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Lima, Peru

Brendt Wohlberg†

T-5 Applied Mathematics and Plasma Physics
Los Alamos National Laboratory

Los Alamos, NM 87545, USA

ABSTRACT

Video background modeling is an important task in many
video processing applications. Most existing algorithms as-
sume a Gaussian noise model, but digital videos are, in prac-
tice, prone to be degraded by impulse noise, due to trans-
mission errors in wireless or high data-rate wired channels.
Principal Component Pursuit (PCP), which also assumes a
Gaussian noise model, is currently considered the state of the
art for video background modeling. We propose a new PCP-
based algorithm that fully integrates the impulse noise model
and has computational performance comparable with that of
current PCP implementations.

Index Terms— Principal Component Pursuit, Video
Background Modeling, Impulse noise

1. INTRODUCTION

Video background modeling, which consists of segmenting
the moving objects or “foreground” from the static ones or
“background” is an important task in several applications. In
the present paper we restrict our interest to videos acquired by
a static sensor, e.g. automatic video analysis (sports, traffic,
etc.), surveillance systems [1], etc, which makes this prob-
lem more tractable. Most reported algorithms for video back-
ground modeling (see [2, 3] and the many reference therein)
assume a Gaussian noise model as the underlying degrada-
tion. In practice, however, video sequences are often cor-
rupted with inter-channel correlated impulse noise (either salt
& pepper or random valued) [4] during the transmission stage,
as a result of external effects such as thunderstorms, electric
engines, wireless phones etc. [5, 6, 7]. The removal of this
type of noise in video sequences has recently attracted both
academic research [8, 9] and commercial [10] developments.

A recent survey [2], including a systematic evaluation and
comparative analysis of several Principal Component Pursuit
(PCP) / Robust Principal Component Analysis (RPCA) [11,
12] based algorithms, has shown that this approach provides
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state of the art performance in the video background modeling
problem. (See [3] for a survey of alternative methods.) In this
context, the PCP problem is

arg min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L + S (1)

where D ∈ <m×n is the observed video of n frames, each of
size m = Nr×Nc×Nd (rows, columns and depth or channels
respectively), L ∈ <m×n is a low rank matrix representing
the background, S ∈ <m×n is a sparse matrix representing
the foreground, ‖L‖∗ is the nuclear norm of matrix L (i.e.∑

k |σk(L)|, the sum of the singular values of L), and ‖S‖1

is the `1 norm of S considered as a vector. As mentioned
before, this problem assumes a Gaussian noise model, which
is not appropriate for real videos corrupted by impulse noise.

The focus of the present paper is the development of a
computationally efficient algorithm for color video back-
ground modeling under inter-channel correlated impulse
noise (either salt & pepper or random value), as frequently
encountered in practice. Our method (see Section 3), which
is based on a modified version of a recently proposed fast
PCP algorithm [13], first constructs an estimate of the set
of outliers N (pixels corrupted with impulse noise) which is
then incorporated into a modified PCP approach, iteratively
using the low rank (background) and sparse approximation
(foreground) of the previous iteration to improve the cur-
rent noise-free sparse approximation estimate. To the best
of our knowledge this is a novel approach, the most closely
related ideas being described in Section 2.2. Our experimen-
tal results and comparisons, presented in Section 4, provide
computational evidence of the performance of the proposed
method.

2. NOISE MODEL AND RELATED WORKS

2.1. Noise model

For the scope of this work, we will use the same noise model
considered in [8, 9]. The observed video sequence is repre-
sented by the matrix D ∈ <m×n, where each video frame,
labeled as dk k ∈ {1, 2, . . . , n}, is represented as a column
of D. If each frame is Nr×Nc×Nd then dk ∈ <Nr×Nc×Nd ,



with m = Nr × Nc × Nd and D(:, k) = vec(dk), where
vec(·) is an operator that converts a matrix into a vector rep-
resentation. Using this notation, the inter-channel correlated
impulse noise is given by an impulse noise stage (2) follow
by a correlation stage (3)

dk = B · (d∗k) + (1− B) · r (2)

where arithmetic operations are to be considered element-
wise, and r is either salt & pepper (SNP) noise or random-
valued impulse (RVI) noise. B in (2) is a sample drawn from
an i.i.d. multivariate Bernoulli distribution with success prob-
ability 1−p, and 1 represents a vector with all elements equal
to one. Since (2) can be used for SNP or RVI noise, then for
the SNP noise case rk = cmin or rk = cmax with probability
p1 and p2 respectively (p = p1 + p2) and for the RVI noise
case rk is drawn from a uniform distribution in [cmin, cmax].

Finally, for the correlation stage, if pixel dk(·, ·, l) l ∈
{1, 2, 3} is corrupted, then

dk(·, ·, j) = β · dk(·, ·, j) + (1− β) · r (3)

where j ∈ {1, 2, 3} − {l} and β is a sample drawn from
Bernoulli distribution with success probability 1− q; in other
words, for each pixel value and channel, if either of the other
two channels has been corrupted by the impulse noise, the
current channel will suffer a further corruption with a proba-
bility of 1− q (usually q = 0.5).

2.2. Previous related work

To the best of our knowledge, there are no prior methods that
extend the PCP method to account for impulse noise. The two
most closely related ideas are summarized below.

Wang and Trucco [14] proposed a low-rank single patch-
based approach to denoise single images (not video) cor-
rupted with non-pointwise (multi-pixel) random-valued im-
pulse noise. This method is based on minimization of the
functional 1

2‖W · (L + S − P )‖2
F + λ‖W · S‖1 + ‖L‖∗,

where P is a patch of the observed image and W is a mask
indicating the location of noise-free pixels. In our case (see
(12), Section 3.2) we consider a noise-free estimate of the
noisy video based on previous low-rank and sparse estimates,
whereas the optimization problem in [14] focuses only on the
noise free entries.

Ye and Zhi [15] proposed an outlier detection method
for high dimensional data (collections of similar images or
frames), with application to nonlinear dimensionality reduc-
tion. In that work the inliers (from which outliers will be
inferred) are detected by first constructing the nearest n data
points, Dk, from the observed dataset D to image/frame dk,
and then computing a partial SVD for each Dk from which
the inliers are estimated. In our case the main goal is to
estimate a sparse approximation (via (12)) from an impulse
noise corrupted video and our frame-wise outlier detection is
performed directly on D, whereas [15] performs the outlier
detection on the low-rank approximations of Dk.

3. PROPOSED ALGORITHM

In this section we outline the PCP algorithm [13] on which
our method is based before describing the proposed method
for denoising of impulse noise.

3.1. Fast Principal Component Pursuit Via Alternating
Minimization

A simple algorithm, amFastPCP, has recently been pro-
posed [13] for solving the PCP problem. Instead of solving
(1) directly, the approach is to solve

arg min
L,S

1
2
‖L + S −D‖2

F + λ‖S‖1 s.t. rank(L) = t , (4)

via the alternating minimization

Lk+1 = arg min
L

‖L + Sk −D‖2
F s.t. rank(L) = t (5)

Sk+1 = arg min
S

‖Lk+1 + S −D‖2
F + λ‖S‖1. (6)

Note that sub-problem (5) can be solved by computing a par-
tial (with t components) SVD of D − Sk, which is the only
computationally demanding part of the algorithm. The solu-
tion to (6) is simple element-wise shrinkage (soft threshold-
ing) shrink(D − Lk+1, λ), where

shrink(x, ε) = sign(x) max{0, |x| − ε} . (7)

The solution obtained via the iterative solution of (5)-(6)
is of comparable quality to the solution of the original PCP
problem [13]. Furthermore, the amFastPCP algorithm de-
livers a useful estimate of the sparse component even after
a single outer loop, being approximately an order of magni-
tude faster than the Inexact ALM [16] algorithm to construct
a sparse component of the same quality.

3.2. Impulse Noise Removal

Define M as a mask matrix indicating locations of the out-
liers, i.e. pixels corrupted with impulse noise. This mask is
estimated via either (i) the adaptive median filter [17] for the
SNP noise case, or (ii) the directional weighted median filter
[18] for the RVI noise case. Given 1, a matrix whose entries
are all 1, the observed noisy video can be expressed as

D = M �D∗ + (1−M)�R, (8)

where � is element-wise multiplication (Hadamard product),
D∗ is the noise free video and R is impulse noise. Assuming
that L∗ and S∗ are the exact low-rank and sparse approxi-
mation of D∗ (i.e. D∗ = L∗ + S∗), and given that D∗ =
M�D∗+(1−M)�D∗ = M�D∗+(1−M)�(L∗+S∗),
then

D∗ = M �D∗ + (1−M)� L∗ + (1−M)� S∗, (9)



from which it trivially follows that

L∗ = M �D∗ + (1−M)� L∗ −M � S∗ (10)
S∗ = M �D∗ −M � L∗ + (1−M)� S∗. (11)

Inspired by (10)-(11), and based on (4) we propose the
following iterative optimization problem to solve the PCP
problem for impulse noise corrupted videos:

arg min
Lk,Sk

1
2
‖Lk + Sk − (1−M)�Lk−1 − (1−M)�Sk−1−

M�D‖2
F + λ‖Sk‖1 s.t. rank(Lk) = t . (12)

A natural approach to solving problem (12) is the alternating
minimization

Lk = arg min
L

‖L + Sk−1 −M�D − (1−M)�Lk−1 −

(1−M)�Sk−1‖2
F s.t. rank(L) = t (13)

Sk = arg min
S

‖Lk + S −M�D − (1−M)�Lk −

(1−M)�Sk−1‖2
F + λ‖S‖1 (14)

Initialize
M = estimated mask, D = input video, t = 1 (initial rank)

Initial solution (k = 0)
L0 = arg minL ‖L−D‖2

F s.t. rank(Lk) = t

S0 = arg minS ‖S + M � (L−D)‖2
F + λ‖S‖1

S0 = adaptiveMedianFilter(S0,M, nbhood) (optional)

for k = 1, 2, .., outerLoops

if vrankPrank
k=1 vk

> τ then ++t (v: singular values from k − 1)

solve (13) with current t

solve (14)

Algorithm 1: Proposed alternating algorithm for PCP when
the input video is corrupted with impulse noise, including a
simple procedure to estimate an upper bound for t in (13).
From experimental results, the optional adaptive median filter
step for the initial solution accelerates the convergence of the
sparse approximation.

As for (5)-(6), sub-problems (13)-(14) can be solved via
partial SVD and element-wise shrinkage, resulting in Algo-
rithm 1. Note that while initial solution L0 is just the low-rank
approximation of the observed noisy video, the initial sparse
approximation S0 does take into account the set of corrupted
pixels, represented by matrix M with elements equal to 1 for
the estimated noiseless pixel set and 0 otherwise. We have
observed empirically that if S0 is denoised via an adaptive
scheme that takes into account the set M (only “corrupted” el-
ements are denoised), this greatly improves the convergence

of the sparse approximation; as a trade-off between restora-
tion quality and computational cost we have used [17] for this
purpose. This denoising step is only performed once on the
initial sparse approximation S0.

4. COMPUTATIONAL RESULTS

We use a 640 × 480 pixel, 400-frame color traffic video
sequence of 26.66 seconds at 15 fps, from the Lankershim
Boulevard dataset [19, camera3] as a test video. All experi-
ments are also performed on a scaled down 320 × 240 pixel
version of the same video. Each frame was scaled by 1

255 ,
so that all pixel values are in the range [0, 1]. As “ground
truth” we use the sparse video approximation, labeled SGT ,
of the noise free video computed via the inexact ALM [16] or
iALM (code downloaded from [20]) solution after 20 outer
iterations.

All simulations have been carried out using Matlab code
that makes heavy use of the PROPACK [21] library (which
is also the case for the inexact ALM algorithm), on a 64 pro-
cessor server, based on 2.1GHz AMD Opteron “6272” CPUs
(L2: 2048K, RAM: 264G). The value of λ for our proposed
method and as well as for [13] was empirically chosen to be
initially 0.025, and then linearly decreased toward the optimal
value 1/

√
M (see [12, Section 1.4]). Although the optimiza-

tion problem is not jointly convex, we found that our algo-
rithm converged reliably to a good solution without the need
for multiple runs with different initial solutions. The exper-
imental code is made publicly available [22] in compliance
with the principle of reproducible research.

In order to assess the performance of our proposed algo-
rithm we present two kind of results: (i) computational per-
formance measured as the time to complete a given number of
outer iterations and (ii) reconstruction quality at each outer it-
eration measured by ‖SGT−Sk‖1

N where Sk is the sparse video
approximation of a given algorithm at the kth outer iteration,
and N is the number of pixels per frame (used as a normal-
ization factor).

In Fig. 1 we compared the sparse video approximation,
obtained by our proposed algorithm (labeled “Proposed”) ap-
plied to the noisy observed video (corrupted with 10% of
SNP noise), with those obtained by “iALM” of the noise free
video, labeled “iALM noiseless” and by “amFastPCP” [13]
of the (i) noise free video, labeled “amFastPCP noiseless”
and (ii) frame-wise denoised observed video, labeled “am-
FastPCP denoised”, via an adaptive `1-TV implementation
(based on [23]). Note that we attempted to use [9] (consid-
ered the state of the art for impulse noise removal from color
video sequences, executable Win32 code available from [24]),
but the provided implementation does not properly estimate
the location of the noisy pixels for our noisy test video, and
thus the resulting denoised video is still too noisy (on aver-
age only 20% of the noisy pixel are denoised) to serve as a
good approximation of the noise-free video. The quality of



the results of the proposed method are slightly better than
those obtained by “amFastPCP denoised” (as shown in Fig.
1, where 10 outer iterations are considered for each method),
and comparable with (but slightly inferior to) those obtained
when the the sparse video approximation is computed using
the noise-free video. Similar results were obtained when the
input video was corrupted with 5% and 15% of SNP noise.
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Fig. 1. Computational performance (a) and sparse represen-
tation quality (b) comparisons for a noisy video (corrupted
with 10% of SNP noise) between our propose algorithm (la-
beled “Proposed”, applied to the noisy video), the amFast-
PCP [13] (labeled “amFastPCP noiseless”) and iALM [16]
(labeled “iALM noiseless”) algorithm, applied to the original
noise-free video. We also include results for the amFastPCP
when the noisy video is first frame-wise denoised (labeled
“amFastPCP denoised”) via an adaptive `1-TV implementa-
tion (based on [23]). We do not include the pre-processing
time (denoising, 9010 sec.) for “amFastPCP noiseless” nor
for “Proposed” (785 sec. for outlier estimation, see (8)).

Adaptive `1-TV denoising
Noise average SNR average PSNR
level 320×240 640×480 320×240 640×480

5% 27.12 24.38 39.27 36.01
10% 24.41 22.55 36.56 34.41
15% 22.31 20.86 34.46 32.48

Table 1. Average SNR/PSNR frame reconstruction quality
obtained via adaptive `1-TV [23] (pre-processing associated
with “amFastPCP denoised”) applied to the noisy video.

Moreover, our proposed method is one order of magni-
tude faster than “amFastPCP denoised”: For the “amFastPCP
denoised’ case, the time required to denoise (via adaptive `1-
TV [23]) the 640×480 pixel, 400-frame test video (corrupted
with 10% of SNP noise) was, 9010 seconds, with an average
SNR/PSNR frame’s reconstruction quality of 22.55 dB and
34.41 dB respectively. This time performance is comparable
to that of other methods for impulse noise denoising of color

video sequences (for instance [9]). For our proposed algo-
rithm, the pre-processing (mask estimation, see (8)) time was
785 seconds. For other noise levels or video resolutions, in
Tables 1 and 2 we provide the average SNR/PSNR frame re-
construction quality (denoising stage related to “amFastPCP
denoised”) and pre-processing time for the “amFastPCP de-
noised” and “Proposed” methods respectively. From Table 2
we conclude that the pre-processing time for our proposed al-
gorithm is one order of magnitude faster than that of “amFast-
PCP denoised”. Furthermore, taking into account the actual
time needed to compute the sparse approximation (which is
comparable for both cases), overall our proposed method is
still one order of magnitude faster than “amFastPCP noise-
less”.

Computational cost: Pre-processing time (s.)
Noise Adaptive `1-TV denoising Mask estimation (see (8))
level 320×240 640×480 320×240 640×480

5% 1906 10259 217 758
10% 1926 9010 220 785
15% 1996 9446 224 790

Table 2. Pre-processing computational performance to de-
noise (via adaptive `1-TV [23]), task associated with “am-
FastPCP denoised” and for the mask estimation (see (8)), task
associated with our proposed algorithm. The latter is one or-
der of magnitude faster than the former.

Due to space constraints, we do not present results for the
random value impulse (RVI) noise case (these can be obtained
via [22]), but we mention that while the computational perfor-
mance is about the same as for the SNP noise case and that
the quality of the sparse approximation is also slightly better
than “amFastPCP denoised”, the quality of the sparse approx-
imation obtained by our proposed method is not as good as
for the SNP case when compared to that of the “amFastPCP
noiseless” or “iALM noiseless”. This is due to the fact that
the mask estimation for the RVI noise is not as precise as in
the case of SNP noise.

5. CONCLUSIONS

Digital videos are, in practice, prone to be degraded by im-
pulse noise, nevertheless most video background modeling
methods assume a Gaussian noise model. We have presented
a computationally efficient method that integrates the impulse
noise model into the PCP methodology, considered the state
of the art for video background modeling applications. Our
computational results show that our proposed method is able
to provide a good sparse representation whose quality is com-
parable with that obtained from a noise free video, while be-
ing slightly better (and one order of magnitude faster) than
that obtained by first denoising the noisy video prior to the
PCP decomposition. Future work will focus on providing a
theoretical analysis of our proposed algorithm.
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