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ABSTRACT
Alternating minimization algorithms with a shrinkage step,
derived within the Split Bregman (SB) or Alternating Di-
rection Method of Multipliers (ADMM) frameworks, have
become very popular for `1-regularized problems, including
Total Variation and Basis Pursuit Denoising. It appears to
be generally assumed that they deliver much better compu-
tational performance than older methods such as Iteratively
Reweighted Least Squares (IRLS). We show, however, that
IRLS type methods are computationally competitive with
SB/ADMM methods for a variety of problems, and in some
cases outperform them.

Index Terms— Inverse Problems, Total Variation, Split-
Bregman, Iteratively Reweighted Least Squares

1. INTRODUCTION

The solution of `1-regularized problems such as Total Vari-
ation (TV) [1] and Basis Pursuit Denoising (BPDN) [2] are
of broad interest because they are used to solve a variety of
important problems, including image restoration (image de-
noising, deconvolution, inpainting, etc.), compressed sensing
[3], and classification problems. In general, `1-regularized
problems have the form

min
u

T (u) T (u) = F (u) + λR(u) (1)

where F (·) is the data fidelity term (which depends on the
noise model), R(·) = ‖r(·)‖1 is the regularization term, and
the scalar λ is the regularization parameter. For instance, un-
der a Gaussian noise model, typically F (u) = 1

2‖Au − b‖2
2

where the interpretation of the linear operator A and observed
data b change depending on whether we are solving a TV
problem, for which r(u) = ∇u, or a sparse representation
problem, for which r(u) = u.

While both terms F (·) and R(·) are convex, the devel-
opment of computationally efficient numerical algorithms for
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problem (1) has attracted considerable interest over the past
decade since it has proved to be a difficult problem. In this
paper we focus on numerical algorithms for solving (1) that
are based on the Iteratively Reweighted Least Squares (IRLS)
[4, 5] method and on the Split Bregman (SB) [6] or Alternat-
ing Direction Method of Multipliers (ADMM) [7, 8] methods.

IRLS based methods have been successfully used to solve
problems with the form of (1); in particular, we consider
the Iteratively Reweighted Norm (IRN) algorithm [9] for
the TV case and the Focal Underdetermined System Solver
(FOCUSS) algorithm [10, 11] for the BPDN case. Besides
the good computational performance and convergence proofs
reported in [9, 10, 11], a detailed analysis of IRLS based
methods for sparse representations is presented in [12]. Simi-
larly, the equivalent [13] SB and ADMM methods can solve a
wide variety of problems summarized by (1). In particular, in
the seminal paper [6], the elegance and simplicity of the SB
method, as well as its computational properties are described
and applied to solve the TV and BPDN problems.

It appears that the SB/ADMM method is widely consid-
ered to be the current leader in terms of computational perfor-
mance for `1-regularized problems. We show, however, that
IRLS based methods are computationally competitive with
SB/ADMM methods for the TV and BPDN problems, out-
performing them in several cases. The outline of the paper
is as follows: we summarize the IRLS and SB/ADMM al-
gorithms in Sections 2 and 3 respectively, report and analyze
their computational performance in Section 4, and conclude
in Section 5.

2. IRLS BASED METHODS

Since its introduction [4] the IRLS method has been ap-
plied to a variety of optimization problems. Originally, the
IRLS method was used to solve the `p minimization prob-
lem T (u) = 1

p‖Au − b‖p
p by iteratively approximating it

by a weighted `2 norm. At iteration k the solution u(k+1)

is the minimizer of 1
2‖W

(k)1/2
(Au − b)‖2

2, with weighting



matrix W (k) = diag
(
|Au(k) − b|p−2

)
. For 2 ≤ p ≤ 3

this algorithm converges to the global minimizer [14], while
for 1 ≤ p < 2 the definition of the weighting matrix W (k)

must be modified to avoid numerical instability due to divi-
sion by zero or by a very small value. A standard approach
is to threshold elements of Au(k) − b in constructing the
corresponding elements of W (k), but other choices are also
possible [5, 12]. For 0 < p < 1 it has been shown [12], within
a sparse representation framework, that the IRLS algorithm
not only converges, but increases its convergence rate as p
goes to zero.

2.1. IRLS for TV restoration

Without loss of generality, we will focus on the `2-TV [1]
case: T (u) = 1

2‖Au − b‖2
2 + λR(u), where R(u) =

‖
√

(Dxu)2 + (Dyu)2‖1 is the discrete version of ‖∇u‖1,
with Dx and Dy representing the horizontal and vertical
discrete derivative operators respectively, A is the forward
operator, b is the observed noisy data, λ is a weighting factor
controlling the relative importance of the data fidelity and
regularization terms, and u is the restored image data.

The key idea [9] is to express the regularization term by

the quadratic approximation Q
(k)
R (u) = 1

2‖W
(k)
R

1/2
Du‖2

2,
where W

(k)
R = I2 ⊗ Ω(k)

R , D = [DT
x DT

y ]T , Ω(k)
R =

diag
((

(Dxu(k))2 + (Dyu(k))2
)−0.5

)
, IN is a N ×N iden-

tity matrix and ⊗ is the Kronecker product. The resulting
iterations can be expressed in the form of the standard IRLS
problem:

T (k)(u) =
1
2

∥∥∥∥∥
[

1 0
0 W

(k)
R

]1/2[
A√
λD

]
u−

[
b
0

]∥∥∥∥∥
2

2

.(2)

For a given current solution u(k), the weighting matrix
W

(k)
R can be easily computed, and the threshold τ may be

automatically adapted to the input image to avoid numerical
instability [9, Sec. IV.G]. Finally, the resulting IRN algorithm
has to iteratively solve the linear system(

AT A + λDT W
(k)
R D

)
u(k+1) = AT b, (3)

which is its most computationally demanding part. The same
strategy can be used to solve the `1-TV (also described in [9])
as well other noise models within the TV framework, includ-
ing the vector-valued (color) TV.

2.2. IRLS for sparse representation

The BPDN problem, originally introduced in [2], seeks to de-
compose an input signal via a linear combination of atoms
from an overcomplete dictionary, where the coefficients of
the linear combination are optimized according the sparsity
criterion given by T (u) = 1

2‖Φu − b‖2
2 + λR(u), where

R(u) = ‖u‖1 is the sparsity term, b is the observed signal,
Φ is the dictionary matrix, λ is a weighting factor controlling
the relative importance of the data fidelity and sparsity terms,
and u is the sparse representation.

In [10, 11] the sparsity term is represented by the quadratic

approximation Q
(k)
S (u) = 1

2‖W
(k)
S

1/2
u‖2

2 to solve the
BPDN problem. As for any IRLS type algorithm, the
weighting matrix W

(k)
S = diag((u(k))−1) has to be com-

puted so as to avoid numerical instability. The partic-
ular cost functional in the BPDN problem, however, al-
lows the substitution of an auxiliary variable v defined by

u = W
(k)
S

1/2
v, for which the corresponding quadratic prob-

lem is T (k)(v) = 1
2‖ΦW

(k)
S

−1/2
v − b‖2

2 + λ
2 ‖v‖

2
2 [10, 11].

The expression involving this W
(k)
S raised to a negative power

does not generate any numerical instability, and it has been
shown computationally [10, 11] that the use of the auxiliary
variable helps to reduce the number of conjugate gradient
(CG) iterations needed to solve the resulting linear system
when compared with the number of CG iterations needed to
solve the resulting system that does not use this change of
variable.

The most computationally demanding part of the resulting
FOCUSS algorithm [10, 11] is to solve the linear system

(W (k)
S

−1/2
ΦT ΦW

(k)
S

−1/2
+ λI)v = W

(k)
S

−1/2
ΦT b .(4)

Additionally, as mentioned in [10, 11], depending on charac-
teristics of the overcomplete dictionary Φ, this sub-problem

could be further simplified to solving χ = (ΦW
(k)
S

−1
ΦT +

λI)−1b and then computing v = W
(k)
S

−1/2
ΦT χ .

3. ALTERNATING MINIMIZATION METHODS

Alternating minimization methods have become popular in
the past few years due to their ability to solve `1 regularized
problems (1) in a simple and computationally efficient fash-
ion. Although there are several incarnations of these meth-
ods [13], we focus on the Split-Bregman (SB) [6] algorithm,
while noting that it is now recognized that the SB algorithm is
equivalent to the older Alternating Direction Method of Mul-
tipliers (ADMM) [7, 8] algorithm.

As before, we consider the TV and BPDN problems in
particular. The key idea of the SB method [6] is to introduce
an auxiliary variable to modify the original cost functional
(1) so that it can be iteratively minimized using two steps per
iteration: a generalized Tikhonov problem step, followed by
a shrinkage step. Moreover, after algebraic manipulation, it
can be shown [6] that the iterative minimization of the cost
functional

T (k)(u,v) = F (u)+λ‖v‖1 +
µ

2
‖v − r(u)− b(k)‖2

2 ,(5)



where b(k) = b(k−1) + (r(u(k)) − v(k)) is the cumulative
error, leads to the solution of (1).

3.1. SB for TV restoration

The general SB algorithm can be easily adapted to handle
isotropic TV; among other operations, such as shrinkage and
auxiliary vector updates (which are not computationally de-
manding), the SB-TV algorithm has to solve the linear system(

ATA− µDTD
)
u(k+1) = AT b + µDTD(v(k)−b(k)) .(6)

Note that the left hand side (LHS) of (6) is constant across
different iterations while its right hand side (RHS) changes at
each iteration; the opposite is true for the resulting linear sys-
tem in (3). Furthermore, for the denoising case (A = I) both
linear systems (6) and (3) are block tri-diagonal, but since the
LHS of (6) is constant across iterations (and strictly diago-
nally dominant), it seems natural (as suggested in [6]) to use
the Gauss-Seidel method to solve it; this is not the case for
(3), which is most efficiently solved via the CG algorithm,
typically needing about 4 CG iterations.

One key computational difference between the SB-TV
and the IRN-TV (IRLS based) algorithms is that even though
the number of floating-point operations for each SB-TV iter-
ation is slightly smaller than that of each IRN-TV iteration,
typically the number of global iterations to attain good recon-
struction results for the latter algorithm are typically less than
5 [9] whereas the former are typically greater than 10 [6]. See
Section 4 for numerical simulations that support our claims.

3.2. SB for sparse representation

The BPDN problem can be directly solved by the SB algo-
rithm, as implied by its general derivation (see [6, Sec. 3]).
As for the TV case, the shrinkage and auxiliary vector updates
are not computationally demanding, but the linear system(

λΦTΦ + µI
)
u(k+1) = µv(k) +λΦT (v(k) − b(k)) (7)

is computationally demanding for some applications. We also
note that LHS of (7) is constant across different iterations hav-
ing a block-diagonal Toeplitz structure for some applications
(as the one explored in [6]), while its RHS changes at each
iteration. Moreover in (7) the size of the linear system is
given by the size of ΦT Φ, as well as for (4), although the
trick (change of variable in order to solve a linear system of
size ΦΦT ) can not be efficiently applied for the SB algorithm,
since the variable v(k) would be multiplied by Φ−T .

Finally we mention that, when the dictionary Φ is avail-
able as an explicit matrix (which is usually the case when
the dictionary is learned from the input data), it is possible to
pre-compute an LU factorization of

(
λΦT Φ + µI

)
, allowing

a low computational cost solution to the linear system at each
iteration.

4. EXPERIMENTAL RESULTS

In order to compare the computational performance of the
IRLS and SB based algorithms for TV denoising and BPDN
we have implemented all the described algorithms in Matlab-
only code, as well as in C code (available at [15]) and have
used the implementation provided by the authors of [6] (C
code only [16]) for the `2-TV case. All simulations have been
carried out using the above mentioned code on a 1.73GHz
Intel core i7 CPU laptop (L2: 6144K, RAM: 6G)

Due to space constraints we only present results for
the Matlab-only TV denoising case, but all other simula-
tions can be found at [15]. The observed image b is cor-
rupted with additive Gaussian noise b = u∗ + σ · η, for
σ = {0.05, 0.1, 0.25} where u∗ is one of the original test
images (Lena, Mandrill and Peppers) and η is unit variance
Gaussian noise. In Table 1 we provide the original cost func-
tional T (u) = ‖u − b‖2 + λ · ‖

√
(Dxu)2 + (Dyu)2‖1,

SNR, SSIM [17] and elapsed time at each main iteration only
(due to space constrains) for λ = 0.045 (we take µ = 2λ as
suggested in [6] for the SB case) and for σ = 0.05 (which
corresponds to Figure 1.a).
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Fig. 1. TV denoising cost functional versus time for the IRN-
TV (blue) and SB-TV (red) Matlab-only version algorithms
(10 main iterations). The input image was grayscale Lena
(512×512) corrupted with Gaussian noise (a) with σ = 0.05,
denoised with λ = 0.045, (b) with σ = 0.1, denoised with
λ = 0.065 and (c) with σ = 0.25 , denoised with λ = 0.15.

In Fig. 1 we show a typical evolution of the TV cost
functional per main iteration of the IRN-TV and SB-TV al-
gorithms: the first 3-5 iterations of the former have a steeper
slope than that of the latter; i.e. the IRN-TV reaches the min-
imum in fewer iterations than the SB-TV, and although the
iterations of the former are more costly than those of the lat-
ter, overall the IRN-TV outperforms the SB-TV.

5. CONCLUSIONS

Our experimental results show that (in general) each main it-
eration of the IRN-TV (IRLS based) algorithm takes more



time than one main iteration of the SB-TV; but the cost func-
tional reduction and/or the reconstruction quality of the IRN-
TV algorithm is more pronounced than the SB-TV algorithm
for the first 4 or 5 iterations, giving the former an edge in the
overall computational performance.

Although we do not present here computational results
for the BP case (they can be found at [15], along with C-code
based simulations) the general trend applies: IRLS based
methods tend to have a more computationally expensive main
iteration than SB methods, but they converge faster to the
minimizer (although drastically reducing cost functional re-
duction after some few iterations); this property makes them
computationally competitive with the SB/ADMM methods,
outperforming them in some cases.
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iter.
IRN-TV SB-TV

T (u) SNR SSIM time T (u) SNR SSIM time
-1 – 11.66∗ 0.52∗ – – 11.66 0.52∗ –
0 860∗ 13.99∗ 0.61∗ 0.29 860 13.99 0.61∗ 0.31
1 594∗ 17.35∗ 0.76∗ 0.69 716 15.72 0.68∗ 0.60
2 541∗ 18.30∗ 0.81∗ 1.05 638 16.84 0.73∗ 0.90
3 527∗ 18.48∗ 0.83∗ 1.48 594 17.52 0.77∗ 1.17
4 524∗ 18.49∗ 0.84∗ 1.85 569 17.91 0.80∗ 1.47
5 523∗ 18.46∗ 0.84∗ 2.31 554 18.13 0.81∗ 1.78
6 522∗ 18.45∗ 0.84∗ 2.66 544 18.24 0.82∗ 2.07
7 522∗ 18.44∗ 0.84∗ 3.00 538 18.31 0.83∗ 2.36
8 522∗ 18.43∗ 0.84∗ 3.37 534 18.34 0.83∗ 2.65
9 522∗ 18.42∗ 0.84∗ 3.74 531 18.36 0.84∗ 2.89
10 522∗ 18.42∗ 0.84∗ 4.12 529 18.37 0.84∗ 3.13

Table 1. Experimental results for (Matlab-only) IRN-TV and
SB-TV denoising case. Both algorithms need 3 CG iterations
(in average) to solve (3) and (6). (∗): variation with respect to
the previous iteration is too small to be noticed.


