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ABSTRACT
Iteratively Reweighted Least Squares (IRLS) is a well-
established method of optimizing `p norm problems such
as Total Variation (TV) regularization. Within this general
framework, there are several possible ways of constructing
the weights and the form of the linear system that is iteratively
solved as part of the algorithm. Many of these choices are
equally reasonable from a theoretical perspective, and there
has, thus far, been no systematic comparison between them.
In this paper we provide such a comparison between the main
choices in IRLS algorithms for `1- and `2-TV denoising, find-
ing that there is a significant variation in the computational
cost and reconstruction quality of the different variants.

Index Terms— Total Variation, Iteratively Reweighted
Least Squares, Iteratively Reweighted Norm

1. INTRODUCTION

The generalized Total Variation (TV) denoising functional is

T (u) =
1
p
‖u− b‖p

p +
λ

q
‖∇u‖q , (1)

where p = 2, q = 1 and p = 1, q = 1 correspond to the well-
known cases of `2-TV [1] and `1-TV [2] respectively. There
are numerous algorithms for minimizing (1) that are based on
the Euler-Lagrange equation (for a recent review, see [3]), and
use a smooth approximation of

‖∇u‖1 ≈
1
2

∑
n

τε(|(∇u)n|) , (2)

where (∇u)n represents the nth term of ∇u; for example,
a popular choice is τε(x) = 2

√
x2 + ε2 [1, 4], [2, Sec. 4].

Of these algorithms, we focus here on those that can de-
rived within the Iteratively Reweighted Least Squares (IRLS)
framework, which are simple to implement, and have been
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shown to be competitive [5] with more recent algorithms such
as those based on the Split-Bregman (SB) [6] or Alternating
Direction Method of Multipliers (ADMM) [7, 8] methods.

These algorithms approximate (1) via

Q(k)(u) =
1
2
‖W (k)

F

0.5
(u− b)‖2

2 +
λ

2
‖W (k)

R

0.5
Du‖2

2 (3)

where D = [DT
x DT

y ]T , with Dx and Dy denoting the hor-

izontal and vertical discrete derivative operators, and W
(k)
F

and W
(k)
R are the weighting diagonal matrices use to iter-

atively approximate (1) by a weighted quadratic functional.
The linear system obtained by setting the gradient

∇Q(u) = WF u−WF b + λDT WRDu , (4)

to zero is usually solved via CG (conjugate gradient) or PCG
(preconditioned CG).

Within this general framework, there are numerous possi-
ble choices, equally reasonable from a theoretical perspective,
for (i) the definition of the weighting matrices WF and WR to
avoid division by zero problems, and (ii) the form of (4) that
is actually solved. Although a wide variety of these choices
have been considered, there has not been any systematic com-
parison of their relative performance. The goal of the present
paper is to provide such a comparison so that future imple-
menters of algorithms within this widely-used framework are
able to make informed decisions in making these choices.

2. `1- AND `2-TV IRLS TAXONOMY

IRLS-based algorithms for `1- and `2-TV seek to solve (3),
for which it is straightforward to compute the gradient (4).
Following the standard IRLS scheme, the primary computa-
tion consist of solving the linear system resulting from setting
∇Q(u) = 0. However, there are a number of possibilities for
the specific form of the linear system to be solved; the three
main options (independent of how the weights are chosen)
will be explored in Section 2.2. We also explore the options
for choosing the weights in (3) in Section 2.1. Finally, while
it is out of the scope of this work, we also mention that it



is possible to spatially adapt the regularization parameter for
`2-TV [9, 10, 11] and `1-TV [12, 13, 14].

2.1. Weight Construction

Straightforward computation of the fidelity weights leads to

W
(k)
F = diag

(
|u(k) − b|p−2

)
. (5)

Clearly, when p < 2, there exists the possibility of a divi-
sion by zero when computing W

(k)
F . For p = 1 in particular,

setting
W

(k)
F (n, n) = αε(r(k)

n ) (6)

where r(k) = u(k) − b, ε is a small positive number and

αε(x) =
{
|x|−1 if |x| ≥ ε
ε−1 if |x| < ε ,

(7)

is usually preferred since it guarantees global convergence
for the IRLS case [15], although other approaches have been
used, such as

• W
(k)
F = diag

(
(|r(k)|+ ε)−1

)
(e.g. see [16]), and

• the Huber function W
(k)
F (n, n) = υε(r

(k)
n ), with

υε(x) =
{

ε−1x2 if|x| ≤ ε2

2|x| − ε if|x| > ε2
(8)

(see [17, (77)], [15] amongst others).

In the case of the regularization weights, a straightforward
computation leads to W

(k)
R = I2 ⊗ Ω(k) where ⊗ is the Kro-

necker product, and

Ω(k)
R = diag((z(k))−1), z(k) =

√
(Dxu(k))2 + (Dyu(k))2 (9)

for which the possibility of a division by zero clearly also
exists. Such a situation can be avoided by using (7), i.e.
Ω(k)

R (n, n) = αε(z
(k)
n ), or the closely related Ω(k)

R (n, n) =
βε(z

(k)
n ) (used in [18]) with

βε(x) =
{
|x|−1 if |x| > ε
0 if |x| ≤ ε .

(10)

Other options include Ω(k)
R = diag

(
((z(k))2 + ε2)−0.5

)
([1,

4]) and the Huber function (used in [19], although it is sel-
dom used in IRLS-based algorithms since the gradient of (3)
depends on the derivative of the Huber function).

Summarizing, there are options that use the ε value

WT as a threshold ((7) and (10)),

WA as an additive constant: Ω(k)
R = diag

(
((z(k))2 + ε2)−0.5

)
or W

(k)
F = diag

(
(|r(k)|+ ε)−1

)
, or

WS as a parameter for a function that is smooth at zero, such
as the Huber function.

In the WT case, the threshold may be fixed, or may be au-
tomatically adapted to the input image (we will use the sub-
scripts “F” or “A” respectively), as was first proposed, along
with (10), in [18, Sec. IV.G]. While adaptive setting of the
WA and WS parameters is in principle possible, we are not
aware of any published methods for doing so, and do not con-
sider this option here.

2.2. Linear System Form

The straightforward solution of (4) gives the linear system

(WF + λDT WRD)u = WF b (11)

where we have dropped the k superscript to ease the notation;
this linear system can be easily solved using CG or PCG.

However, when WF is not the identity (as when p < 2 in
(3)), the change of variable v = W 0.5

F u can be used to give

solve : (I + λW−0.5
F DT WRDW−0.5

F )v = W 0.5
F b (12)

compute : u = W−0.5
F v. (13)

In this case, since the fidelity weights are raised to a negative
power (W−0.5

F ), computation of ((12)-(13)) does not incur in
numerical instabilities when constructing WF as in (5). This
approach was first described in [18].

Alternatively, by noticing that the well-known matrix
inversion lemma (MIL) can be applied to (11), we get

u = (W−1
F +W−1

F DT (W−1
R

λ +DW−1
F DT )−1DW−1

F )WF b,
which can be efficiently solved via

solve :
(

W−1
R

λ
+ DW−1

F DT

)
z = Db (14)

compute : u = b−W−1
F DT z. (15)

Once again, since the fidelity and regularization weights are
raised to a negative power, their direct computation ((5) and
(9) respectively) do not incur in numerical instabilities. This
approach was first described in [20].

Summarizing, the linear system to be solved may be

LD directly as in (4),

LC constructed via change of variable, as in (12)-(13), or

LM derived via application of the MIL, as in (14)-(15).

Each of these systems can be solved to a fixed accuracy, or
using an adaptive accuracy at each outer iteration (for which
we will also use the subscripts “F” or “A” respectively).
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(a) `2-TV: σ = 0.1, λ = 0.065
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(b) `2-TV: σ = 0.2, λ = 0.15
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(c) `1-TV: p = 0.3, λ = 1.2
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(d) `1-TV: p = 0.5, λ = 1.6

Fig. 1. Evolution of `2- and `1-TV denoising quality against time for different schemes. The Lena test image was corrupted
with Gaussian noise with (a) σ = 0.1, denoised with λ = 0.065, and (b) σ = 0.2, denoised with λ = 0.15, and the Barbara test
image was corrupted with salt & pepper noise with (c) p = 0.3, denoised with λ = 1.2, and (d) p = 0.5, denoised with λ = 1.6.

3. EXPERIMENTAL RESULTS

In order to compare the computational performance of the dif-
ferent methods (listed in Section 2) and SB/ADMM algorithm
for TV denoising, we have implemented all the described al-
gorithms in Matlab code. All simulations have been carried
out using the above mentioned code on a 1.73GHz Intel core
i7 CPU laptop (L2: 6144K, RAM: 6G).

Due to space constraints we only present a subset of the
results, but all other simulations can be found at [21]. The
ground-truth test image, scaled between zero and one (Lena,
Barbara, or Cameraman) is denoted by u∗. The observed im-
age b is corrupted with additive Gaussian noise b = u∗+σ ·η
where σ ∈ {0.05, 0.1, 0.2} and η is unit variance Gaussian
noise, or with salt & pepper (SNP) noise b = B · u∗ +
(1 − B) · r with B being drawn from an i.i.d. multivari-
ate Bernoulli distribution with success probability 1 − p for
p = {0.1, 0.3, 0.5}, and r being SNP noise.

We present results for the WT and WA weight variants
(see Section 2.1), and for the LD, LC (where appropriate) and

LM linear system variants (see Section 2.2). Comparisons are
also provided with the `2-TV or `1-TV SB/ADMM algorithm
with a fixed ADMM penalty parameter(s) set to 2λ and 10λ
respectively (for other options see [22, Section 3.4.1]) as a
general baseline.

All WT results are of the WTA variety since we have
previously found this to provide superior performance to
WTF [18, Sec. IV.G]). The histogram thresholds for these
adaptive settings were 1% for regularization terms and 5%
for the data fidelity term of `1-TV. For the WAF variant (we
do not have a readily available candidate algorithm for adapt-
ing it) we used ε = 10−3 since ε = 10−4 was much slower
without a significant increase in reconstruction quality.

When using the LDF (11) and LMF (12)-(13) variants
with fixed CG/PCG accuracy we have set the tolerance to
10−4, since it gives a good compromise between speed and
reconstruction quality. Similarly, we have observed good
performance for the LCF variant (14)-(15) even for a rather
loose accuracy parameter (for the experiments reported here
we have set it to 10−1).



The following procedure is used for the cases where the
accuracy is adapted at each main iteration. At iteration k,
the adaptive accuracy is based on a relative residual com-
puted from the previous solution u(k−1), the previous toler-
ance τ (k−1) and the current weights W

(k)
F and W

(k)
R . For

instance, in the case of the LD variant we have

ρ = ‖(W (k)
F +λDT W

(k)
R D)u(k−1)−W

(k)
F b‖2/‖b‖2 (16)

and the new tolerance is set to τ (k) = τ(k−1)

c , where c > 1 is a
constant (we use c = 5). A similar residual can be constructed
for the LM variant.

For each variant we compute 10 outer iterations, although
in Fig. 1 we limit the time axis to 1.2 and 4.5 seconds for `2-
TV or `1-TV respectively to capture the general behavior and
avoid emphasizing variants with poor time performance.

In Figs. 1(a) and 1(b) we present the SNR with re-
spect to ground truth against time for the (512 × 512)
grayscale Lena image corrupted with with Gaussian noise
with σ = {0.1, 0.2} for some of the variants described in
Section 2, as well as for the `2-TV SB/ADMM. Except for
the LMA and WAF variants, all other cases (including the
`2-TV SB/ADMM) have a very similar performance in terms
of reconstruction quality and computational performance;
this in accordance with the main result of [5] (IRLS base
algorithm are competitive with SB/ADMM algorithm).

In Figs. 1(c) and 1(d) we present the SNR with respect to
ground truth against time for the 512×512 grayscale Barbara
image corrupted with with SNP noise with p = {0.3, 0.5} for
all the `1-TV variants described in Section 2, as well as for
`1-TV SB/ADMM. It is interesting to note that the relatively
obscure variant LMF clearly outperforms all others in terms
of computational speed and reconstruction quality. Although
we do not present results for p = 0.1 due to space constraints,
our experiments shows that for that level of noise there is no
real difference between all the considered implementations.

In Fig. 4 we compare the reconstruction quality of the
LMF and LCA IRLS variants and the ADMM/SB algorithm.
The original image (either Barbara or Cameraman) was cor-
rupted with SNP noise with p = 0.5 and was reconstructed
using 10 main iterations of the IRLS variants as well as with
the ADMM/SB algorithm, all of them using the same regu-
larization parameter (λ = 1.6). While some isolated artifacts
can be observed for the denoised images via the LMF variant
(Figs. 4(a) and 4(b)), overall they are better than the denoised
images via the LCA variant (Figs. 4(c)-(d)) or SB/ADMM
algorithm (Figs. 4(e)-(f)).

4. CONCLUSIONS

In this paper we have presented a systematic comparison of
the different possible choices for constructing the weights
and forming the linear systems among different `p-TV IRLS-
based variants, with the SB/ADMM algorithm used as a
general baseline.

In the `2-TV case, the WTA weight construction variant
appears to enjoy a substantial advantage over WAF . The LDF

and LDA methods provide very similar performance here, but
the LDA strategy is preferable given the dependence of LDF

on manual parameter tuning. Overall, the LDA-WTA variant
provides the best performance for this case.

In the case of `1-TV the seldom used LMF variant, result-
ing from applying the matrix inversion lemma, which in the
case of IRLS-based TV avoids numerical instabilities in the
computation of the associated weights, has a superior perfor-
mance in terms of both computational cost and reconstruction
quality for medium to high levels of salt & pepper noise.

(a) SNR: 9.76dB, SSIM: 0.67 (b) SNR: 15.95dB, SSIM: 0.83

(c) SNR: 9.28dB, SSIM: 0.62 (d) SNR: 13.13dB, SSIM: 0.83

(e) SNR: 8.94dB, SSIM: 0.57 (f) SNR: 12.21dB, SSIM: 0.74
Fig. 2. `1-TV denoising results for the test images Barbara
and Cameraman corrupted with σ = 0.5 and denoised with
λ = 1.6. Results were obtained by IRN variant LMF in (a)-
(b), IRN variant LCA in (c)-(d), and SB/ADMM in (e)-(f).
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dirichlet non lináires,” Revue Fr. Autom., Inform., Rech.
Opér. Analyse numérique, vol. 9, no. 2, pp. 41–72, 1975.

[9] D. Strong and T. Chan, “Spatially and scale adaptive
total variation based regularization and anisotropic dif-
fusion in image processing,” UCLA Math Department,
CAM Report CAM 96-46, Nov. 1996.

[10] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE:
A black-box optimization of regularization parameters
for general denoising algorithms,” IEEE Trans. on Im-
age Processing, vol. 17, no. 9, pp. 1540–1554, 2008.

[11] Y. Lin, B. Wohlberg, and H. Guo, “UPRE method for
total variation parameter selection,” Elsevier Signal Pro-
cessing, vol. 90, no. 8, pp. 2546–2551, Aug. 2010.

[12] R. Chan, C. Ho, and M. Nikolova, “Salt-and-pepper
noise removal by median-type noise detectors and

detail-preserving regularization,” IEEE Trans. Image
Processing, vol. 14, no. 10, pp. 1479–1485, 2005.

[13] Y. Dong, M. Hintermüller, and M. Rincon-Camacho,
“Automated regularization parameter selection in multi-
scale total variation models for image restoration,” J. of
Math. Imag. and Vision, pp. 1–23, Dec. 2010.

[14] R. Rojas and P. Rodrı́guez, “Spatially adaptive total vari-
ation image denoising under salt and pepper noise,” in
Proceedings of the European Signal Processing Confer-
ence (EUSIPCO), Barcelona, Spain, 2011, pp. 314–318.

[15] S. Ruzinsky and E. Olsen, “L1 and L∞ minimization via
a variant of Karmarkar’s algorithm,” IEEE Trans. ASSP,
vol. 37, pp. 245–253, Feb. 1989.

[16] L. Bar, N. Kiryati, and N. Sochen, “Image deblurring in
the presence of impulsive noise,” International Journal
of Computer Vision, vol. 70, no. 3, pp. 279–298, Decem-
ber 2006.

[17] M. Nikolova, “Minimizers of cost-functions involv-
ing nonsmooth data-fidelity terms. application to the
processing of outliers,” SIAM J. Numerical Analysis,
vol. 40, no. 3, pp. 965–994, 2002.

[18] P. Rodrı́guez and B. Wohlberg, “Efficient minimiza-
tion method for a generalized total variation functional,”
IEEE Trans. Image Proc., vol. 18, no. 2, pp. 322–332,
Feb. 2009.

[19] C. Vogel, Computational Methods for Inverse Problems.
SIAM, 2002.

[20] M. Figueiredo, J. Bioucas-Dias, J. Oliveira, and
R. Nowa, “On total-variation denoising: A new
majorization-minimization algorithm and an experimen-
tal comparison with wavelet denoising,” in Proceedings
of the International Conference on Image Processing
(ICIP), Atlanta, GA, USA, Oct. 2006, pp. 2633–2636.

[21] P. Rodrı́guez and B. Wohlberg, “Numerical methods for
inverse problems and adaptive decomposition (NUMI-
PAD),” http://numipad.sourceforge.net/.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Fdns. &
Trends in Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.


