5] we proposed incPCP, a fully
incremental PCP algorithm for video background modeling,
which is able to processes one frame at a time, obtaining sim-
ilar results to batch PCP algorithms, while being able to adapt
to changes in the background. Although incPCP has an ex-
tremely low memory footprint, and a computational complex-
ity that allows real-time processing [3, 4], it shares the sensi-
tivity to camera jitter of other PCP algorithms.

In this paper we propose to overcome the jitter sensitivity
of the incPCP algorithm by incrementally solving

min
L∗ ,S,T

1

2
‖D − T (L

∗
)− S‖+ λ‖S‖1 s.t. rank(L

∗
) ≤ r , (2)

where we assume that the observed frames D are misaligned
due to camera jitter, the low-rank representation, L

∗
, is prop-

erly aligned, and that T = {Tk} is a set of invertible and
independent transformations such that when applied to each
frame D = T (L

∗
) + S is satisfied. For the scope of this pa-

per we focus on the case where Tk is a rigid transformation,
i.e. the camera suffers from translational and rotational jitter.
Our computational results show that the proposed method (i)
delivers consistent results, similar to those obtained via stan-
dard batch PCP applied to fixed camera videos, (ii) has an ex-
tremely low memory footprint, and (iii) has a computational
complexity that allows almost real-time processing.

2. PREVIOUS RELATED WORK

In this section we discuss other PCP methods that are consid-
ered to be robust to jitter, and summarize the mathematical
methods used to develop the proposed translational and rota-
tional jitter invariant incremental PCP algorithm.



2.1. Alternative PCP methods robust to camera jitter

2.1.1. RASL algorithm

The Robust Alignment by Sparse and Low-rank decomposi-
tion (RASL) algorithm [6] was introduced as a batch PCP
method able to handle misaligned video frames by solving

min
L,S,τ

‖L‖∗ + λ‖S‖1 s.t. τ(D) = L+ S (3)

where τ(·) = {τk(·)} is a set of independent transforma-
tions (one per frame), each having a parametric representa-
tion, such that τ(D) aligns all the observed video frames.
(Note that τ(·) is the inverse of T (·) in (2)).

In [6], the non-linearity in (3), is handled via:

min
L,S,∆τ

‖L‖∗ + λ‖S‖1 s.t. τ(D)+

n∑
k=1

Jk∆τkεk = L+ S (4)

where Jk is the Jacobian of frame k with respect to transfor-
mation k and εk denotes the standard basis for Rn. Compu-
tational results in [6] mainly focus on rigid transformations,
and as long as the initial misalignment is not too large, (4)
effectively recovers the correct transformations.

2.1.2. t-GRASTA algorithm

The GRASTA [7] method is an “on-line” algorithm for low
rank subspace tracking. It uses a reduced number of frames,
compared to the PCP problem (1), to estimate an initial low
rank sub-space representation of the background and then
processes one frame at a time. It must be emphasized that this
procedure is not fully incremental since it uses a time sub-
sampled version of all the available frames for initialization.

The transformed Grassmannian robust adaptive subspace
tracking algorithm (t-GRASTA) [8] is based on the GRASTA
[7] and RASL algorithms. It is able to handle misaligned
video frames in an online, but not fully incremental, fashion.
In particular the t-GRASTA method handles the misaligned
video frames by solving (4) via a modified GRASTA algo-
rithm. It uses a batch mode to train an initial low rank sub-
space considering the first p frames [9], with p = 20 by de-
fault. The initial transformation, τ in (4), is estimated by us-
ing a similarity transformation taking a group of points man-
ually chosen from the corresponding original and canonical
frames. Computational results in [8] focused on rigid trans-
formations.

2.2. Image rotation as 1D convolutions

In [10] a simple FFT based algorithm was proposed to rotate
an image around any given point. An image d∗ can be rotated
by α radians, denoted by d = R(d∗, α), via a collection of
independent translations applied to each row and column: (1)
translate each row by ∆x = −y · tan(α/2); (2) translate each
column by ∆y = x · sin(α); (3) translate each row by ∆x =
−y · tan(α/2). The center of rotation is defined by the origin
of the x and y axes, which can be chosen as necessary.

The above described translations can be implemented as
1D convolutions of each row (column) with a filter-based
translation operator in the spatial domain, or by 1D FFTs
applied to each row (column) and then multiplied with a
complex exponential with the proper phase. The computa-
tional complexity of this FFT-based implementation for a
grayscale image of Nr rows and Nc columns is given by
O(10 · Nc · Nr(2 · log2(Nr) + log2(Nc)) (assuming that
Nr and Nc are exact powers of 2), which is equivalent to
computing three 2D FFTs.

2.3. Affinely Constrained Matrix Rank Minimization

In [11] several iterative hard thresholding (IHT) based algo-
rithms are proposed to solve the affinely constrained matrix
rank minimization problem. In particular the solution to

min
L

:
1

2
‖A(L)−D‖2F s.t. rank(L) ≤ r (5)

is given by L(j+1) = partialSVD(L(j) − A∗(A(L(j)) −
D), r), where partialSVD(·, r) represents the partial (thin)
SVD which only considers the r largest singular values of the
input and A∗ is the adjoint operator of A.

2.4. amFastPCP algorithm [12]

Instead of solving (1) directly, the amFastPCP algorithm
solves the equivalent alternating minimization

L(j+1) = arg min
L

‖L+ S(j) −D‖2F s.t. rank(L) ≤ r (6)

S(j+1) = arg min
S

‖L(j+1) + S −D‖2F + λ‖S‖1, (7)

where sub-problem (6) can be solved by computing a partial
(with r components) SVD of D − S(j).

2.5. Incremental PCP algorithm [3, 4, 5]

This is an incremental algorithm constructed by exploiting the
particular structure of amFastPCP [12]. If we assume that we
have computed low-rank and sparse components Lk and Sk
respectively, where Lk + Sk = Dk and Dk = D(:, 1 : k)
and that we know the partial (thin) SVD of Lk = UrΣrV

T
r ,

where Σr ∈ Rr×r, then when the next frame dk+1 becomes
available the computationally demanding (and batch) solu-
tion of sub-problem (6) can be efficiently computed via rank-
1 modifications for thin SVD (see [13] and the many refer-
ences therein) since L(j+1)

k+1 = partialSVD(Dk+1−S(j)
k+1) =

partialSVD([Lk dk+1-s(j)
k+1]), as Lk = Dk-Sk.

A Matlab-only implementation of this algorithm [3] (code
available at [14]) running on a standard laptop (Intel i7-
2670QM quad-core, 6GB RAM, 2.2 GHz) can process color
videos of size 640 × 480 and 1920 × 1088 at a rate of 8 and
1.5 frames per second respectively. On the same hardware,
an ANSI-C implementation [4] can deliver a rate of 49.6 and



7.2 frames per second for grayscale videos of size 640× 480
and 1920× 1088 respectively.

3. TRANSLATIONAL AND ROTATIONAL JITTER
INVARIANT INCPCP ALGORITHM

The observed video sequence that suffers from jitter is repre-
sented by the matrix D ∈ Rm×n, where each video frame,
labeled as dk k ∈ {1, 2, . . . , n}, is a column of D. This no-
tation is also used for L and S, the low-rank and sparse com-
ponents. Furthermore, we will assume that jitter-free video
is represented by D∗, and that the observed video sequence
results from applying the set of (rigid) transformations Tk:

dk = Tk(d∗k) = hk ∗R(d∗k, αk) (8)

whereR(d∗k, αk) denotes rotation by angle α and the filter hk
is an “uncentered” Dirac delta function.

3.1. Translation estimation

Inspired by [15], we use the following optimization proce-
dure to estimate the translation between two images u and b
related by b = h∗ ∗ u

h = arg min
h

1

2
‖h ∗ u− b‖22 + γ‖h‖1, (9)

since a purely translational relationship between two images
can be modeled as a sparse filter, close to an “uncentered”
Dirac delta function.

This problem can be solved by a variable splitting ap-
proach, transforming it into arg minh,g

1
2‖g ∗ u − b‖2F +

γ‖h‖1 + µ
2 ‖h− g‖

2
2 and then applying alternating minimiza-

tion on h and g. The h update is solved by soft-thresholding,
and the g update can be efficiently solved in the Fourier do-
main via a special case of the method described in [16].

3.2. Rotation estimation

In Section 2.2 we briefly described a simple FFT based algo-
rithm to rotate a given image around any given point. With-
out loss of generality, here we will assume that the rotation is
about the center of the image.

Although there are several methods (e.g. [17, 18]), based
on [10], that target rotational alignment, such algorithms as-
sume either that a pseudopolar transformation is applied to
the observed (rotated) image, or that the Fourier domain can
be sampled with arbitrary trajectories. In what follows we
describe a simple procedure (not previously exploited to the
best of our knowledge) to estimate the rotation of one image
relative to another.

We start by assuming that two observed images u and b
are related by b = R(u, α∗). Then the solution of

α = arg min
α

1

2
‖R(u, α)− b‖22 (10)

will estimate the angle α∗ that relates u and b. Unfortunately
(10) is not convex in α; however, empirically (10) behaves as
a concave functional with a unique minimum within a region
close enough to the optimum, and since the rotation operation
is computationally cheap (equivalent to three 2D FFTs) a line
search procedure can be used to find its global minimizer (and
thus estimate α). In particular, we choose to use a Fibonacci
line search method based on [19] to solve (10).

3.3. Proposed Algorithm: incPCP TI

Here we assume that objects of interest are at such a distance
from the camera that the observed frame dk, which suffers
from jitter, can be modeled as a random rigid transformation
with respect to un-observed jitter-free frame.

Under this assumptions, (2) can be cast as

arg min
L,S,H,α

1

2

∑
k

‖hk ∗R(l
∗

k, αk) + sk − dk‖2F + λ‖S‖1

+γ
∑
k

‖hk‖1 s.t. rank(L
∗
) ≤ r; (11)

where H represents the set of filters {hk}, which models the
translational jitter, and α represents the set of angles {αk}
that models the rotational jitter. Furthermore we propose to
incrementally solve (11) via the alternating minimization

arg min
hk

1

2
‖hk ∗R(l

∗(j)
k , α

(j)
k ) + s

(j)
k − dk‖2F + γ‖hk‖1, (12)

arg min
αk

1

2
‖h(j+1)

k ∗R(l
∗(j)
k , αk) + s

(j)
k − dk‖2F , (13)

arg min
l
∗
k

1

2
‖h(j+1)

k ∗R(l
∗

k, α
(j+1)
k ) + s

(j)
k − dk‖2F

s.t. rank(L
∗

k) ≤ r, (note that L
∗

k = [l
∗

1, l
∗

2, . . . , l
∗

k]) (14)

arg min
sk

1

2
‖h(j+1)

k ∗R(l
∗(j+1)
k , α

(j+1)
k ) + sk − dk‖2F + λ‖sk‖1.

(15)

Sub-problems (12), (13) and (15) are simple to handle;
i.e. (12), (13) can be solved via the procedures described
in Sections 3.1 and 3.2 respectively, whereas the solu-
tion to (15) is just element-wise shrinkage (shrink(x, ε) =
sign(x) max{0, |x|−ε}). Sub-problem (14) is not as straight-
forwards as the other sub-problems; however, by noting that
(i) the adjoint operator of rotation R(., αk) is R(.,−αk) and
(ii) the adjoint operator of the translation represented by filter
hk(x, y) is the filter hk(−x,−y), then (14) can be effectively
solved via the IHT described in Section 2.3.

4. COMPUTATIONAL RESULTS

We have used three real video sets as a test videos:



• V352: a 352 × 224 pixel, 1200-frame color video se-
quence of 40 seconds at 30 fps, from a sidewalk surveil-
lance camera with real (mainly translational) jitter, also
used in [20, Ch. 16] and in [9].

• V640: a 640 × 480 pixel, 400-frame color video se-
quence of 26.66 seconds at 15 fps, from the Lankershim
Boulevard traffic surveillance dataset [21, cam. 3].

• V1920: a 1920 × 1088 pixel, 900-frame color video
sequence of 36 seconds at 25 fps, from the Neovison2
public space dataset [22, Tower 3rd video].

All simulations presented in this section, related to our
proposed algorithm (see Section 3), have been carried out
using Matlab-only code1 running on an Intel i7-4710HQ
quad-core (2.5 GHz, 6MB Cache, 32GB RAM) based lap-
top with a nvidia GTX980M GPU card. Videos “V640” and
“V1920” were synthetically jittered with random uniformly
distributed translations (±T pixel, T= {5, 10}) and rota-
tions (±α degrees, α = {0.5, 1}), and used as controlled
datasets with known alignment. The jittered output has the
same size as the input video frame. Our results are compared
with t-GRASTA [8] implementation [9]2. RASL [6] is not
considered since it is a batch method.

Test Initialize (sec.) Average per frame (sec.)

video
t-GRASTA incPCP TI incPCP TI t-GRASTA
grayscale grayscale color grayscale

V352 65
∗

0.39
∗

0.27
+

0.63
∗

0.37
+

0.88
∗

V640 232
∗

1.49
∗

0.60
+

2.45
∗

0.82
+

3.40
∗

V1920 1858
∗

10.2
∗

2.90
+

18.1
∗

5.46
+

25.6
∗

Table 1. Elapsed time to initialize the t-GRASTA [8] and
average processing time per frame for t-GRASTA and in-
cPCP TI. Videos V640, V1920 have synthetic jitter: T= 5,
α = 0.5.

∗
: standard Matlab.

+

: GPU-enabled Matlab.

The computational performance, measured as the time to
process a given video frame, including the jitter estimation, is
compared with that of t-GRASTA in Table 1. The incPCP TI
algorithm is 2.5 ∼ 3 (standard Matlab version) and 4 ∼ 8.5
(GPU-enabled Matlab version) times faster than t-GRASTA
even without considering the t-GRASTA initialization stage,
which incPCP TI does not have. Furthermore, the incPCP TI
sparse estimate is of better subjective quality than that of t-
GRASTA (see Fig. 1).

An objective reconstruction quality measure is computed
for the synthetically jittered videos as ‖SGT−SP ‖1

N , where
SGT is the “ground truth” sparse video approximation of
the unjittered video and SP is the sparse approximation of a
given method. SGT is estimated via the batch iALM [24] al-
gorithm using 20 outer iterations. The reconstruction quality
for the grayscale “V640” case for two different synthetic jitter

1Publicly available [23]; it comes in two versions: (i) standard single-
thread Matlab and (ii) another that uses GPU-enabled Matlab functions.

2t-GRASTA Matlab implementation for grayscale videos which takes ad-
vantage of MEX interfaces, run with its default parameters.

conditions (T= {5, 10}, α = 0.5) is presented in Fig. 2. The
incPCP TI algorithm generates a sparse component similar
to that generated by the baseline (computed via [3]), and it
is of better quality than that of t-GRASTA, despite our best
efforts to choose suitable parameters for t-GRASTA. For this
case (video V640) the number of moving objects (cars) dras-
tically increases from frame 200 onwards, which appear to
severely affect the quality of the low rank subspace estimated
by t-Grasta. Additional results, omitted here due to space
constraints, are included in [23].

(a) incPCP TI (b) incPCP TI

(c) t-GRASTA (d) t-GRASTA

Fig. 1. Sparse estimates of frames 150 (a, c) and 750 (b, d)
from the “V352” via incPCP TI (a, b) and t-GRASTA (c, d).
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incPCP -- unjittered video
incPCP_TI -- jittered: T=5, α=0.5
incPCP_TI -- jittered: T=10, α=0.5
tGrasta -- jittered: T=5, α=0.5

Fig. 2. Sparse approximation (V640) frame distance measure
by ‖SGT−SP ‖1

N where SGT is the ground-truth computed via
the (batch) iALM algorithm (20 outer loops) and SP is the
(i) sparse component computed via incPCP TI method (red,
green) and t-GRASTA (magenta) for different synthetic jitter
conditions or (ii) the sparse component for the unjittered case
(blue), computed via [3], provided as a baseline.

5. CONCLUSIONS

The proposed method, incPCP TI, is able to solve the PCP
problem at near real-time speed when the observed video suf-
fers from translational and rotational jitter. Furthermore in-
cPCP TI has a low memory footprint (under tenfold the frame
size) and computational results show that it is both faster and
delivers a superior sparse representation to t-GRASTA, the
sole non-batch PCP alternative for jittered videos.
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