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ABSTRACT
We propose a simple but flexible method for solving the gen-
eralized vector-valued TV (VTV) functional, which includes
both the `2-VTV and `1-VTV regularizations as special cases,
to address the problems of deconvolution and denoising of
vector-valued (e.g. color) images with Gaussian or salt-and-
pepper noise. This algorithm is the vectorial extension of
the Iteratively Reweighted Norm (IRN) algorithm [1] origi-
nally developed for scalar (grayscale) images. This method
offers competitive computational performance for denoising
and deconvolving vector-valued images corrupted with Gaus-
sian (`2-VTV case) and salt-and-pepper noise (`1-VTV case).

Index Terms— Vector-valued Total Variation, Color im-
age processing

1. INTRODUCTION

While a variety of numerical algorithms for vector-valued reg-
ularization has be proposed [2, 3, 4, 5, 6, 7, 8], the method
proposed in the present paper is based on the Total Variation
(TV) minimization scheme for deblurring color images, first
introduced in [9]. Most of the publications have focused on
the Gaussian noise model, and to the best of our knowledge,
[5] is the only published paper to explicity consider the salt-
and-pepper noise model for color images within a variational
framework.

The `2 vector-valued TV (VTV) regularized solution
(with coupled-channel regularization [10]) of the inverse
problem involving color image data b and forward linear
operator A is the minimum of the functional
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for p = 2, q = 1, n ∈ C = {r, g, b} (note that C could repre-
sent an arbitary number of channels) and notation as follows:
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• un (n ∈ C) is a 1-dimensional (column) or 1D vec-
tor that represents a 2D grayscale image obtained via
any ordering (although the most reasonable choices are
row-major or column-major) of the image pixels.

• u = [(ur)T (ug)T (ub)T ]T is a 1D (column) vector that
represents a 2D color image.

• 1
p‖Au − b‖p

p is the data fidelity term. For the scope
of this paper, the linear operator A is assumed to be de-
coupled, i.e. A is a diagonal block matrix with elements
An and n ∈ C = {r, g, b},

• 1
q

∥∥∥∥√∑
n∈C

(Dxun)2 + (Dyun)2
∥∥∥∥q

q

is the generalization

of TV regularization to color images with coupled
channels (see [10, Section 9], also used in [5, 7, 8]),

• the p-norm of vector u is denoted by ‖u‖p,

• scalar operations applied to a vector are considered to
be applied element-wise, so that, for example, u =
v2 ⇒ u[k] = (v[k])2 and u =

√
v ⇒ u[k] =

√
v[k],

•
√∑

n∈C

(Dxun)2 + (Dyun)2 is the discretization of

|∇u| for coupled channels (see [7, eq. (3)]), and

• horizontal and vertical discrete derivative operators are
denoted by Dx and Dy respectively.

Choosing p = 1 (`1 norm for the fidelity term), q = 1
in (1) leads to `1-VTV, which can be used to remove salt-
and-pepper noise in color images. We also note that if set C
has only one element (i.e. u is a grayscale image) then (1)
represents the scalar TV functional.

In this paper we present an efficient algorithm to minimize
the generalized vector-valued TV functional (1) for the cases
of denoising (A = I in (1)) and decoupled linear operator
A. This algorithm, which is a computationally efficient and
flexible alternative to the extension of [11] described in [5],
can handle any norm with 0 < p, q ≤ 2 (including the `2-
VTV and `1-VTV as special cases) by representing the `p and
`q norms by the equivalent weighted `2 norms.



2. THE VECTOR-VALUED ITERATIVELY
REWEIGHTED NORM APPROACH

2.1. Previous related work

The vector-valued IRN approach is an extension of the IRN
algorithm [1], and is closely related to Iteratively Reweighted
Least Squares (IRLS) method for scalar [12] and vector [13]
valued problems.

2.2. Derivation

In order to replace the `p norm of the fidelity term in (1) by a
weighted `2 norm we define the quadratic functional
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where u(k) is a constant representing the solution of the pre-
vious iteration, F (u) = 1

p‖Au− b‖p
p, and

W
(k)
F = diag

(
τF,εF

(Au(k) − b)
)

. (3)

The function

τF,εF
(x) =

{
|x|p−2 if |x| > εF

εp−2
F if |x| ≤ εF ,

is defined to avoid numerical problems when p < 2 and
Au(k) − b has zero-valued components.

The replacement of the `q norm of the regularization term

R(u) = ‖r‖q
q, r =

√ ∑
n∈{r,g,b}

(Dxun)2 + (Dyun)2

in (1) by a weighted `2 norm is not as straightforward. We
use the notation (vn)2 = (Dxun)2 + (Dyun)2, define Φn =
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ble divisions by zero. Furthermore, we may write ‖vn‖1 =∥∥∥∥ Φ0.5
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is the key idea in [1] for solving the generalized TV for
grayscale images.

For the present case of vector-valued images we first de-

fine Φ = diag
(
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2

)
, then the regulariza-

tion term with q = 1 can be expressed as
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where IN is a N ×N identity matrix and ⊗ is the Kronecker
product. Note that only Φ would change for q 6= 1 and there-
fore (4) is valid for the general case. Defining Φ[k, k] = φ[k],

it is easy to check that ‖Φ0.5vn‖22 =
∑

k

φ[k] (vn[k])2 =∑
k

φ[k] (Dxun[k])2 +
∑

k

φ[k] (Dyun[k])2.

Using the previous equations we may write ‖Φ0.5vn‖22 =
‖Φ0.5Dxun‖22 + ‖Φ0.5Dyun‖22 and thus

R(u) =
∥∥W 0.5

R Du
∥∥2

2
, (5)

where WR = I6 ⊗ Φ and D = I3 ⊗ [DxT DyT ]T . It is im-
portant to emphasize that (5) is not the anisotropic separable
approximation.

Now, we may replace the `q norm of the regularization
term in (1) by a weighted `2 norm by means of
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where u(k) is a constant representing the solution of the pre-
vious iteration. As in the case of the data fidelity term, care
needs to be taken when q < 2 and v2

n = (Dxun)2+(Dyun)2

has zero-valued components. We therefore define

τR,εR
(x) =

{
|x|(q−2)/2 if |x| > εR

ε
(q−2)/2
R if |x| ≤ εR,

(7)

and set Φ(k) = diag
(
τR,εR

(
(v(k)

r )2 + (v(k)
b )2 + (v(k)

b )2
))

.
The threshold values εF and εR may be automatically adapted
to the input image; for details see Section IV.G in [1].

2.3. Algorithm

The vector-valued IRN algorithm for a general case is sum-
marized in Algorithm 1. As for scalar IRN [1] there is a sig-
nificative variant for the denoising-only case, which delivers
both improved time and SNR performance than the general
case, furthermore it has a better SNR / accuracy ratio (de-
tails [1, Sec. IV.E] are omitted here due to space constraints).
While not done so here, this algorithm can easily be extended
to handle a coupled forward operator A in (1).

3. RESULTS

We compare the performance of the vector-valued IRN al-
gorithm for `1 and `2 VTV denoising and deconvolution
with that of three alternative variational approaches, which
we refer to as `1/`2-MS1, `1/`2-VLD2, and FDM3. The test
color images are the “Lena” (256 × 256 pixel), “Peppers”
and “Mandrill” (both 512 × 512 pixel) images. All simu-
lations have been carried out using Matlab-only code on a
1.83GHz Intel Dual core CPU. Results corresponding to the

1An approximation of the Mumford-Shah functional, see (9) in [5].
2Vectorial lagged diffusivity, an extension of [11] used in [5] for VTV.
3See [14], an implementation of the fast dual minimization of VTV [7].



(a) Blur and 10% salt and pepper noise (b) `1-MS [5] reconstruction (c) `1-VTV IRN reconstruction
Fig. 1. Deconvolution with 10% salt and pepper noise and with Gaussian noise (σ2 = 10−5) via [5] and VTV-IRN.
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end

Algorithm 1: Vector-valued IRN algorithm.

vector-valued IRN algorithm presented here may be repro-
duced using the the NUMIPAD (v. 0.22) distribution [15], an
implementation of IRN and related algorithms.

SNR (dB) Time (s)
Image Noise `1-MS `1-VLD IRN `1-MS `1-VLD IRN

Lena 10% 11.1 11.2 21.8 376 92 79.2
30% 11.1 11.0 19.2 375 91 82.9

Table 1. Deconvolution performance comparison between
`1-MS and `1-VLD [5] methods and vector-valued IRN al-
gorithm (`1-VTV case), on the “Lena” test color image.

The “Lena” image was used for the deconvolution case
(to match one of the experiments described in [5]) and was
blurred by a 7 × 7 out-of-focus kernel (generated by the
Matlab command fspecial(’disk’,3.2)) and then
corrupted with Gaussian additive noise or salt-and-pepper
noise. Reconstruction SNR values and computation times
are compared in Table 1 (deconvolution with the salt-and-
pepper noise model) and Table 2 (deconvolution with the
Gaussian noise model), and noisy and reconstructed images
are displayed in Figs. 1(a) to 1(c) for deconvolution with the
salt-and-pepper noise model. The vector-valued IRN has a

SNR (dB) Time (s)
Image Noise (σ2) `2-MS `2-VLD IRN `2-MS `2-VLD IRN

Lena
1.0e-5 10.0 10.0 19.2 270 89 20.3
1.0e-4 6.7 7.9 17.1 363 88 16.7
2.5e-3 1.3 7.1 14.5 367 88 14.1

Table 2. Deconvolution performance comparison between
`2-MS and `2-VLD [5] methods and vector-valued IRN al-
gorithm (`2-VTV case), on the “Lena” test color image.

better computational performance and gives significantly bet-
ter results, both in terms of SNR and visual quality than the
`1/`2-MS or `1/`2-VLD methods described in [5]. (Despite
using the parameters values in [5, Table IV], we obtained
different performance results, which we assume is due to
differences in other parameters in the code provided to us.)

The “Peppers” and “Mandrill” images were used for the
denoising only case and were corrupted with Gaussian addi-
tive noise or salt-and-pepper noise. Reconstruction SNR val-
ues and computation times are shown in Table 3 and noisy and
reconstructed images are displayed in Figs. 2(a) to 2(d) for
`1-VTV denoising, computed via the vector-valued IRN al-
gorithm. Table 4 presents the results of comparing the vector-
valued IRN and FDM for the `2-VTV denoising case, where
the latter has better computational performance, but SNR val-
ues and visual quality are about the same for both methods.

4. CONCLUSIONS

The vector-valued IRN algorithm gives very good reconstruc-
tion quality for the `2 and `1-VTV deconvolution/denoising
problems, with a superior computational performance than
the only other published `1-VTV algorithm of which we are
aware (the vectorial extension of [11] used in [5]). The FDM
method [7, 14] for `2-VTV denoising has a better time perfor-
mance, but it can not handle the `1-VTV case or a non-trivial
forward operator A.
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SNR (dB) Time (s)
Image Noise IRN IRN

Peppers 10% 19.7 48.4
30% 16.0 54.4

Mandrill 10% 10.1 46.7
30% 8.6 53.5

Table 3. Denoising performance results for `1-VTV, com-
puted via the vector-valued IRN algorithm, on the “Peppers”
and “Mandrill” test color images.

SNR (dB) Time (s)
Image Noise (σ2) FDM IRN FDM IRN

Peppers 2.5e-3 20.7 20.2 7.4 12.7
1.0e-2 17.9 17.4 13.0 15.1

Mandrill 2.5e-3 14.5 12.1 6.5 12.8
1.0e-2 9.9 9.1 8.4 16.2

Table 4. Denoising performance results for `2-VTV, com-
puted via the FDM [14] method and the vector-valued IRN
algorithm, on the “Peppers” and “Mandrill” test color images.

(a) 10% salt and pepper noise (b) `1-VTV IRN denoising

(c) 10% salt and pepper noise (d) `1-VTV IRN denoising

Fig. 2. Denoising with 10% salt and pepper noise.
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