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ABSTRACT

We propose a simple alternating minimization algorithm for
solving a minor variation on the original Principal Component
Pursuit (PCP) functional. In computational experiments in the
video background modeling problem, the proposed algorithm
is able to deliver a consistent sparse approximation even after
the first outer loop, (taking approximately 12 seconds for a
640× 480× 400 color test video) which is approximately an
order of magnitude faster than Inexact ALM to construct a
sparse component of the same quality.

Index Terms— Principal Component Pursuit, Video
Background Modeling

1. INTRODUCTION

Principal Component pursuit (PCP), also known as Robust
Principal Component Analysis (RPCA) has recently been
proposed [1, 2] as a robust alternative to the well-known Prin-
cipal Component Analysis (PCA). This method has found a
variety of applications, including background modeling /
foreground detection in video data [1, 2, 3, 4], text analy-
sis [5], and image alignment [6].

The PCP problem was originally formulated [2] as

argmin
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S (1)

whereD ∈ <m×n is the observed matrix, ‖L‖∗ is the nuclear
norm of matrix L (i.e.

∑
k |σk(L)|, the sum of the singular

values of L) and ‖S‖1 is the `1 norm of matrix S.
Since PCP is computed via a computationally expensive

optimization, and a real-time implementation capable of han-
dling large data sets such as video is desirable, the develop-
ment of fast algorithms for the PCP problem is an active area
of research [7]. In this paper we propose a fast and compu-
tationally efficient algorithm to solve the PCP problem with
a special focus on video background modeling / foreground
detection, where each video frame is represented as a column
of D.
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2. NUMERICAL ALGORITHMS FOR PCP

Numerical algorithms for solving (1) are usually based on a
splitting method [2, 5, 4, 3], such as the Augmented Lagrange
Multiplier (ALM) method [8, 9] or its variants: (1) is solved
via argminL,S,Y ‖L‖∗+λ · ‖S‖1 + 〈Y,D−L−S〉+0.5µ ·
‖D−L−S‖F , which includes a full or partial SVD (Singular
Value Decomposition) depending on the ALM variant.

Originally in [2] the (exact) Augmented Lagrange Mul-
tiplier (ALM) method [8, 9] was used to solve (1); this ap-
proach is not computationally attractive since it performs a
full SVD decomposition (follow by a thresholding on the re-
sulting singular values) on the observed data, which has a
negative impact on the computational performance, requir-
ing, for example, about 43 minutes for a video sequence of
200 grayscale frames of size 144 × 176. In [4] the ALM
algorithm was modified by partitioning the original problem
into several sub-problems; while a full SVD decomposition
is still required, the computational performance is reported to
be about 6 times faster for the same video segmentation prob-
lem reported in [2]. In [3] it is proposed to use the power
method to partially compute the SVD decomposition along
with the ALM algorithm (this is somewhat similar to the in-
exact ALM where a partial SVD decomposition is computed
via Lanczos); the computational performance is reported to
be able to process a 640 × 480 color video at 12 frames per
second in real-time (nevertheless, at the moment of writing
this paper, the website mentioned in [3] does not have the
code that implements this method). In [9] the inexact ALM
method is proposed and thoroughly analyzed; furthermore, it
is reported that this algorithm is consistently faster than pre-
viously reported state-of-the-art algorithms (which is verified
in our computational simulations).

3. PROPOSED ALGORITHM

A number of variants of (1) can be constructed by changing
constraints to penalties and vice-versa. We start with the func-
tional argminL,S

1
2‖L + S −D‖F + λ‖S‖1 s.t. ‖L‖∗ ≤ t .

Noting that we are usually interested in solutions for which
the constraint ‖L‖∗ ≤ t is active, this becomes an equality
constraint, and since in this case we can construct an algo-



rithm that constrains the rank itself rather than the nuclear
norm relaxation, the functional becomes

argmin
L,S

1

2
‖L+ S −D‖F + λ‖S‖1 s.t. rank(L) = t . (2)

While this modification does, unfortunately, discard some of
the useful theoretical understanding of (1), including a princi-
pled choice of the parameter λ, in the video background mod-
eling application component L typically has very low rank,
and in practice we have not found it to be difficult to choose a
suitable value of t.

A natural approach to solving problem (2) is the alternat-
ing minimization

Lk+1 = argmin
L

‖L+ Sk −D‖F s.t. rank(L) = t (3)

Sk+1 = argmin
S

‖Lk+1 + S −D‖F + λ‖S‖1 (4)

Sub-problem (3) can be solved by computing a partial (with t
components) SVD of D − Sk. This is the only computation-
ally demanding part of the algorithm, and can be efficiently
computed via the Lanczos (or the power) method when t is
small; we make use of the “lansvd” routine from optimized
PROPACK library [10] (which is also employed in the pub-
licly available implementation of the Inexact ALM algorithm
[11]). The solution to (4) is simply element-wise shrinkage
(soft thresholding) shrink(D − Lk+1, λ), where

shrink(x, ε) = sign(x)max{0, |x| − ε} . (5)

While we do not present results here due to space con-
straints, we note that we have also considered a different form
of (2)

argmin
L,S

1

2
‖L+ S −D‖F + λ‖S‖1 s.t. ‖L‖∗ ≤ t (6)

for which the L sub-problem corresponds to a nuclear norm
regularization (NNR) problem [12], for which a computation-
ally efficient algorithm has recently been proposed [13, 14];
while a potential application to PCP was suggested [14, Sec-
tion 4.5.1], it was not explored further. We have implemented
this algorithm, but found that the performance was very simi-
lar to that of an optimized iterative SVD algorithm in solving
(3), and therefore concentrate on the simpler approach out-
lined in (2) for the remainder of this paper.

Since the video background modeling application com-
ponent L typically has very low rank, we propose a simple
procedure to estimate an upper bound for t in (3), described
in Algorithm 1: since the singular values of Lk+1 are a by-
product of solving (3), if at each outer loop we increase t by
one, then we can estimate the contribution of the new singu-
lar vector; if such contribution is small enough then we stop
increasing the value of t. In our experimental simulations the
value of t is increased up to 3 by the rule described in Algo-
rithm 1 (this is consistent with the rank estimation performed
by inexact ALM).

We provide computational evidence that our proposed
algorithm monotonically converges to the desired solution;

Initialize

S1 = 0, D = input video, rank = 1 (initial rank)

for k = 1, 2, .., outerLoops

solve (3) with t = rank (save singular values to v)
if vrank∑rank

k=1 vk
> τ then ++rank

solve (4)

Algorithm 1: Proposed alternating Algorithm for PCP (for the
video background modeling application); we include a simple
procedure to estimate an upperbound for t in (3).

moreover our computational results also show that our pro-
posed algorithm has a low memory footprint so that it could
be applied in real time video applications, and that it is
approximately twice as fast as the state-of-the-art imple-
mentations such the leading Augmented Lagrange Multiplier
algorithm (ALM) for PCP, while delivering results of compa-
rable quality.

4. RESULTS

We compared our proposed algorithm with the inexact ALM
[9] (code downloaded from [11]) labeled as “inexact ALM”,
and with the non-smooth augmented Lagrangian algorithm
[4], labeled as “NSA” (code downloaded from [15]) for the
video background removal problem; as a test video, we use
a 640 × 480 pixel, 400-frame traffic (color) video sequence
of 26.66 seconds at 15 fps, from the Lankershim Boulevard
dataset [16, camera3]; each frame was scaled by 1

255 (so the
dataset is forced to have values between 0 and 1). For our
experiments (code available from [17]) we have considered
two cases: a reduced size version of 320 × 240 pixel per
frame as well as the original size (640 × 480 pixel). We
present two kind of results: (i) computational performance
measured as the time to complete a given number of outer
loops and (ii) reconstruction quality at each outer loop mea-
sured by ‖SGT−Sk‖1

N where SGT is the “ground truth” sparse
video approximation (we used the inexact ALM solution af-
ter 20 outer loops), Sk is the sparse video approximation of a
given algorithm at the kth outer loop, and N is the number of
pixel per frame (use as a normalization factor).

All simulations have been carried out using Matlab code
(which heavily makes use of the PROPACK [10] library,
which is also the case for the inexact ALM and NSA algo-
rithms) on a 2.8Ghz Intel Xeon quad-core X5560 CPU (L2:
8192K, RAM: 64G). The value of λ was empirically chosen
to be 0.025, and although the optimization problem is not
jointly convex, we found that our algorithm converged reli-
ably to a good solution without the need for multiple runs
with different initial solutions. In Fig. 1 (and Table 1) we
show the computational performance comparison between
our proposed algorithm and the inexact ALM and NSA algo-
rithms for the video background removal problem using the
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Fig. 1. Computational performance (a) and reconstruction
quality (b) comparisons between our propose algorithm and
the inexact ALM and NSA algorithms for a 400 frames video
(each frame is 320 × 240 pixel). Note that in (b) we only
show the NSA’s reconstruction quality for the second and
third outer loop since its first value is out of the chart.

previously described 400-frame (320×240 pixel each) traffic
(color) video sequence. The observed data set requires 0.737
Gb of memory when represented using double precision val-
ues. In Fig. 1(a) we show the required time to complete a
given number of outer loops (from one up to twenty, although
in Table 1 we only report the performance for the first ten
loops due to space constraints) for all the considered algo-
rithms (the NSA algorithm was only run from one up to three
outer loops because the improvement of the solution is only
incremental after the third loop). Our proposed algorithm
is faster than the inexact ALM (at least 1.8 times faster per
outer loop) and significantly faster than the NSA algorithm
(at least 8 times faster). More importantly, our proposed
algorithm outperformed the inexact ALM and NSA on reduc-
ing the previously described reconstruction quality measure
(‖LGT−Lk‖1

N ), see Fig. 1(b) (as well as Table 2); this is ba-
sically due to the fact that the inexact ALM needs several
outer loops to have a meaningful sparse approximation of the
observed video, and that NSA needs a large amount of time to
finished its second outer loop. Finally we mention that both
our proposed algorithm and the inexact ALM can process the
used color video sequence in real time.

In Fig. 2 (and Table 1) we show the computational per-
formance of our algorithm on the same color video sequence
but for frames of size 640 × 480. This data set requires 2.95
Gb of memory when represented using double precision val-
ues. We note that our proposed algorithm is also able to solve
this problem on a more modest computer (3.4GHz Intel quad-
core i7-2600 CPU, L2: 8192K, RAM: 16G), while the in-
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Fig. 2. Computational performance (a) and reconstruction
quality (b) comparisons between our propose algorithm and
the inexact ALM and NSA algorithms for a 400 frames video
(each frame is 640 × 480 pixel). Note that in (b) we only
show the NSA’s reconstruction quality for the second and
third outer loop since its first value is out of the chart.

exact ALM and NSA fail to do so. Regarding the results,
in Fig. 2(a) we show the required time to complete a given
number of outer loops (from one up to twenty) for all the
considered algorithms (same restrictions apply to the NSA
algorithm as for Fig.1(a)). As for the 320 × 240 case, our
algorithm is consistently faster than the inexact ALM and the
NSA algorithms; likewise, the reconstruction quality results
(see Fig. 2(b) and Table 2) of our algorithm clearly outper-
forms those of the inexact ALM and the NSA algorithms.

We also notice that our algorithm could be use to solve
the 640 × 480 color video background removal problem in
real time since each additional outer loop needs about 16 sec-
onds (average) and since even the results just after one outer
loop of our algorithm has meaningful sparse approximation
of the observed video (while the inexact ALM needs eleven
outer loops to match the quality of our first approximation,
see Fig. 2(b) and Table 2). Furthermore, in Fig. 3 we com-
pared the sparse approximation (S component) for the initial
and last frame of the 640× 480 video sequence after one and
twenty outer loops for our propose algorithm and after the
twenty outer loops for the inexact ALM algorithm (since the
first one is not meaningful), where it is clearly shown that our
proposed algorithm has meaningful sparse approximation of
the observed video even after one outer loop; the same results
are observed for the 320× 240 video sequence.

5. CONCLUSIONS

In the video background modeling application, our algorithm
is approximately twice as fast as the leading Inexact ALM



(a) First frame of 640×480 pixel test
video sequence

(b) Sparse approximation via our
proposed algorithm after 1 outer loop
(elapsed time: 14.26 sec).

(c) Sparse approximation via our
proposed algorithm after 20 outer
loops (elapsed time: 354.62 sec).

(d) Sparse approximation via inexact
ALM after 20 outer loops (elapsed
time: 1153.13 sec).

(e) Last frame of 640×480 pixel test
video sequence

(f) Sparse approximation via our pro-
posed algorithm after 1 outer loop
(elapsed time: 14.26 sec).

(g) Sparse approximation via our
proposed algorithm after 20 outer
loops (elapsed time: 354.62 sec).

(h) Sparse approximation via inexact
ALM after 20 outer loops (elapsed
time: 1153.13 sec).

Fig. 3. Original initial (a) and final (d) frame of the 400 frames (640×480 pixel each) color video sequence and their respective
sparse approximation after 1 outer loop ( (b) and (f) respectively) and after 20 outer loops ( (c), (d), (g) and (h) respectively) for
our proposed Alternating Minimization algorithm and the inexact ALM algorithm. We notice that our proposed algorithm has
a meaningful sparse approximation even after just one outer loop.

loop
320× 240 640× 480

Proposed iALM NSA Proposed iALM NSA
1 3.26 16.54 75.44 14.26 70.42 338.55
2 7.48 22.51 89.46 31.35 106.65 400.80
3 11.44 29.10 96.10 49.46 122.88 429.58
4 15.55 34.09 – 72.33 149.49 –
5 21.12 39.94 – 90.73 173.05 –
6 28.07 46.18 – 110.53 193.85 –
7 31.79 52.14 – 126.38 230.40 –
8 35.92 57.29 – 138.62 307.17 –
9 40.99 62.13 – 155.14 325.92 –
10 43.21 78.73 – 174.11 432.06 –

Table 1. Computational performance (time in seconds needed
by each algorithm to complete a given number of outer loops)
comparison between our propose algorithm and the inexact
ALM and NSA algorithms for a 400 frames video dataset.

algorithm for computing an approximate solution to the PCP
problem. Subjectively, this solution is of comparable quality
to the solution of the original PCP problem, and if an accu-
rate solution to this specific problem is required, our algo-
rithm can be used to provide a good initial solution for use
by Inexact ALM or other algorithms. Furthermore, the pro-
posed algorithm delivers a useful estimate of the of the sparse
component after a single outer loop, taking approximately 12
seconds for a 640 × 480 × 400 test color video, which is ap-
proximately an order of magnitude faster than Inexact ALM
to construct a sparse component of the same quality.

loop
320× 240 640× 480

Proposed iALM NSA Proposed iALM NSA
1 12.28 19.12 96.17 13.54 22.97 96.13
2 11.93 19.12 7.83 12.86 22.97 9.47(∗)

3 11.56 18.86 7.83 12.19 22.97 9.47(∗)

4 11.18 17.28 – 11.06 22.97 –
5 10.48 15.27 – 9.90 21.48 –
6 9.68 13.60 – 8.79 18.94 –
7 8.83 12.53 – 7.78 17.06 –
8 7.99 11.77 – 6.90 15.91 –
9 7.19 11.09 – 6.18 15.03 –

10 6.44 10.17 – 5.93 14.09 –

Table 2. Reconstruction quality (measured by ‖SGT−Sk‖1
N at

the kth outer loop, where where SGT and Sk are the “ground
truth” and current sparse video approximation respectively)
comparison between our proposed algorithm and the inexact
ALM and NSA algorithms for a 400 frames video dataset. (∗)

precision is insufficient to show numerical difference.

Although currently we do not have a theoretical proof for
the convergence of our proposed Alternating Minimization al-
gorithm, computational simulations support our claim that it
converges to the desired solution. Future work will focus on
providing a theoretical analysis of our proposed algorithm.
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