
J Math Imaging Vis
DOI 10.1007/s10851-015-0610-z

Incremental Principal Component Pursuit for Video
Background Modeling

Paul Rodriguez · Brendt Wohlberg

Received: 15 January 2015 / Accepted: 9 October 2015

Abstract Video background modeling is an important

preprocessing step in many video analysis systems. Prin-

cipal Component Pursuit (PCP), which is currently

considered to be the state-of-the-art method for this

problem, has a high computational cost, and processes

a large number of video frames at a time, resulting in

high memory usage and constraining the applicability

of this method to streaming video.

In this paper we propose a novel fully incremental

PCP algorithm for video background modeling. It pro-

cesses one frame at a time, obtaining similar results

to standard batch PCP algorithms, while being able to

adapt to changes in the background. It has an extremely

low memory footprint, and a computational complexity

that allows real-time processing.

Keywords Principal Component Pursuit · Video

Background Modeling · incremental Singular Value

Decomposition

Paul Rodriguez
Electrical Engineering Department
Pontificia Universidad Católica del Perú, Lima, Peru
Tel.: +511-626-2000
E-mail: prodrig@pucp.edu.pe
This research was supported by the “Fondo para la Inno-
vación, la Ciencia y la Tecnoloǵıa” (Fincyt) Program.
There is a patent application number 14/722,651 that covers
the incremental PCP method described in this document.

Brendt Wohlberg
Theoretical Division
Los Alamos National Laboratory, Los Alamos, NM 87545 Tel:
+1-505-667-6886
E-mail: brendt@lanl.gov
This research was supported by the U.S. Department of En-
ergy through the LANL/LDRD Program and by UC Lab Fees
Research grant 12-LR-236660.

1 Introduction

Video background modeling, which consists of segment-

ing the moving objects or “foreground” from the static

“background” is an important task in several appli-

cations. In the present paper we restrict our interest

to videos acquired by a static sensor, as is common in

surveillance systems e.g. [6], which makes this problem

more tractable.

Two recent publications [14,7] have presented a sys-

tematic evaluation and comparative analysis of several

Principal Component Pursuit (PCP) / Robust Princi-

pal Component Analysis (RPCA) [45,10] based algo-

rithms, which are considered to be the state-of-the-art

for the video background modeling problem (see [40] for

a survey of alternative methods). In this context, the

PCP problem [10, Eq. 1.1] is

arg min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S (1)

where D ∈ Rm×n is the observed video of n frames,

each of size m = Nr × Nc × Nd (rows, columns and

depth or channels respectively), L ∈ Rm×n is a low

rank matrix representing the background, S ∈ Rm×n
is a sparse matrix representing the foreground, ‖L‖∗ is

the nuclear norm of matrix L (i.e.
∑
k |σk(L)|, the sum

of the singular values of L), and ‖S‖1 is the `1 norm of

S.

Numerical algorithms for solving (1) (for a complete

list see [7]) are usually based on splitting methods [10,

26,3,28], such as the augmented Lagrange multiplier

(ALM) method [24,23] or its variants, in which (1) is

2 Paul Rodriguez, Brendt Wohlberg

solved via the problem

arg min
L,S,Y

‖L‖∗ + λ‖S‖1+〈Y,D − L− S〉+

µ

2
‖D − L− S‖F , (2)

the computation including a full or partial Singular

Value Decomposition (SVD) depending on the ALM

variant.

Although [14,7] show that PCP provides state-of-

the-art performance in the video background modeling

problem, [7] also acknowledges several limitations of the

PCP method. Of particular relevance to the present

work are its high computational cost and that the PCP

method is inherently a batch method, in that a large

number of frames have to be observed before starting

any processing.

The computational cost of most PCP algorithms is

dominated by a partial SVD computation at each outer

loop, with a cost of O(m · n · r), where r = rank(L). It

is also important to emphasize the significant overhead

of memory transfers due to the typical size of matrix

D. For instance, in the case of a 400 frame (13.3 sec-

onds at 30 fps) 640 × 480 color video, the size of D is

921600×400, equivalent to 1.925 Gb in single precision

floating-point representation. Likewise, in the case of a

900 frame (36 seconds at 25 fps) 1920×1088 (HD) color

video, the size of D is 6266880×900, equivalent to 22.6

Gb in single precision floating-point representation.

In this paper we develop a novel incremental PCP

algorithm that fundamentally differs from current state-

of-the-art PCP algorithms: (i) as the name suggests,

the proposed algorithm can process an input video in a

fully incremental fashion, that is, one frame at a time,

whereas most existing PCP algorithms are batch meth-

ods or have a batch initialization; (ii) it has a trivial

initialization stage, usually needing only a handful of

frames to converge to the right background, whereas

other online algorithms have a batch initialization or

need a larger number of frames to converge to the right

background; (iii) its computational cost is O(14·m·r ·p)
(assuming r � m,n) per frame, where p is the number

of inner loops (usually between 1 and 3); (iv) its mem-

ory footprint is O(3 ·m) + O(m · r). Furthermore our

proposed algorithm has the ability to adapt to changes

in the background, as do other non-batch/online algo-

rithms.

To the best of our knowledge, the proposed algo-

rithm is a novel approach. In Section 2 we give an in-

tuitive description of the proposed algorithm, where we

highlight the key ideas behind our method and intro-

duce its main properties. We then proceed to summa-

rize, in Section 3, the related works regarding the pro-

posed algorithm; specifically, in Section 3.1 the most

closely related algorithms are briefly described, and in

Section 3.2 we include a description of the batch precur-

sor method used to develop the proposed incremental

PCP algorithm. In Section 4 we give a detailed descrip-

tion of rank-1 modifications for thin SVD, since they

are at the core of the proposed algorithm. In Section 5

we give a full description of the proposed method and

in Section 6 we present our experimental results and

comparisons where we provide computational evidence

of the performance of the proposed method. Finally our

concluding remarks are listed in Section 7.

2 Intuitive description of the proposed

algorithm

It is useful to recall that the PCP problem (1) is derived

as the convex relaxation of the original problem [45,

Section 2]

arg min
L,S

rank(L) + λ‖S‖0 s.t. D = L+ S , (3)

based on decomposing matrix D such that D = L+ S,

with low-rank L and sparse S. While most PCP algo-

rithms, including the Augmented Lagrange Multiplier

(ALM) and inexact ALM (iALM) algorithms [24,23]

are directly based on (1), this is not the only possible

tractable problem that can be derived from (3). In par-

ticular, changing the constraint D = L+S to a penalty,

the rank penalty to an inequality constraint, including

the usual relaxation of the `0 norm by an `1 norm, leads

to the problem

arg min
L,S

1

2
‖L+S−D‖2F+λ‖S‖1 s.t. rank(L) ≤ r . (4)

A computationally efficient solution can be found via

an alternating optimization (AO) [5] procedure, since

it seems natural to split (4) into a low-rank approxima-

tion, i.e. arg minL
1
2‖L+S−D‖2F s.t. rank(L) ≤ r, with

fixed S, followed by a shrinkage, i.e. arg minS
1
2‖L+S−

D‖2F + λ‖S‖1, with fixed L computed in the previous

iteration. If the low-rank approximation sub problem

could be solved via a computationally efficient incre-

mental procedure, for instance, based on rank-1 modifi-

cations for thin SVD [9,11,4,8], then (4) could be easily

solved incrementally, provided that the shrinkage step

could be also computed in a frame-wise, incremental

fashion.

Several questions arise from this tentative algorithm

based on the above statement; among others: (i) does

the proposed AO procedure for solving (4) converge?

(ii) what kind of initialization would be needed for the

incremental procedure (fully incremental or batch)? (iii)

how robust is the initialization for different setups, e.g.

Incremental Principal Component Pursuit for Video Background Modeling 3

how does moving objects occluding the background, in

the initialization stage, affect the performance? (iv) is

it possible to adapt to changes in the background, and

could this adaptation be also done incrementally? (v)

assuming that the answer to the previous question is

positive, is it possible to always use a rank-1 subspace

to model the background, and if so, would this lead to

a fast implementation?

These questions are answered in the relevant parts

of the present paper. In Section 3.2 we address the con-

vergence question raised in (i); we discuss our initializa-

tion procedure, questions (ii) and (iii), in Section 5, and

give computational support to our claims in Section 6.

As argued in Section 5, our algorithm can quickly adapt

to changes in the background (question (iv)), with re-

lated results shown in Section 6. Finally, our compu-

tational results presented in Section 6 show that it is

indeed possible to use a rank-1 subspace to model the

background (question (v)) and that the overall com-

putational performance of our algorithm is faster than

competing state-of-the-art algorithms.

3 Alternative algorithms and related work

In this section we briefly summarize the batch precur-

sor method used to develop the proposed incremental

PCP algorithm: the fast alternating minimization PCP

(amFastPCP) algorithm [35,36]. We also include a brief

description of other PCP-like methods that are consid-

ered to be incremental procedures.

3.1 Alternative incremental / on-line PCP methods

To the best of our knowledge, recursive projected com-

pressive sensing (ReProCS) [30] (and similar ideas by

the same authors [29,31,13]) along with Grassmannian

robust adaptive subspace tracking algorithm (GRASTA)

[17], `p-norm robust online subspace tracking (pROST)

[39] and Grassmannian online subspace updates with

structured sparsity (GOSUS) [48] are the only PCP-

like methods for the video background modeling prob-

lem that are considered to be incremental. However all

of them have a batch initialization/training stage as the

default/recommended initial background estimation1.

ReProCS [30] is not a real-time algorithm since it

uses a batch method in its SVD-based initialization

step. Furthermore, in its original form, it cannot process

real videos where multiple moving objects enter and

1 The GRASTA and GOSUS algorithms can perform the
initial background estimation in a non-batch fashion, however
the resulting performance is not as good as when the default
batch procedure is used, as shown in Section 6.

leave the field of view of the camera. Although [30] can

take advantage of a known model for the trajectories

of the moving objects to improve the performance, in

[13] this optional model assumption is dropped. Inter-

estingly, [13] makes use of incremental SVD procedures

to adapt to slow changes in the background; this mod-

ified algorithm, called “practical ReProCS”, also needs

a batch initialization.

GRASTA [15,17] is presented as an “on-line” algo-

rithm for low rank subspace tracking. It can select a few

frames (either randomly or from the initial part of the

video, [15, Section 4.5.1]), or use a time sub-sampled

version of all the available frames for its background

initialization [17, Section 3]; both possible initialization

stages are batch methods. Although GRASTA can es-

timate and track non-stationary backgrounds, its batch

initialization step can have a relatively high complexity.

pROST [39] is closely related to GRASTA, but in-

stead of using an `1 norm of the singular values to esti-

mate the low rank subspace representation of the back-

ground it uses an `p norm (p < 1). Experimental results

[39] show that pROST can outperform GRASTA in the

case of dynamic backgrounds.

At a high level, GOSUS [48] is similar to GRASTA,

but GOSUS uses a small number of frames from the

initial part of the video to be analyzed for its batch

initialization stage, and then proceeds to update the

background. GOSUS can also be initialized with a ran-

dom sub-space (representing the background), but in

[48, Section 5.1] it is stated that this initialization takes

up to 200 frames to converge to the right background

sup-space. Although GOSUS has better tracking prop-

erties than GRASTA (see Section 6), its computational

cost is higher.

Finally we mention that there exist several methods

for video background modeling based on the (general)

Maximum-Margin Matrix Factorization (M3F) method

(see [41] and derived works). While this topic is related

to PCP, it exceeds the scope of the present work. Nev-

ertheless, we point out that the Probabilistic Approach

to Robust Matrix Factorization (PRMF) [43] and Ro-

bust PCA as bilinear decomposition (RPCA-BL) [25]

methods, also target the video background modeling

problem and include “online” extensions to their batch

algorithms. Both PRMF and RPCA-BL use the key

M3F observation (5) to derive their algorithms, where

U and V are the factors of matrix L.

min
L
‖L‖∗ = min

U,V

L=UV T

1

2
(‖U‖2F + ‖V ‖2F) . (5)

In particular, PRMF is based on the robust PCA model

min
U,V
‖D − UV T ‖1 +

λ

2
(‖U‖2F + ‖V ‖2F) , (6)

4 Paul Rodriguez, Brendt Wohlberg

which is solved using a parallelizable expectation maximi-

zation (EM) algorithm, which includes an online exten-

sion that uses a batch initialization. Likewise, RPCA-

BL uses the model

min
U,V
‖D−UV T−S‖F+

λ1
2

(‖U‖2F+‖V ‖2F)+λ2‖S‖2,r (7)

where ‖.‖2,r represents the row-wise `2-norm. This model

is solved via an alternating optimization procedure that

also includes an online extension with a batch initial-

ization.

3.2 amFastPCP: Fast alternating minimization PCP

A computationally efficient algorithm, amFastPCP, was

recently proposed [35] for solving the batch PCP prob-

lem. Instead of solving (1) directly, the approach is to

solve (4), reproduced here for convenience

arg min
L,S

1

2
‖L+ S −D‖2F + λ‖S‖1 s.t. rank(L) ≤ r . (8)

While (8), with some minor variations, is also the start-

ing point for [49,46], the final algorithmic forms of these

independently developed methods do not resemble that

of the amFastPCP algorithm (see Algorithm 1).

In [35], (8) is solved via the alternating minimization

L(j+1) = arg min
L
‖L+ S(j) −D‖2F s.t. rank(L) ≤ r (9)

S(j+1) = arg min
S
‖L(j+1) + S −D‖2F + λ‖S‖1, (10)

which is summarized in Algorithm 1. Sub-problem (9)

can be solved by computing a partial SVD of D − S(j)

with r components, which is the only computationally

demanding part of the algorithm. In Algorithm 1 this

is computed in lines 1 and 2, which require O(m · n · r)
and O(2 ·m ·n ·r) flops per outer loop respectively. The

solution to (10) is simple element-wise shrinkage (soft

thresholding)

shrink(D − L(j+1), λ) , (11)

where

shrink(x, ε) = sign(x) max{0, |x| − ε} . (12)

The convergence of the AO method based on (9)-

(10) to the global minimizer of (8) can be proven by

showing that it complies with the general convergence

conditions for AO methods [5, Section 6], which in this

case are that (i) (9) and (10) have each a unique global

minimizer, and (ii) at each iteration of (9)-(10) the cost

functional of (8) is reduced:

Algorithm 1: amFastPCP [35]

Inputs : Observed video D ∈ Rm×n,

regularization parameter λ,

eigenvalue tolerance τ .

Initialization: S0 = 0, initial rank r.

for j = 0 : mLoops do

1 [U, Σ, V] = partialSVD(D − S(j), r)

2 L(j+1) = U ∗Σ ∗ V
3 if σr∑r

l=1 σl
> τ then ++r

4 S(j+1) = shrink(D − L(j+1), λ)

– let f(L, S(j)) denote arg minL ‖L+S(j)−D‖2F s.t.

rank(L) ≤ r, then

f(L, S(j)) ≥ f(L(j+1), S(j)) ∀L ,

where L(j+1) is the solution to (9); then, in partic-

ular

f(L(j), S(j)) ≥ f(L(j+1), S(j)) ;

– let f(L(j+1), S) denote arg minS ‖L(j+1)+S−D‖2F+

λ‖S‖1, then

f(L(j+1), S) ≥ f(L(j+1), S(j+1)) ∀S ,

where S(j+1) is the solution to (10); then, in partic-

ular

f(L(j+1), S(j)) ≥ f(L(j+1), S(j+1)) ;

– therefore

f(L(j), S(j)) ≥ f(L(j+1), S(j)) ≥ f(L(j+1), S(j+1)).

Based on the observation that for the video back-
ground modeling application, the low-rank component

L typically has very low rank, [35] proposed a simple

procedure to estimate an upper bound for r in (9), de-

scribed in line 3 of Algorithm 1. Since the singular val-

ues of Lk+1 are a by-product of solving (9) at each

outer loop, we can increment r and test the contribu-

tion of the new singular vector. When this contribution

becomes small enough (less that 1% of the sum all other

singular values) we stop incrementing r. Experimental

simulations in [35,36] showed that the rule described

in Algorithm 1 typically increases r up to a value of

6 or less, which is consistent with the rank estimation

performed by other batch PCP algorithms, such the

inexact ALM, etc.

The solution obtained via the iterative solution of

(9)-(10) is of comparable quality to the solution of the

original PCP problem (see [35] for details), being ap-

proximately an order of magnitude faster than the in-

exact ALM [23] algorithm to construct a sparse com-

ponent of similar quality.

Incremental Principal Component Pursuit for Video Background Modeling 5

Finally we note that lines 1 and 2 (or sub-problem

(9)), are the ones that impose the “batch” property

of the amFastPCP algorithm, as well as its memory

requirements (O(2 ·m · n)).

4 Incremental and rank-1 modifications for

thin SVD

In this section we give a full description of incremental

and rank-1 modifications for thin SVD, originally de-

scribed in [9,8,11,4]. First, we recall that the full SVD

(singular value decomposition) of a matrix D ∈ <m×n
is given by

D = UΣV T (13)

where

UTU = Im V TV = In , (14)

and

Σ = diag(σ1, σ2, . . . , σn) , (15)

and Ik is the identity matrix of size k × k and the

diagonal elements σk of Σ are non-negative and non-

increasing.

Before proceeding, note that the computational com-

plexity of all of the procedures described below (see

[11, Section 3], [8, Section 4]) is upper bounded by

O(10 ·m · r)+O(r3)+O(3 · r · l). If r � m, l holds, then

the complexity is dominated by O(10 ·m · r).

4.1 Incremental or update thin SVD

Given matrix D ∈ Rm×l with thin SVD D = U0Σ0V
T
0

where Σ0 ∈ Rr×r and vector d ∈ Rm, we want to

compute thin SVD([D d]) = U1Σ1V
T
1 , with (i) Σ1 ∈

Rr+1×r+1 or (ii) Σ1 ∈ Rr×r. Noting that

[D 0] = U0Σ0[V0 0]T ,

then

[D d] = [D 0] + deT

= U0Σ0[V0 0]T + deT

= [U0 d]

[
Σ0 0

0T 1

] [
V T0 0

0T 1

]
(16)

where 0 is a zero column vector of the appropriate size

and e ∈ Rl+1 is a unit vector with e(l + 1) = 1.

Considering the Gram-Schmidt orthonormalization

of d w.r.t. U0

x = UT0 d, zx = d− U0x = d− U0U
T
0 d,

ρx = ‖zx‖2, p =
1

ρx
zx (17)

then (16) can be written as

[D d] = [U0 p]

[
Σ0 x

0T ρx

] [
V T0 0

0T 1

]
, (18)

since

U0x + ρxp = U0U
T
0 d + (d− U0U

T
0 d) = d . (19)

Then, after computing full SVD of the middle matrix

(size (r + 1)× (r + 1)) of the right-hand-side of (18)

SVD

([
Σ0 x

0T ρx

])
= GΣ̂HT , (20)

(18) becomes

[D d] = [U0 p] · (GΣ̂HT) ·
[
V T0 0

0T 1

]
, (21)

where we note that by taking

U1 = [U0 p] ·G, Σ1 = Σ̂ and V1 =

[
V0 0

0T 1

]
·H, (22)

we obtain the thin SVD of [D d] with r + 1 singular

values. In the case in which we are interested, the non-

increasing thin SVD of [D d] (which considers only the

r largest singular values), we take

U1 = U0 ·G(1 : r, 1 : r) + p ·G(r + 1, 1 : r),

Σ1 = Σ̂(1 : r, 1 : r),

V1 = [V0 ·H(1 : r, 1 : r); H(r + 1, 1 : r)], (23)

where Matlab notation is used to indicate array slicing

operations.

4.2 Downdate thin SVD

Given [D d] = U0Σ0V
T
0 , with Σ0 ∈ Rr×r, D ∈ Rm×l

and d ∈ Rm, we want to compute thin SVD(D) =

U1Σ1V
T
1 with r singular values.

Noting that [D 0] = [D d] + (−d)eT , where e ∈
Rl+1 is a unit vector and e(l + 1) = 1, then

[D 0] = U0Σ0V0 − deT = [U0 -d]

[
Σ0 0

0T 1

] [
V T0
eT

]
. (24)

Considering the Gram-Schmidt orthonormalization

of e w.r.t. V0

y = V T0 e = V0(l + 1, :)T , zy = e− V0y

ρy = ‖zy‖2 =
√

1− yTy, q =
1

ρy
zy, (25)

as well as the Gram-Schmidt orthonormalization of -d

w.r.t. U0 while noting that d = U0Σ0y

x = −UT0 d = −Σ0y, ρx = 0, p = 0,

zx = −d− U0x = −d + U0Σ0y = 0, (26)

6 Paul Rodriguez, Brendt Wohlberg

then (24) can be written as

[D 0] = [U0 0]

[
Σ0-Σ0yyT -ρy ·Σ0y

0T 0

]
[V0 q]T (27)

where it is straightforward to verify that the right-hand-

side of (27) is equal to [D d] + (−d)eT . Then, after

computing full SVD of the middle matrix (size r + 1×
r + 1) of the right-hand-side of (27)

SVD

([
Σ0-Σ0yyT -ρy ·Σ0y

0T 0

])
= GΣ̂HT , (28)

(27) becomes

[D 0] = [U0 0] · (GΣ̂HT) · [V0 q]T (29)

To obtain the thin SVD of D with r singular values, we

take

U1 = U0 ·G(1 : r, 1 : r)

Σ1 = Σ̂(1 : r, 1 : r)

V1 = V0 ·H(1 : r, 1 : r) + q ·H(r + 1, 1 : r) (30)

While this procedure has been described for down-

dating the contribution of the last column of a matrix

when computing its thin SVD, with minor variations

this procedure can downdate the contribution of any

given column.

4.3 Thin SVD replace

Given [D d] = U0Σ0V
T
0 , with Σ0 ∈ Rr×r we want to

compute thin SVD([D d̂]) = U1Σ1V
T
1 with r singular

values.

Noting that [D d̂] = [D d] + ceT , where c = d̂-d,

then

[D d̂] = [U0 c]

[
Σ0 0

0T 1

] [
V T0
eT

]
. (31)

In this case the Gram-Schmidt orthonormalization

of e w.r.t. V0 is given by (25). Recalling that d = U0Σ0y

and noting that U0U
T
0 c = U0U

T
0 d̂−d (since U0U

T
0 d =

U0U
T
0 U0Σ0y = U0Σ0y) the Gram-Schmidt orthonor-

malization of c w.r.t. U0 is given by

x = UT0 c = UT0 d̂−Σ0y, ρx = ‖zx‖2, p =
1

ρx
zx,

zx = c− U0x = d̂− d− U0U
T
0 c = d̂− U0U

T
0 d̂, (32)

then (31) can be written as

[D d̂] = [U0 p]

[
Σ0 + xyT ρy · x
ρx · yT ρx · ρy

]
[V0 q]T (33)

where it is straightforward to verify that the right-hand-

side of (33) is equal to [D d] + ceT . Then, after com-

puting full SVD of the middle matrix (size r+1×r+1)

of the right-hand-side of (33)

SVD

([
Σ0 + xyT ρy ·x
ρx ·yT ρx ·ρy

])
= GΣ̂HT , (34)

(33) becomes

[D d̂] = [U0 p] · (GΣ̂HT) · [V0 q]T . (35)

To obtain the thin SVD of [D d̂] with r singular values,

we take

U1 = U0 ·G(1 : r, 1 : r) + p ·G(r + 1, 1 : r),

Σ1 = Σ̂(1 : r, 1 : r)

V1 = V0 ·H(1 : r, 1 : r) + q ·H(r + 1, 1 : r). (36)

5 Incremental PCP algorithm

5.1 Proposed algorithm: incPCP

We start our description assuming that we have com-

puted Lk−1 (low-rank) and Sk−1 (sparse), where Lk−1+

Sk−1 = Dk−1 and Dk−1 = D(:, 1 : k − 1) and that we

know the partial (thin) SVD of Lk−1 = UrΣrV
T
r , where

Σr ∈ Rr×r. This initialization can also be performed

incrementally, as described in Section 5.2.

If we were to solve the PCP problem from scratch

when the next frame dk is available via the amFastPCP

algorithm, then we need to minimize

1

2
‖Lk + Sk −Dk‖2F + λ‖Sk‖1 s.t. rank(Lk) ≤ r, (37)

via (9) and (10), reproduced here for convenience:

L
(j+1)
k = arg min

L
‖Lk + S

(j)
k −Dk‖2F

s.t. rank(Lk) ≤ r (38)

S
(j+1)
k = arg min

S
‖L(j+1)

k + Sk −Dk‖2F + λ‖Sk‖1, (39)

where Lk = [Lk−1 lk], Sk = [Sk−1 sk] andDk = [Dk−1 dk].

When j = 0, the minimizer of (38) is given by

L
(1)
k = partialSVD(Dk − S(0)

k) . (40)

Since Dk−S(0)
k = [Dk−1-Sk−1 dk] = [Lk−1 dk], and we

know that Lk−1 = UrΣrV
T
r , (40) can be computed via

the incremental thin SVD procedure (non-increasing

rank) described in Section 4.1.

Another option is to perform the previous computa-

tion considering the rank-increasing case if the smallest

singular value σr+1 has a significant contribution, which

can be estimated by computing the quotient of σr+1 and

the sum of all other singular values, in a similar fashion

Incremental Principal Component Pursuit for Video Background Modeling 7

as for the amFastPCP algorithm (see Section 3.2 and

line 3 in Algorithm 1).

Continuing with the solution of (37), the minimizer

of (10) or shrinkage step is only applied to the current

estimate (since we know Sk−1) i.e.

s
(1)
k = shrink(dk − l

(1)
k) ,

where l
(1)
k is the last column of the current estimate

L
(1)
k .

In the next inner loop (j = 1) for solving (37) we

have a similar situation, i.e.

L
(2)
k = partialSVD(Dk − S(1)

k)

= partialSVD([Dk−1−Sk−1 dk−s
(1)
k]) ,

which can be effectively computed using the thin SVD

replace procedure (non-increasing rank, see Section 4.3),

since in the previous step we have computed the partial

SVD for [Dk−1-Sk−1 dk]. Each additional inner loop

has a complexity dominated by O(14 ·m · r) due to the

computation of the current low-rank frame and thin

SVD replace procedure (lines 3 and 6 in Algorithm 2).

We have determined experimentally that 2 or 3 inner

loops (parameter iL in Algorithm 2) suffice to accom-

plish good results. In our experiments reported in Sec-

tion 6, we use 2 inner loops for our simulations.

In some particular cases it could be assumed that

the background does not change, or changes very slowly,

but in practice this condition will usually not hold for

long. If rapid changes do occur, we can use the down-

date procedure described in Section 4.2 to “forget” the

background frames that are “too old” and always keep

a low-rank estimate of a more or less constant back-

ground, resulting in a “sliding window” incremental
PCP algorithm for which the background estimate rep-

resents the background as observed for the last bL frames.

We handle this condition in Algorithm 2, line 7, with

procedure dwnSVD(·), which is explained in Section

4.2.

In real application scenarios an abrupt background

change could also occur (e.g. camera is moved, sudden

illumination change, etc.). This situation can easily be

detected since the current background estimate will be

significantly different from all previous backgrounds es-

timates. In Algorithm 2, line 8, we check for this con-

dition and, if necessary, re-initialize the background es-

timate using the procedure described in Section 5.2.

5.2 An incremental initialization for Algorithm 2

In this section we describe a fully incremental initializa-

tion procedure, which replaces the batch computation

described in the “Initialization” of Algorithm 2.

Algorithm 2: incPCP: incremental PCP.

Inputs : observed video D ∈ Rm×n,

regularization parameter λ,

number of inner loops iL,

background frames bL, m = k0.

Initialization: L+ S = D(:, 1 : k0), initial rank r,

[Ur, Σr, Vr] = partialSVD(L, r)

for k = k0 + 1 : n do

1 ++m

2 [Uk, Σk, Vk] = incSVD(D(:, k), Uk-1, Σk-1, Vk-1)

for j = 1 : iL do

3 L(:, k) = Uk(:, 1 : r) ∗Σk ∗ (Vk(end, :)′)

4 S(:, k) = shrink(D(:, k)− L(:, k), λ)

5 if j == iL then break

6 [Uk, Σk, Vk] = repSVD(D(:, k), S(:, k), . . .

Uk, Σk, Vk)

7 if m ≥ bL
then dwnSVD(“1st column”, Uk, Σk, Vk)

8 if ‖L(:, k)− L(:, k − 1)‖22/‖L(:, k − 1)‖22 ≥ τ
then m = k0, use procedure in Section 5.2.

Assuming that r, the rank of the low-rank matrix

is known (usually r ∈ [2, 8] is adequate for batch PCP

algorithms when analyzing real videos acquired with a

static camera) then we can proceed as follows

– Compute [U, Σ] = thinQR(D(:, 1)), set V = I1,

where thinQR(.) represents the thin QR decompo-

sition.

– Compute [U,Σ, V] = incSVD(D(:, k), U,Σ, V) for

k ∈ [2, r], the rank increasing thin SVD as described

in Section 4.1.

– Compute [U,Σ, V] = incSVD(D(:, k), U,Σ, V) for

k ∈ [r+ 1, k0], the non-increasing rank thin SVD as

described in Section 4.1.

to obtain an estimate of the low-rank approximation of

the first k0 frames of the input video. If this initial esti-

mate needs to be improved, we can take a second pass

(or several passes) where we use the thin SVD replace

operation (Section 4.3). This would be similar to per-

forming the operations listed in lines 3-6 in Algorithm

2 but applied to the first k0 frames.

For our incPCP algorithm, we have experimentally

determined that r = 1, k0 = 1 is usually sufficient to

produce very good results. Although this initialization

gives a very rough background estimate, it is improved

at each iteration (via the incremental SVD procedure,

line 2 in Algorithm 2) for bL frames, before any down-

date operation is performed. At this point the back-

ground estimate is equivalent to that that would be

computed via a batch PCP algorithm applied to frames

1 : bL. Once frame bL + 1 is processed, and after the

8 Paul Rodriguez, Brendt Wohlberg

downdate is called, the background estimate is equiva-

lent to that that would be computed via a batch PCP

algorithm applied to frames 2 : bL + 1. This updating

process is the key reason why choosing r = 1, k0 = 1

for our initialization stage gives good results; we give

computational support for this claim in Section 6.2.

5.3 Limitations of the proposed method

Although the PCP method is considered the state-of-

the-art for video background modeling, it does have

several limitations [7]. The incPCP algorithm addresses

two of these limitations, namely the high computational

cost and that PCP is inherently a batch method. Other

limitations of the original PCP method, including the

assumption that the the observed video is noise-free,

and sensitivity to camera motion or jitter, are clearly

shared by the proposed incPCP method. While not the

focus of the present paper, methods exist for address-

ing some of these remaining limitations. With respect to

noise, methods for making PCP robust to Gaussian [51]

and impulse noise [36] could be incorporated into the in-

cPCP algorithm. With respect to camera motion, while

there are other works [27,18] that deal with this prob-

lem, the incPCP algorithm has recently been extended

to provide robustness to translational and rotational

jitter [37,32].

In addition to these general limitations, we acknowl-

edge that the proposed incremental initialization for Al-

gorithm 2 (see Section 5.2) could fail for some partic-

ular video sequences, particularly if large portions of

the background exhibit motion, or the moving objects

are large and occlude the background for long periods of

time. Empirically, however, the incPCP algorithm mak-

ing use of this initialization has accurately estimated

the backgrounds of all test videos to which it has been

applied (see Sections 6.2 and 6.3), including video from

a highway surveillance camera in which the background

(highway and trees) is constantly occluded by moving

cars and the branches and leaves of the trees are con-

stantly moving due to wind.

6 Computational Results

We evaluate the computational performance and ac-

curacy of our proposed incremental method (“incPCP

algorithm”) and compare it with some of the leading

state-of-the-art incremental / online PCP algorithms.

The computational performance is measured as the time

to generate the sparse component from a given video,

where we also include the elapsed time for the initial-

ization stage of the considered algorithms. To evaluate

the accuracy of the incPCP algorithm we consider two

types of measures: (i) the F-measure which makes use of

manually segmented ground-truth and (ii) a normalized

`1 norm restoration measurement of the sparse compo-

nent which makes use of a proxy ground-truth.

The F-measure, which makes use of a binary ground-

truth, is defined as

F =
2 · P ·R
P +R

, P =
TP

TP + FN
, R =

TP

TP + FP
(41)

where P and R stands for precision and recall respec-

tively, and TP, FN and FP are the number of true

positive, false negative and false positive pixels, respec-

tively.

The F-measure is one of the most widely used met-

rics for video background modeling assessment, but most

of the available test videos (see below) with binary and

manually segmented ground-truth are of small size (less

than 320 × 240 pixel). Since one of the key features of

our proposed algorithm is its capability for close to real-

time processing of large videos (color full-HD videos, i.e.

1920× 1080 pixel), and given the lack of ground-truth

for such large video sets, we also use a normalized `1
norm restoration measurement

M(SP) =
‖SGT − SP ‖1

N
(42)

to assess the accuracy of the incPCP method, where

SGT is the ground truth sparse video approximation,

SP is the sparse video approximation to be evaluated,

and N is the number of pixels per frame, for which

we take the same value for either the grayscale or the

color case. For this case we use the sparse video approx-

imation computed via the batch iALM algorithm [23]

(with 20 outer loops) as a proxy ground-truth since, as

reported in [7, Tables 6 and 7], this result is considered

to be reliable.

We use several test videos to show different compu-

tational aspects of the proposed algorithm as well as

the leading competing methods. In particular the I2R

dataset [22], available at [21], is mainly used as a bench-

mark for F-measure comparisons. This dataset includes

9 videos (see Table 2) whose sizes varies from 120×160

up to 256×320 pixel, most with more than 1500 frames.

Although manually segmented ground-truth is provided

for all of the videos, it consists of only 20 frames for each

case. We also use two videos from the baseline videos

of the 2014 CDnet dataset (described in the next para-

graph) [44], available at [20], each with more than 1200

frames, where manually segmented ground-truth is pro-

vided for more than the 72% of the frames of each video.

We also select six real video sets as test videos for

computational performance measurements as well as for

accuracy measurements based on the proposed normal-

ized `1 norm restoration metric (see (42)):

Incremental Principal Component Pursuit for Video Background Modeling 9

– V160: 160 × 128 pixel, 1546-frame color video se-

quence, also labeled as “lobby”, of 61.8 seconds at

25 fps, from a lobby with highly variable lighting,

from the I2R dataset.

– V320-1: 320× 256 pixel, 1286-frame color video se-

quence, also labeled as “ShoppingMall”, of 51.4 sec-

onds at 25 fps, from a mall’s atrium with lots of

people walking around, from the I2R dataset.

– V320-2: 320× 240 pixel, 1700-frame color video se-

quence from a highway camera with lots of cars pass-

ing by, from the 2014 CDnet dataset.

– V640: 640 × 480 pixel, 400-frame color video se-

quence of 26.66 seconds at 15 fps, from the Lanker-

shim Boulevard traffic surveillance dataset [2, cam-

era3].

– V720: 720 × 576 pixel, 1200-frame color video se-

quence of a train station with lots of people walking

around, from the 2014 CDnet dataset.

– V1920: 1920× 1088 pixel, 900-frame color video se-

quence of 36 seconds at 25 fps, from the Neovi-

son2 public space surveillance dataset [1, Tower 3rd

video].

We compare our results (see following subsections)

with the GRASTA and GOSUS algorithms. ReProCS,

PRMF and RPCA-BL are not considered since (i) the

practical ReProCS [13] implementation, available at [12],

has a batch initialization stage that considers all the

available frames, (ii) similarly, the PRMF implementa-

tion [42] has a batch normalization step, and there is no

obvious way of removing, in which all the available data

is used, and (iii) RPCA-BL there is no publicly available

implementation for the online variant of RPCA-BL.

We use a GRASTA implementation [16] by the au-

thors of [17], with its default parameters (10% and

10% of the frames for the batch initialization and sub-

space tracking respectively) unless explicitly stated oth-

erwise, and a GOSUS implementation [47] by the au-

thors of [48], with its default parameters (using the ini-

tial 200 frames for the initialization stage) unless ex-

plicitly stated otherwise. While the GRASTA and GO-

SUS algorithms are able to process both grayscale and

color video, the GRASTA software implementation [16]

can only process grayscale video, and the GOSUS im-

plementation [47] can only process color video, which

places some restrictions on our comparisons.

For GRASTA and GOSUS, such initializations are

recommended since they improve their accuracy, as ver-

ified in Section 6.2. The GRASTA and GOSUS imple-

mentations are Matlab based with MEX interfaces, and

while the Matlab implementation of incPCP does not

use any MEX interface, there are two flavors (i) one that

uses standard single-thread Matlab code and (ii) one

that takes advantage of (mainly linear algebra) GPU-

enabled (CUDA) Matlab functions; we test this variant

in a nvidia GTX980M GPU card.

6.1 Computational performance

All simulations presented in this section, related to Al-

gorithm 2, have been carried out using single-threaded

Matlab-only code2 running on an Intel i7-4710HQ quad-

core (2.5 GHz, 6MB Cache, 32GB RAM) based laptop.

Since our algorithm behaves in practice as a “slid-

ing window” incremental PCP (we use bL = 150 by de-

fault, see Algorithm 2), using rank equal to one suffices

to give a good background estimate and good tracking

properties (see Sections 6.2 and 6.3). Furthermore, in

this case, our initialization step is simplified to a QR

factorization of a matrix with just one column (see Sec-

tion 5.2).

On the other hand, as mentioned in Section 3.1, the

GRASTA and GOSUS algorithms can use two differ-

ent strategies for their background initialization: (i) a

recommended but computational costly (see Table 1)

and batch background initialization procedure or (ii)

an initialization that either considers only a few frames

from the initial part of the video to model the back-

ground (GRASTA) or a random sub-space to represent

the background (GOSUS).

For case (i), GRASTA uses a time sub-sampled (10%)

version of all the available frames, whereas GOSUS uses

the first 200 frames of the video; the times listed in Ta-

ble 1 (see “Initialization”) correspond to these strate-
gies. In both cases such procedures, in fact, hamper

the use of either GRASTA or GOSUS as a real-time

alternative to our proposed incPCP algorithm. In sub-

sequent tables and figures, depending on the available

space, we will label this strategy as “dflt” for either

GRASTA or GOSUS, or “sub-sampled” and “sampled”

to specifically refer to the GRASTA and GOSUS cases

respectively.

For case (ii), GRASTA uses a rank-5 subspace (first

5 frames of the video) for its background initialization,

whereas GOSUS uses a random rank-5 subspace for

the same purpose3. Although these initializations are

as fast as the incPCP rank-1 initialization (their com-

putational costs are not reported since they are negligi-

ble) they do have a negative impact on the accuracy of

the GRASTA and GOSUS algorithms, as shown in Sec-

tions 6.2 and 6.3. In subsequent tables and figures, we

2 The code is publicly available [34].
3 These are the default values found the in GRASTA [16]

and GOSUS [47] implementations

10 Paul Rodriguez, Brendt Wohlberg

Initialization (sec.) Average per frame (sec.)

Test
GRASTA GOSUS incPCP incPCP GRASTA GOSUS
grayscale color grayscale color grayscale color

Video
Standard Standard Standard GPU-enabled Standard GPU-enabled Standard Standard

Matlab + MEX Matlab + MEX Matlab Matlab Matlab Matlab Matlab + MEX Matlab + MEX

V160 7.3 3.5 5.2e-3 1.0e-2 6.9e-3 1.2e-2 8.9e-3 5.1e-1
V320-1 23.0 11.0 1.0e-2 1.3e-2 2.0e-2 1.7e-2 3.4e-2 3.0e+0
V640 72.4 39.9 2.9e-2 2.4e-2 5.7e-2 2.7e-2 1.1e-1 2.6e+1
V720 113.7 67.8 4.3e-2 3.2e-2 6.2e-2 3.3e-2 2.5e-1 5.1e+1

V1920 537.5 (∗) 1.9e-1 1.2e-1 3.4e-1 2.8e-2 8.1e-1 (∗)

Table 1 Elapsed time to initialize the GRASTA [17] and GOSUS [48] algorithms as well as the average processing time per
frame for all algorithms on an Intel-i7 (32 GB RAM) based laptop. The incPCP variant, labeled as “GPU enabled”, is run in
a nvidia GTX980M GPU card. Note that “e±k” = 10±k. (∗) Runs out of memory before completing the initialization stage.

will label this strategy as “i.fr.” / “initial frames”, or

“rand” / “random”, depending on the available space,

for GRASTA and GOSUS respectively.

Finally, we mention that the results listed in Ta-

ble 1 show that the proposed incPCP algorithm is sub-

stantially faster than GRASTA (e.g. 5 times faster for

grayscale V1920, resulting in a 4 fps rate) and that GO-

SUS (e.g. 110 times faster for color V320-1). This speed-

up does not take into consideration the time spent by

GRASTA and GOSUS in their batch initializations re-

spectively.

6.2 F-measure based accuracy

In this sub-section we first present F-measure based ac-

curacy results for the I2R dataset (see Table 2), to then

establish a link between the F-measure and `1 norm

restoration measurement based (42) using the V320-2

and V720 (from the CDnet dataset) since they have a

large number of ground-truth frames.

In order to compute the F-measure for incPCP as

well as for GRASTA and GOSUS, a threshold is needed

to compute the binary foreground mask. For the re-

sults presented in Table 2, as well as for other results

presented in this sub-section, this threshold has been

computed via an automatic unimodal segmentation [38]

since the absolute value of the sparse representation has

an unimodal histogram. This approach, although sim-

ple, adapts its threshold for each sparse representation

and ensures that all algorithms are fairly treated. We

also mention, however, that there exists several more ef-

fective methods to estimate a binary foreground mask

based on the sparse representation of the analyzed video

(for instance, see [50] for a batch PCP based algorithm

and [19] for an incremental PCP based algorithm).

F-measures listed in Table 2, which indicates whether

the F-measure is computed for a grayscale or color ver-

sion of a given video, includes results for the incPCP

Video
F-measure

grayscale color
(20 GT)

incPCP
GRASTA

incPCP
GOSUS

dflt i.fr. dflt rand

Bootstrap
0.587 0.608 0.607 0.636 0.659 0.303(120×160×3057,

crowd scene)
Campus

0.244 0.215 0.210 0.281 0.166 0.049(120×160×1439,
waving trees)

Curtain
0.741 0.787 0.737 0.758 0.870 0.191(120×160×2964,

waving curtain)
Escalator

0.481 0.539 0.536 0.472 0.405 0.260(130×160×3417,
moving escalator)

Fountain
0.627 0.662 0.256 0.632 0.677 0.066(128×160×523,

fountain water)
Hall

0.570 0.625 0.624 0.609 0.464 0.196(144 × 176 × 3548,
crowd scene)

Lobby
0.550 0.567 0.491 0.713 0.185 0.027(128×160×1546,

switching light)
ShoppingMall

0.693 0.692 0.684 0.746 0.715 0.086(256×320×1286,
crowd scene)
WaterSurface

0.636 0.772 0.743 0.632 0.787 0.145(128×160×633,
water surface)

Table 2 Accuracy performance via the F-measure on the
I2R dataset [21] for the incPCP, GRASTA and GOSUS algo-
rithms; for the latter two, we include results for their default
batch initializations (“dflt”) as well as for their alternative
fast initializations (“i.fr.” or “rand”). Below each the name
of each video we include the size and total number of frames
(rows×columns× frames) along with a short description. For
all cases, the number of available ground-truth (GT) frames
is 20. The bold values are the maximum F-measure values
(grayscale and color cases are treated independently)

algorithm and the GRASTA and GOSUS algorithms

considering their two strategies for their background

initialization, labeled as “dflt” and “rand” (see com-

ments in Section 6.1 on this regard).

Incremental Principal Component Pursuit for Video Background Modeling 11

When the “dflt” background initialization for GRA-

STA and GOSUS are considered, the incPCP, GRASTA

and GOSUS algorithms have very similar performance,

although it could be argued that GRASTA has a small

edge over incPCP in the case of grayscale videos, and

that incPCP has a small edge over GOSUS in the case

for color videos. However, when the “rand” background

initialization for GRASTA and GOSUS are considered,

we observe a significant difference: (i) GRASTA’s accu-

racy noticeable drops for some test videos (“Fountain”

and “Lobby”) whereas for others the accuracy perfor-

mance, although it is less, remains in the same level4,

and (ii) GOSUS’s accuracy dramatically drops in all

cases. However, given the small number of ground-truth

frames (only 20) provided for the videos listed in Ta-

ble 2, our view is that care should be taken in drawing

conclusions from these results.

(a) V320-2 test video: Frame
470.

(b) V320-2 test video: Frame
600.

(c) V320-2 test video: Frame
700.

(d) V320-2 test video: Frame
900.

Fig. 1 The original color frames 470, 600, 700 and 900 of
the V320-2 test video. This is a challenging video since the
background is constantly occluded by moving cars and part
of the background is moving (trees).

In order to overcome the shortcomings (reduced num-

ber of ground-truth frames) of the I2R dataset used

for Table 2, we also present the F-measure for the test

videos V320-2 and V720, which have 1230 ground-truth

frames out of 1700 frames and 900 ground-truth frames

out of 1200 frames respectively. The test videos V320-2

4 As will be explained next, when the GRASTA’s “rand”
variant is used, its background estimate is not stable for sev-
eral frames (usually about 100, but varying with each case).
The ground-truth frames for “Fountain” start at frame 158
and for “Lobby” at 350; also, for the latter case, see Figure
11.

(a) V720 test video: Frame
300.

(b) V720 test video: Frame
540.

(c) V720 test video: Frame
700.

(d) V720 test video: Frame
950.

Fig. 2 The original color frames 300, 540, 700 and 950 of the
V720 test video. In this video the moving objects are people
walking on a highly reflective surface; moreover the person
with the backpack is slowly wandering around. Due to these
two facts, the background can be considered as not constant,
resulting in a challenging environment.

and V720 were chosen because their backgrounds are

constantly occluded by moving objects: cars in the case

of V320-2 and people in the case of V720. Furthermore,

in the case of V320-2, the trees, which are part of the

background, are waiving (see Figure 1). In the case of

V720, where several people walk with different speeds,

the highly reflective surface (see Figure 2) that is part

of the background, creates a challenging environment.

The F-measure is usually computed as a metric for

an entire video sequence5, however we also consider the

F-measure in a frame by frame basis since such metric

gives insights about the temporal evolution of the accu-

racy performance of a given algorithm. We also compare

the frame by frame F-measure with `1-norm restoration

measurements (also frame by frame) to establish a base-

line for these two types of measurements. The batch

iALM algorithm, with 20 outer loops, was used to com-

pute the sparse component of videos V320-2 and V720.

These estimates are used as the proxy ground-truth for

the `1-norm restoration measurements.

Since manually segmented binary ground-truth is

available from frame 470 onward in the 1700 frame

V320-2 test video, we use this subset for our experi-

ments. For the same reason, we analyze the 1200 frame

5 TP, FN and FP variables in (41) are accumulated for all
frames before computing the precision and recall measures
that lead to the F-measure.

12 Paul Rodriguez, Brendt Wohlberg

470 700 950 1200 1450 1700
0

0.2

0.4

0.6

0.8

1

incPCP
GRASTA (sub-sampled)
GRASTA (initial frames)

Fig. 3 Frame by frame F-measure for the grayscale version
of the V320-2 test video, computed for the incPCP (blue
line), and the GRASTA algorithms. incPCP uses a rank-1
initialization to estimate the background, whereas GRASTA
uses two different background initializations: (i) 10% random
sampled from all available frames (red line) and (ii) initial 5
frames (green line). F-measures for the entire video sequence
are 0.7455 for the incPC algorithm and 0.7731 and 0.6359
for the GRASTA algorithm with initializations (i) and (ii)
respectively.

470 700 950 1200 1450 1700
0

0.05

0.1

0.15

0.2

incPCP
GRASTA (sub-sampled)
GRASTA (initial frames)

Fig. 4 Frame by frame `1 norm restoration measurement
for the grayscale version of the V320-2 test video, computed
for the incPCP (blue line), and the GRASTA algorithms. in-
cPCP uses a rank-1 initialization to estimate the background,
whereas GRASTA uses two different background initializa-
tions: (i) 10% random sampled from all available frames (red
line) and (ii) initial 5 frames (green line). There exists a clear
(inverse) correspondence with with Fig. 3.

V720 video from frame 300 onwards. To assess the ro-

bustness of their different background initializations, we

present results for the two initialization strategies of the

GRASTA and GOSUS algorithms in Table 2.

In Figures 3 and 4 we present the F-measure and

`1-norm restoration results for the grayscale version

of V320-2, involving the incPCP and GRASTA algo-

rithms. Overall the GRASTA variant that considers a

time-subsampled background initialization has a bet-

ter performance than the other GRASTA variant and a

slightly better performance than the incPCP. Although

this result is expected, since the partial observation of

the video frames should provide a reliable background

estimate, the incPCP performs extremely well consid-

470 700 950 1200 1450 1700
0

0.2

0.4

0.6

0.8

1

1.2

incPCP
GOSUS (sampled)
GOSUS (random)

Fig. 5 Frame by frame F-measure for the color version of the
V320-2 test video, computed for the incPCP (blue line), and
the GOSUS algorithms. incPCP uses a rank-1 initialization
to estimate the background, whereas GOSUS uses two differ-
ent background initializations: (i) a reduced sampled of ini-
tial frames (red line) and (ii) random sub-space (background)
initialization (green line). F-measures for the entire video se-
quence are 0.7943 for the incPC algorithm and 0.5492 and
0.1760 for the GOSUS algorithm with initializations (i) and
(ii) respectively.

470 700 950 1200 1450 1700
0

0.05

0.1

0.15

0.2

0.25

0.3

incPCP
GOSUS (sampled)
GOSUS (random)

Fig. 6 Frame by frame `1 norm restoration measurement
for the color version of the V320-2 test video, computed for
the incPCP (blue line), and the GRASTA algorithms. in-
cPCP uses a rank-1 initialization to estimate the background,
whereas GOSUS uses two different background initializations:
(i) a reduced sampled of initial frames (red line) and (ii) ran-
dom sub-space (background) initialization (green line). There
exists a clear (inverse) correspondence with with Fig. 5.

ering that it uses a rank-1 approximation of the back-

ground. Furthermore, incPCP is faster to adapt to the

background at the beginning of the video, as shown in

Figures 3 and 4. We also note that GRASTA’s back-

ground initialization that considers only a few frames

from the beginning is slow, taking about 500 frames to

converge to an acceptable background estimation. If we

consider the entire video sequence, the F-measures are

0.7731, 0.6359 and 0.7455 for the GRASTA algorithm

(time-subsampled and initial frames initialization vari-

ants) and the incPCP algorithm respectively.

In Figures 5 and 6 we present the F-measure and `1-

norm restoration measurements for the color version of

V320-2, involving the incPCP and GOSUS algorithms.

Incremental Principal Component Pursuit for Video Background Modeling 13

300 450 600 750 900 1050 1200
0

0.2

0.4

0.6

0.8

1

incPCP
GRASTA (sub-sampled)
GRASTA (initial frames)

Fig. 7 Frame by frame F-measure for the grayscale version
of the V720 test video, computed for the incPCP (blue line),
and the GRASTA algorithms. incPCP uses a rank-1 initial-
ization to estimate the background, whereas GRASTA uses
two different background initializations: (i) time-subsampled
all available frames (red line) and (ii) randomly select 100
frames (green line). F-measures for the entire video sequence
are 0.6878 for the incPC algorithm and 0.1691 and 0.1585
for the GRASTA algorithm with initializations (i) and (ii)
respectively.

300 450 600 750 900 1050 1200
0

0.02

0.04

0.06

0.08

0.1

incPCP
GRASTA (sub-sampled)
GRASTA (initial frames)

Fig. 8 Frame by frame `1 norm restoration measurement
for the grayscale version of the V720 test video, computed
for the incPCP (blue line), and the GRASTA algorithms. in-
cPCP uses a rank-1 initialization to estimate the background,
whereas GRASTA uses two different background initializa-
tions: (i) time-subsampled all available frames (red line) and
(ii) randomly select 100 frames (green line). There exists a
clear (inverse) correspondence with with Fig. 7.

Overall the incPCP algorithm has a better performance

than both GOSUS variants. This result is somewhat

unexpected since the batch GOSUS initialization takes

into consideration the first 200 frames. However we ar-

gue that since (i) cars are constantly occluding the

actual background, (ii) the waiving trees perturb the

background and (iii) the absence of a any procedure to

“forget” the learned background in the past (as for the

incPCP algorithm via its downdate operation), GOSUS

fails to accurately estimate the background. Moreover,

GOSUS random initialization is extremely slow for this

(V320-2) challenging video. If we consider the entire

video sequence, the F-measure are 0.5492, 0.1760 and

0.7943 for the GOSUS algorithm (sampled and random

initialization variants) and the incPCP algorithm re-

spectively.

For the test video V720 we have a similar situa-

tion, although the incPCP algorithm has in this case a

better performance than both the GOSUS and GRA-

STA algorithms. In Figures 7 and 8 we present the F-

measure and `1-norm restoration measurements for the

grayscale version of V720, involving the incPCP and

GRASTA algorithms. In both Figures (7 and 8) we ob-

serve that the incPCP algorithm rapidly converges to

the right background, whereas both variants of GRA-

STA are comparatively slow, taking approximately 300

sub-sampled frames or 600 initial frames to reach a reli-

able background estimate. We argue that (i) the highly

reflective surface and (ii) the wandering person in V720

hampers GRASTA’s ability to quickly estimate a reli-

able background. This drawback is also clearly observed

for test videos V640 and V1920 (see Section 6.3, Fig-

ures 16 and 18) and in a lesser extent for video V160

(see Section 6.3, Figure 11). If we consider the entire

video sequence, the F-measures are 0.1691, 0.1585 and

0.6878 for the time-subsampled and initial frames ini-

tialization variants of the GRASTA algorithm and the

incPCP algorithm respectively.

300 450 600 750 900 1050 1200
0

0.2

0.4

0.6

0.8

1

1.2

incPCP
GOSUS (sampled)
GOSUS (random)

Fig. 9 Frame by frame F-measure for the color version of the
V720 test video, computed for the incPCP (blue line), and
the GOSUS algorithms. incPCP uses a rank-1 initialization
to estimate the background, whereas GOSUS uses two differ-
ent background initializations: (i) a reduced sampled of ini-
tial frames (red line) and (ii) random sub-space (background)
initialization (green line). F-measures for the entire video se-
quence are 0.7282 for the incPCP algorithm and 0.4261 and
0.0.0257 for the GOSUS algorithm with initializations (i) and
(ii) respectively.

Likewise, in Figures 9 and 10 we present the F-

measure and `1-norm restoration measurements for the

color version of V720, involving the incPCP and GO-

SUS algorithms. The incPCP algorithm has a better

performance than any of the GOSUS variants. More-

over, in this case, the performance of the GOSUS ran-

dom initialization variant is very poor. If we consider

14 Paul Rodriguez, Brendt Wohlberg

300 450 600 750 900 1050 1200
0

0.05

0.1

0.15

0.2

incPCP
GOSUS (sampled)
GOSUS (random)

Fig. 10 Frame by frame `1 norm restoration measurement
for the color version of the V720 test video, computed for the
incPCP (blue line), and the GOSUS algorithms. incPCP uses
a rank-1 initialization to estimate the background, whereas
GOSUS uses two different background initializations: (i) a
reduced sampled of initial frames (red line) and (ii) random
sub-space (background) initialization (green line). There ex-
ists a clear (inverse) correspondence with with Fig. 9.

the entire video sequence, the F-measure are 0.4261,

0.0256 and 0.7282 for the sampled and random initial-

ization variants of the GOSUS algorithm and the in-

cPCP algorithm respectively.

6.3 `1 norm restoration measurement based accuracy

In this section we consider only the batch initialization

variants of GRASTA and GOSUS since the results of

the previous section indicate that they give better re-

sults than their fast counterparts.

In Fig. 11 we present the `1 norm restoration mea-

surement based accuracy for video V160, in which the
lights go off in frame 430, and then on again in frame

1095, each transition in these sudden illumination changes

spanning from 4 to 8 frames. We observed that GRA-

STA, GOSUS, and our proposed incremental algorithm

can adapt to these sudden illumination changes in the

background, although GOSUS and ours are faster to

adapt with very similar sparse approximation. GRA-

STA’s adaptation rate (see also Figs. 16 and 18) could

be improved if more information is used to track the

low-rank subspace, at the cost of increased computa-

tion time [15].

In Fig. 12 we present the sparse approximation of

frame 628 of the V160 test video for iALM, GRASTA

and incPCP algorithms. We show grayscale images due

to limitations of the GRASTA code, which, unlike our

implementation, cannot handle color video; the sparse

approximation of GOSUS for this example is similar to

that obtained via the incPCP algorithm.

Likewise, in Figures 13, 15 and 17 we show the

sparse approximation (iALM, GRASTA, GOSUS and

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frame

D
is

ta
n

c
e

 (
 |
|
S

G
T
 −

 S
 |
| 1

 /
 N

)

incPCP (gray)

GRASTA (gray)

incPCP (color)

GOSUS (color)

Fig. 11 Frame by frame `1 norm restoration measure (42)
‖SGT−SP‖1

N
for test video V160 Sparse approximation, where

SGT is the ground-truth computed via the (batch) iALM al-
gorithm (20 outer loops) and SP is the sparse approximation
computed via the (i) grayscale (blue) GRASTA and (red) the
incPCP method, or (ii) color (cyan) GOSUS and (magenta)
the incPCP method, and N is the number of pixels per frame
(used as a normalization factor; N’s value is the same for the
grayscale and color cases). For other computational results
use [34].

proposed algorithm) of selected frames for the V320-

1, V640 and V1920 test videos respectively, along with

the original frames, while in Figures 14, 16 and 18 we

present the `1 norm restoration measure for the V320-1,

V640 and V1920 test videos. Common features of all of

these videos are the large number of objects (walking

people or cyclists or cars) constantly going in or out

of the field of view, and the absence of any apparent

change due to illumination in the background. Further-

more, the moving objects in V320-1 and V640 fill up a

large percentage (> 50%) of the observed field of view.

Although, from a visual perception point of view,

the sparse approximation computed by our proposed al-

gorithm (Figures 13(d), 13(h), 15(d), 17(d) and 17(h))

are similar to those computed by the iALM algorithms,

they are not of the same quality as shown by Figs. 14,

16 and 18, in which there exist a small but clear quan-

titative differences in reconstruction quality.

From a quantitative point of view the grayscale sparse

approximation computed via the GRASTA algorithm,

shown in Figures 13(c), 13(g), 17(c) and 17(g), has a

slightly better `1 norm restoration measure than that

of the incPCP, except for the V1920 case We argue

that this is because in videos V320-1 and V640 several

moving objects stop for noticeable periods of time. Due

to the background tracking properties of our proposed

algorithm, it tries to learn the “new” background, al-

Incremental Principal Component Pursuit for Video Background Modeling 15

(a) V160 test video: Frame
628.

(b) GRASTA sparse estima-
tion

(c) iALM sparse estimation (d) incPCP Sparse estima-
tion

Fig. 12 The original color frame 628 of the V160 test video
(a) as well as the grayscale sparse approximation computed
via (c) the (batch) iALM (20 outer loops), (b) GRASTA and
(d) the proposed incremental PCP method. For other com-
putational results see [34].

though this represents a relative small change in the

background, resulting in slightly worse quantitative re-

construction quality; these artifacts can be dealt with

by using a larger number of frames to estimate the back-

ground: in Algorithm 2, use a larger value for bL (ex-

perimentally, we have increased the bL value up to 300

without any loss of performance for these videos). The

above mentioned artifacts – due to moving objects stop-
ping for some time – do not occur in the V1920 case,

and thus the better quantitative reconstruction quality

of the incPCP algorithm.

In our experiments with color videos, the GOSUS

`1 norm restoration measure is clearly worse than that

of the incPCP, as can be seen in Figures 11, 14 and

15b. We hypothesize that although GOSUS and in-

cPCP tracking properties are similar for strong back-

ground changes (e.g. V160), when the change is due to

the entrance of several slow moving objects (e.g. V320-

1), incPCP is faster to discern those objects as fore-

ground.

7 Conclusions

We have presented a novel incremental PCP algorithm

that fundamentally differs from current state-of-the-art

PCP algorithms: (i) the proposed algorithm can process

an input video in a fully incremental fashion, that is,

one frame at a time, whereas existing state-of-the-art

PCP algorithms are batch methods or have batch ini-

tialization; (ii) it has a trivial initialization stage, usu-

ally needing only a handful of frames to converge to

the right background, whereas other existing online al-

gorithms do have a batch initialization or need a larger

number of frames to converge to the right background

(as shown in Sections 6.2 and 6.3); (iii) its computa-

tional cost is O(14 ·m · r · p) (assuming r � m,n) per

frame, where p (we use p = 2 in our experiments) is

the number of inner loops ; (iv) its memory footprint is

O(3 ·m) +O(m · r).
The proposed method can process full HD color

videos at a rate of 0.34 and 0.28 seconds per frame, us-

ing a Matlab-only single-threaded and a GPU-Matlab

enabled implementation respectively. Like other online

algorithms, our proposed algorithm can adapt to changes

in the background since the core operations of the in-

cPCP algorithm are rank-1 modifications (update, re-

place or downdate). Since the incPCP algorithm has

the ability to forget a previously learn background, it

behaves in practice as a “sliding window” algorithm,

which is a very useful property, particularly when the

background changes slowly.

Ongoing work focuses on two aspects: (i) a parallel

(CUDA) implementation (initial results in [33]), that

we expect will make it possible to analyze full HD videos

in real-time, and (ii) on an extension to the incPCP

algorithm that is robust to translational and rotational

jitter, with initial results reported in [37,32].

References

1. USC Neovision2 Project. DARPA Neovision2, data avail-
able from http://ilab.usc.edu/neo2/

2. Lankershim boulevard dataset (2007). U.S. Department
of Transportation Publication FHWA-HRT-07-029, data
available from http://ngsim-community.org/

3. Aybat, N., Goldfarb, G., Iyengar, G.: Fast first-
order methods for stable principal component pur-
suit (2011). URL http://arxiv.org/abs/1105.2126.
ArXiv:1105.2126

4. Baker, C., Gallivan, K., Dooren, P.V.: Low-rank incre-
mental methods for computing dominant singular sub-
spaces. Linear Algebra and its Applications 436(8), 2866
– 2888 (2012)

5. Bezdek, J., Hathaway, R.: Some notes on alternating opti-
mization. In: Advances in Soft Computing – AFSS 2002,
Lecture Notes in Computer Science, vol. 2275, pp. 288–
300. Springer Berlin Heidelberg (2002)

6. Bouwmans, T., Baf, F., Vachon, B.: Handbook of Pat-
tern Recognition and Computer Vision, chap. Statistical
Background Modeling for Foreground Detection: A Sur-
vey, pp. 181–199. World Sci. Pub. (2010)

7. Bouwmans, T., Zahzah, E.: Robust PCA via principal
component pursuit: A review for a comparative evalua-
tion in video surveillance. Computer Vision and Image
Understanding 122, 22–34 (2014)

16 Paul Rodriguez, Brendt Wohlberg

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Frame

D
is

ta
n

c
e

 (
 |
|
S

G
T
 −

 S
 |
| 1

 /
 N

)

incPCP (gray)

GRASTA (gray)

incPCP (color)

GOSUS (color)

Fig. 14 Frame by frame `1 norm restoration measure (42)
‖SGT−SP‖1

N
for test video V320-1 Sparse approximation,

where SGT is the ground-truth computed via the (batch)
iALM algorithm (20 outer loops) and SP is the sparse ap-
proximation computed via the (i) grayscale (blue) GRASTA
and (red) the proposed incremental PCP method, or (ii) color
(cyan) GOSUS and (magenta) the proposed incremental PCP
method, and N is the number of pixels per frame (used as a
normalization factor).

8. Brand, M.: Fast low-rank modifications of the thin sin-
gular value decomposition. Linear Algebra and its Ap-
plications 415(1), 20 – 30 (2006)

9. Bunch, J., Nielsen, C.: Updating the singular value de-
composition. Numerische Mathematik 31(2), 111–129
(1978). doi: 10.1007/BF01397471. URL http://dx.doi.

org/10.1007/BF01397471

(a) V320-1 test video: Frame
371.

(b) GOSUS sparse estima-
tion

(c) iALM sparse estimation (d) incPCP Sparse estima-
tion

Fig. 15 The original color frame 371 of the V320-1 test video
(a) as well as the sparse approximation computed via (c)
the (batch) iALM (20 outer loops), (b) GOSUS and (d) the
proposed incremental PCP method. For other computational
results use [34].

10. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal
component analysis? Journal of the ACM 58(3) (2011)

11. Chahlaoui, Y., Gallivan, K., Van Dooren, P.: Computa-
tional information retrieval. In: In Computational In-
formation Retrieval, chap. An Incremental Method for
Computing Dominant Singular Spaces, pp. 53–62. SIAM

(a) V640 test video: frame 155. (b) iALM sparse estimation. (c) GRASTA sparse estima-
tion.

(d) incPCP sparse estimation.

(e) V640 test video: frame 324. (f) iALM sparse estimation. (g) GRASTA sparse estima-
tion.

(h) incPCP sparse estimation.

Fig. 13 The original color frames 155 (a) and 324 (e) of the “640” test video, along with the corresponding (grayscale) sparse
approximations computes via the iALM (b, f), GRASTA (c, g) and proposed algorithm (d, h) respectively.

Incremental Principal Component Pursuit for Video Background Modeling 17

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frame

D
is

ta
n

c
e

 (
 |
|
S

G
T
 −

 S
 |
| 1

 /
 N

)

incPCP (gray)

GRASTA (gray)

Fig. 16 Sparse approximation (V640) frame distance mea-

sure by ‖SGT−SP‖1
N

where SGT is the ground-truth computed
via the (batch) iALM algorithm (20 outer loops) and SP is
the sparse approximation computed via the (blue) GRASTA
and (red) the proposed incremental PCP method, and N is
the number of pixels per frame (used as a normalization fac-
tor).

(2001)
12. Guo, H.: Practical ReProCS code. http://www.ece.

iastate.edu/~hanguo/PracReProCS.html
13. Guo, H., Qiu, C., Vaswani, N.: An online algorithm for

separating sparse and low-dimensional signal sequences
from their sum. Signal Processing, IEEE Transactions
on 62(16), 4284–4297 (2014)

14. Guyon, C., Bouwmans, T., Zahzah, E.: Robust princi-
pal component analysis for background subtraction: Sys-
tematic evaluation and comparative analysis. In: Prin-
cipal Component Analysis. ch. 12. InTech (2012). doi:
10.5772/38267

15. He, J., Balzano, L., Lui, J.: Online robust subspace track-
ing from partial information. CoRR abs/1109.3827
(2011). Submitted

16. He, J., Balzano, L., Szlam, A.: GRASTA code. https:

//sites.google.com/site/hejunzz/grasta
17. He, J., Balzano, L., Szlam, A.: Incremental gradient on

the grassmannian for online foreground and background
separation in subsampled video. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
1568–1575 (2012). doi: 10.1109/CVPR.2012.6247848

18. He, J., Zhang, D., Balzano, L., Tao, T.: Iterative Grass-
mannian optimization for robust image alignment. Image
and Vision Computing 32(10), 800 – 813 (2014)

19. Hu, Y., Sirlantzis, K., Howells, G., Ragot, N., Ro-
driguez, P.: An online background subtraction algorithm
using a contiguously weighted linear regression model.
In: 23rd European Signal Processing Conference (EU-
SIPCO). Nice, France (2015)

20. Jodoin, P., Konrad, J.: Cdnet 2014 dataset. http://

wordpress-jodoin.dmi.usherb.ca/dataset2014/
21. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Background

model test data. http://perception.i2r.a-star.edu.

sg/bk_model/bk_index.html
22. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Foreground

object detection from videos containing complex back-
ground. In: Proceedings of the Eleventh ACM Inter-
national Conference on Multimedia, MULTIMEDIA ’03,

pp. 2–10. ACM, New York, NY, USA (2003). doi:
10.1145/957013.957017. URL http://doi.acm.org/10.

1145/957013.957017
23. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange

multiplier method for exact recovery of corrupted low-
rank matrices (2011). URL http://arxiv.org/abs/

1009.5055v2. ArXiv:1009.5055v2
24. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation

by low-rank representation. In: Intl. Conf. Mach. Learn.
(ICML), pp. 663–670 (2010)

25. Mateos, G., Giannakis, G.: Robust pca as bilinear decom-
position with outlier-sparsity regularization. Signal Pro-
cessing, IEEE Transactions on 60(10), 5176–5190 (2012)

26. Min, K., Zhang, Z., Wright, J., Ma, Y.: Decomposing
background topics from keywords by principal compo-
nent pursuit. In: Proceedings of the 19th ACM Interna-
tional Conference on Information and Knowledge Man-
agement (CIKM), pp. 269–278. ACM, New York, NY,
USA (2010)

27. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL:
Robust alignment by sparse and low-rank decomposition
for linearly correlated images. IEEE Trans. Pattern Anal-
ysis & Machine Intelligence 34(11), 2233 – 2246 (2012)

28. Pope, G., Baumann, M., Studer, C., Durisi, G.: Real-time
principal component pursuit. In: 45th Asilomar Confer-
ence on Signals, Systems and Computers, pp. 1433 –1437
(2011). doi: 10.1109/ACSSC.2011.6190254

29. Qiu, C., Vaswani, N.: Real-time robust principal com-
ponents’ pursuit. CoRR abs/1010.0608 (2010). URL
http://arxiv.org/abs/1010.0608

30. Qiu, C., Vaswani, N.: Reprocs: A missing link between
recursive robust PCA and recursive sparse recovery in
large but correlated noise. CoRR abs/1106.3286 (2011)

31. Qiu, C., Vaswani, N.: Support predicted modified-cs for
recursive robust principal components pursuit. In: IEEE
International Symposium on Information Theory (ISIT),
pp. 668–672 (2011)

32. Rodŕıguez, P.: Jitter invariant incremental principal com-
ponent pursuit for video background modeling on the tk1
(2015). Accepted, IEEE Asilomar Conference on Signal,
Systems and Computers (ACSSC)

33. Rodriguez, P.: Real-time incremental principal compo-
nent pursuit for video background modeling on the TK1
(2015). GPU Technical Conference

34. Rodŕıguez, P., Wohlberg, B.: incremental PCP sim-
ulations. http://sites.google.com/a/istec.net/

prodrig/Home/en/pubs/incpcp
35. Rodŕıguez, P., Wohlberg, B.: Fast principal component

pursuit via alternating minimization. In: Proc. of IEEE
Int’l. Conf. on Image Proc. (ICIP), pp. 69–73. Melbourne,
Australia (2013)

36. Rodŕıguez, P., Wohlberg, B.: Video background modeling
under impulse noise. In: Proc. of IEEE Int’l. Conf. on
Image Proc. (ICIP). Paris, France (2014)

37. Rodŕıguez, P., Wohlberg, B.: Translational and rotational
jitter invariant incremental principal component pursuit
for video background modeling (2015). Accepted, IEEE
International Conference on Image Processing (ICIP)

38. Rosin, P.: Unimodal thresholding. Pattern Recognition
34, 2083–2096 (2001)

39. Seidel, F., Hage, C., Kleinsteuber, M.: pROST: a
smoothed lp-norm robust online subspace tracking
method for background subtraction in video. Machine
Vision and Applications 25(5), 1227–1240 (2014)

40. Shah, M., Deng, J., Woodford, B.: Video background
modeling: recent approaches, issues and our proposed
techniques. Machine Vision and Applications pp. 1–15

18 Paul Rodriguez, Brendt Wohlberg

(a) V1920 test video: frame
160.

(b) iALM sparse estimation. (c) GRASTA sparse estima-
tion.

(d) incPCP sparse estimation.

(e) V1920 test video: frame
480.

(f) iALM sparse estimation. (g) GRASTA sparse estima-
tion.

(h) incPCP sparse estimation.

Fig. 17 The original color frames 160 (a) and 480 (e) of the V1920 test video, along with the corresponding (grayscale) sparse
approximations computed via the iALM (b, f), GRASTA (c, g) and proposed algorithm (d, h) respectively.

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frame

D
is

ta
n

c
e

 (
 |
|
S

G
T
 −

 S
 |
| 1

 /
 N

)

incPCP (gray)

GRASTA (gray)

Fig. 18 Sparse approximation (V1920) frame distance mea-

sure by ‖SGT−SP‖1
N

where SGT is the ground-truth computed
via the (batch) iALM algorithm (20 outer loops) and SP is
the sparse approximation computed via the (blue) GRASTA
and (red) the proposed incremental PCP method, and N is
the number of pixels per frame (used as a normalization fac-
tor).

(2013). doi: 10.1007/s00138-013-0552-7. URL http:

//dx.doi.org/10.1007/s00138-013-0552-7
41. Srebro, N., Rennie, J., Jaakola, T.: Maximum-margin

matrix factorization. In: Advances in Neural Informa-
tion Processing Systems 17, pp. 1329–1336. MIT Press
(2005)

42. Wang, N.: PRMF code. http://winsty.net/prmf.html
43. Wang, N., Yao, T., Wang, J., Yeung, D.Y.: A prob-

abilistic approach to robust matrix factorization. In:
A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato,
C. Schmid (eds.) Computer Vision – ECCV 2012, Lec-
ture Notes in Computer Science, vol. 7578, pp. 126–
139. Springer Berlin Heidelberg (2012). URL http:

//dx.doi.org/10.1007/978-3-642-33786-4_10

44. Wang, Y., Jodoin, P., Porikli, F., Konrad, J., Benezeth,
Y., Ishwar, P.: Cdnet 2014: An expanded change
detection benchmark dataset. In: Computer Vi-
sion and Pattern Recognition Workshops (CVPRW),
2014 IEEE Conference on, pp. 393–400 (2014). doi:
10.1109/CVPRW.2014.126

45. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Ro-
bust principal component analysis: Exact recovery of cor-
rupted low-rank matrices via convex optimization. In:
Adv. in Neural Inf. Proc. Sys. (NIPS) 22, pp. 2080–2088
(2009)

46. Xiong, L., Chen, X., Schneider, J.: Direct robust matrix
factorization for anomaly detection. In: IEEE Int. Conf.
on Data Mining, pp. 844–853 (2011)

47. Xu, J., Ithapu, V.K., Mukherjee, L., Rehg, J.M., Singh,
V.: GOSUS code. http://pages.cs.wisc.edu/~jiaxu/

projects/gosus/

48. Xu, J., Ithapu, V.K., Mukherjee, L., Rehg, J.M., Singh,
V.: GOSUS: Grassmannian online subspace updates with
structured-sparsity. In: IEEE Int, Conf. on Computer
Vision (ICCV), pp. 3376–3383 (2013)

49. Zhou, T., Tao, D.: GoDec: Randomized low-rank &
sparse matrix decomposition in noisy case. In: ACM Int.
Conf. on Machine Learning, ICML ’11, pp. 33–40 (2011)

50. Zhou, X., Yang, C., Yu, W.: Moving object detection
by detecting contiguous outliers in the low-rank repre-
sentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 35(3), 597–610 (2013). doi:
10.1109/TPAMI.2012.132

51. Zhou, Z., Li, X., Wright, J., Candes, E., Ma, Y.: Sta-
ble principal component pursuit. In: Information Theory
Proceedings (ISIT), 2010 IEEE International Symposium
on, pp. 1518–1522 (2010)

