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Abstract—Replacing the `2 data fidelity term of the standard
Total Variation (TV) functional with an `1 data fidelity term
has been found to offer a number of theoretical and practical
benefits. Efficient algorithms for minimizing this `1-TV functional
have only recently begun to be developed, the fastest of which
exploit graph representations, and are restricted to the denoising
problem. We describe an alternative approach that minimizes
a generalized TV functional, including both `2-TV and `1-TV
as special cases, and is capable of solving more general inverse
problems than denoising (e.g. deconvolution). This algorithm is
competitive with the graph-based methods in the denoising case,
and is the fastest algorithm of which we are aware for general
inverse problems involving a non-trivial forward linear operator.

Index Terms—image restoration, inverse problem, regulariza-
tion, total variation

I. INTRODUCTION

Total Variation (TV) regularization has evolved from an
image denoising method [1] into a more general technique
for inverse problems [2], including deblurring [3], [4], blind
deconvolution [5] and inpainting [6]. The standard `2-TV
regularized solution of the inverse problem involving data b
and forward linear operator A (the identity in the case of
denoising) is the minimum of the functional

T (u) =
1
p

∥∥∥∥Au− b
∥∥∥∥p
p

+
λ

q

∥∥∥∥√(Dxu)2 + (Dyu)2
∥∥∥∥q
q

, (1)

for p = 2, q = 1, and notation as follows:
• 1

p‖Au− b‖pp is the data fidelity term,
• 1

q‖
√

(Dxu)2 + (Dyu)2‖qq is the regularization term,
• the p-norm of vector u is denoted by ‖u‖p,
• scalar operations applied to a vector are considered to be

applied element-wise, so that, for example, u = v2 ⇒
uk = v2

k and u =
√

v⇒ uk =
√
vk,

•
√

(Dxu)2 + (Dyu)2 is the discretization of |∇u|, and
• horizontal and vertical discrete derivative operators are

denoted by Dx and Dy respectively.
A significant recent development has been to use the `1 norm
for the fidelity term, corresponding to choosing p = 1, q = 1
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in (1). This `1-TV functional [7], [8], [9], [10] has attracted
attention due to a number of advantages, including superior
performance with impulse noise [11].

The Iteratively Reweighted Norm (IRN) algorithm presented
here minimizes the generalized TV functional (1), which
includes the `2-TV and `1-TV as special cases, by representing
the `p and `q norms by the equivalent weighted `2 norms.
This algorithm is computationally efficient as well as simple
to understand and implement. In this paper we expand on
our previous results [12], [13] and provide a detailed analysis
of the IRN algorithm, including proof of convergence, the
development of an Inexact Newton (IN) method [14], [15],
[16], and strategies for setting algorithm-specific parameters.

II. ALGORITHMS FOR `2-TV AND `1-TV

In this section, we provide a summary of the most important
algorithms for minimizing the `2-TV and `1-TV functionals. In
general, there are several types of numerical algorithms, based
on (i) Euler-Lagrange equations (smooth approximation to the
Euclidean norm of the gradient), (ii) primal-dual optimization
methods (also called projection methods, first introduced in
[17]), and (iii) binary Markov Random Field (MRF) optimiza-
tion. Most recent algorithms based on a dual formulation [18],
[19], or on a binary MRF optimization [20], [21], [22], [23]
do not need to solve a linear system of equations, but lack the
ability to handle a nontrivial forward operator A in (1), and are
therefore restricted to the denoising problem. We use smooth
approximation of the `1 norm to describe the approximation
of |∇u| by

√
|∇u|2 + ε2, or by the Huber function [24],

and anisotropic separable approximation [25] refers to the
approximation |∇u| = |Dxu|+ |Dyu| .

A. `2-TV Numerical Algorithms

• Artificial time marching / steepest descent [1],[26, Al-
gorithm 8.2.1]: Uses a smooth approximation of the `1

norm. Needs a linear solver. A in (1) may be nontrivial.
May use a line-search to resolve the time-step. Slow
compared to all other algorithms.

• Primal-dual method [17]: Uses a smooth approximation
of the `1 norm. Needs a linear solver. A in (1) may be
nontrivial.

• Lagged-diffusivity [3], [4], [26]: Uses a smooth approx-
imation of the `1 norm. Needs a linear solver. A in (1)
may be nontrivial.

• Newton’s method [26]: Uses a smooth approximation of
the `1 norm. Needs a linear solver. A in (1) may be
nontrivial. Needs a line-search to resolve the time-step.
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• Chambolle [18]: Doesn’t need a linear solver. Formula-
tion is in dual space (different approach than primal-dual
method [17]). A in (1) is the identity.

• Aujol’s `2-TV approximation or A2BC model [19]:
Doesn’t need a linear solver. Uses Chambolle’s projection
method. A in (1) is the identity.

• Majorization-Minimization (MM) method [27], [28]: A in
(1) may be nontrivial. Needs a linear solver. (The MM
algorithm [29] can be considered a generalization of the
Expectation-Maximization (EM) algorithm [30].)

• TwIST method [31]: Similar to MM method described
above. Uses a predetermined Preconditioned CG (PCG)
splitting method.

• FTVd method [32]: FFT based algorithm to solved the
deconvolution TV problem for nontrivial A in (1).

• Linear programming via interior point method [33]:
Needs a linear solver. A in (1) may be nontrivial. Due to
non-negativity constraints, the linear system to be solved
has twice as many variables as the original problem.

B. `1-TV Numerical Algorithms

• Standard approximation for `1-TV [10], [11]: Uses a
smooth approximation of the `1 norm. Similar to the
artificial time marching algorithm for `2-TV. A in (1)
may be nontrivial. May use a line-search to resolve the
time-step. Slow compared to all other algorithms.

• Chambolle’s MRF (Markov Random Field) model [20]:
Doesn’t need a linear solver. Operates over integer-valued
images. A in (1) is the identity. Uses the anisotropic
separable approximation. Similar ideas in [21], [22], [23],
related to earlier algorithm in [34].

• Second-Order Cone Programming [35]: Needs a linear
solver. A in (1) may be nontrivial. Memory requirements
are high.

• Darbon-Sigelle’s graph-cut method [21], [22]: Doesn’t
need a linear solver. Operates over integer-valued images.
A in (1) is the identity. Uses the anisotropic separable
approximation. Similar ideas in [20], [23].

• Aujol’s `1-TV approximation [19]: Doesn’t need a linear
solver. Uses the anisotropic separable approximation. A
in (1) is the identity.

• Linear programming via interior point method [33]:
Needs a linear solver. A in (1) may be nontrivial. Due to
non-negativity constrains, the linear system to be solved
has four times as many variables as the original problem.

• Goldfarb-Yin parametric maximum flow [23], [36]:
Doesn’t need a linear solver. Operates over integer-valued
images. Uses the anisotropic separable approximation. A
in (1) is the identity. Similar ideas in [20], [21].

III. TECHNICALITIES

We represent 2-dimensional images by 1-dimensional vec-
tors, obtained via any ordering (although the most reasonable
choices are row-major or column-major) of the image pixels.
The choice of ordering has no impact on the linear algebra,
but the corresponding linear operators must be structured

accordingly, which can affect the computational efficiency of
a specific implementation of the derived algorithms.

The difference operators Dx and Dy are defined by applying
the same one-dimensional discrete derivative along image rows
and columns respectively. There are several possible choices
for this operator (e.g. forward/backward difference, central
difference, [37, Ch. 3]) and several choices of how to handle
the boundary conditions (zero boundary conditions, periodic
boundary conditions, reflective/anti-reflective boundary con-
ditions [38]). Throughout this paper we use one of the two
following definitions for the discrete derivative of u ∈ RN :
• backward difference operator and fourth order difference

operator with zero boundary conditions for endpoints

Du =
{
uk+1 − uk k ∈ {0, 1, . . . , N − 2}
(−uN−3 + 8uN−2)/12 k = N − 1

• backward difference operator and half-sample symmetric
boundary conditions for endpoints

Du =
{
uk+1 − uk k ∈ {0, 1, . . . , N − 2}
0 k = N − 1 .

The choice of the boundary conditions may have a dramatic
impact in the quality of the reconstruction, particularly close
to the boundaries [38]. Empirically, we have found that for
some specific images the second definition gives a superior
performance in terms of reconstruction SNR. Nevertheless,
if large values are needed for the regularization parameter
λ, the first definition is preferred due to invertibility of the
diffusion operator DT

xDx+DT
y Dy . In general both definitions

give similar SNR results and time-performance, and unless
specifically mentioned, we make no distinction between them.

Except where specified otherwise, test program run times
were obtained on a 3GHz Intel Pentium 4 processor with
1024K if L2 cache and 2G of RAM. All of the results
presented here may be reproduced using the scripts in the
interfaces/matlab/tip subdirectory of the NUMIPAD
distribution [39], an open-source implementation of IRN and
related algorithms. The original 512× 512 pixel Peppers and
Goldhill test images and the denoised/deconvolved ones from
which these results were generated are also available [39] in
file nmp_tip2008_images.tgz.

IV. ITERATIVELY REWEIGHTED NORM APPROACH

A. Previous Related Work

The IRN approach is closely related to the Iteratively
Reweighted Least Squares (IRLS) method [40], [41], [42],
[43], [44]. (Similar ideas have also been applied [45], [46] to
solving the Basis Pursuit and Basis Pursuit denoising problems
[47] for sparse representations.) IRLS minimizes the `p norm

F (u) =
1
p

∥∥∥∥Au− b
∥∥∥∥p
p

(2)

for p ≤ 2 by approximating it, within an iterative scheme, by
a weighted `2 norm. At iteration k the solution u(k) is the
minimizer of 1

2‖W
(k)1/2

(Au − b)‖22, with weighting matrix
W (k) = diag

(
|Au(k) − b|p−2

)
, and the iteration

u(k+1) =
(
ATW (k)A

)−1

ATW (k)b,
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which minimizes the weighted version of (2) using the weights
derived from the previous iteration, converges to the minimizer
of F (u) [44].

When p < 2, the definition of the weighting matrix W (k)

must be modified to avoid the possibility of division by zero.
For p = 1, it may be shown [43] that the choice

W (k)
n,n =

{
|r(k)n |−1 if |r(k)n | ≥ ε
ε−1 if |r(k)n | < ε ,

where r(k) = Au(k) − b, and ε is a small positive number,
guarantees global convergence to the minimizer of

∑
n ρε(rn),

where
ρε(rn) =

{
ε−1r2n if |rn| ≤ ε2
2|rn| − ε if |rn| > ε2

is the Huber function [24].
It should also be noted that, after development of this

algorithm, first published in [12], we became aware of an
independent approach restricted to the `2-TV problem [27],
developed within the Majorization-Minimization framework
[29], which results in a similar algorithm to IRN for the p = 2,
q = 1 case, but was not extended to the general problem.

B. Data Fidelity Term

The data fidelity term of the generalized TV functional (1)
is the same as the term that the IRLS functional (2) seeks to
minimize. In order to replace the `p norm by a `2 norm, we
define the quadratic functional

Q
(k)
F (u) =

1
2

∥∥∥∥W (k)
F

1/2
(Au− b)

∥∥∥∥2

2

+
(

1− p

2

)
F (u(k)), (3)

where u(k) is a constant representing the solution of the
previous iteration, F (·) is defined in (2), and

W
(k)
F = diag

(
τF,εF (Au(k) − b)

)
. (4)

Following a common strategy in IRLS type algorithms [41],
the function

τF,εF (x) =
{
|x|p−2 if |x| > εF
εp−2
F if |x| ≤ εF ,

(5)

is defined to avoid numerical problems when p < 2 and
Au(k) − b has zero-valued components. In Section IV-G we
propose an automated method for choosing the threshold εF .

The constant (with respect to u) term
(
1− p

2

)
F (u(k)) is

added in (3) so that, neglecting numerical precision issues in
(3) and (4),

F (u(k)) = Q
(k)
F (u(k)) (6)

as εF → 0. In other words, the weighted `2 norm tends to the
original `p norm fidelity term at u = u(k). The bound (see
the appendix of [44])

F (u) < Q
(k)
F (u) ∀u 6= u(k) p ≤ 2, (7)

and the Fréchet derivatives of F (u) and Q(k)
F (u)

∇uF (u) = AT (Au− b)p−1

∇uQ
(k)
F (u) = ATW

(k)
F (Au− b) .

play an important role in the convergence proof in Sec-
tion IV-F. Observe also that

∇uF (u)|u=u(k) = ∇uQ
(k)
F (u)|u=u(k) (8)

when εF → 0, and note that the original fidelity term in (2) and
its quadratic version in (3) have the same value and tangent
direction at u = u(k).

C. Regularization Term

It is not quite as obvious how to express the TV regulariza-
tion term from (1)

R(u) =
1
q

∥∥∥∥√(Dxu)2 + (Dyu)2
∥∥∥∥q
q

(9)

as a weighted `2 norm. Given vectors ξ and χ, and diagonal
matrix ΩR with entries ωk we have∥∥∥∥∥

(
Ω1/2
R 0
0 Ω1/2

R

)(
ξ
χ

)∥∥∥∥∥
2

2

=
∑
k

ωkξ
2
k + ωkχ

2
k,

so that when ΩR = diag
((

ξ2 + χ2
)(q−2)/2

)
, we have∥∥∥∥∥

(
Ω1/2
R 0
0 Ω1/2

R

)(
ξ
χ

)∥∥∥∥∥
2

2

=
∥∥∥∥√ξ2 + χ2

∥∥∥∥q
q

.

We therefore set ξ = Dxu, χ = Dyu, and define the matrices

D =
(
Dx

Dy

)
W

(k)
R =

(
Ω(k)
R 0
0 Ω(k)

R

)
(10)

Ω(k)
R = diag

((
(Dxu(k))2 + (Dyu(k))2

)(q−2)/2
)

which gives the desired term∥∥∥∥W (k)
R

1/2
Du
∥∥∥∥2

2

=

∥∥∥∥∥∥
 Ω(k)

R

1/2
0

0 Ω(k)
R

1/2

( Dx

Dy

)
u

∥∥∥∥∥∥
2

2

.

It is important emphasize that is not the anisotropic separable
approximation [25].

Now, define the quadratic functional

Q
(k)
R (u) =

1
2

∥∥∥∥W (k)
R

1/2
Du
∥∥∥∥2

2

+
(

1− q

2

)
R(u(k)), (11)

where u(k) is a constant representing the solution of the
previous iteration. As in the case of the data fidelity term,
care needs to be taken when q < 2 and (Dxu)2 +(Dyu)2 has
zero-valued components. We therefore define

τR,εR(x) =
{
|x|(q−2)/2 if |x| > εR
0 if |x| ≤ εR,

(12)

and set

Ω(k)
R = diag

(
τR,εR

(
(Dxu(k))2 + (Dyu(k))2

))
, (13)

so that
R(u(k)) = Q

(k)
R (u(k)) (14)

when εR → 0. Note that τR,εR sets values smaller than the
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threshold, εR, to zero, as opposed to τF,εF , which sets values
smaller than the threshold, εF , to εp−2

F . The motivation for this
choice is that a region with very small or zero gradient should
be allowed to have zero contribution to the regularization term,
rather than be clamped to some minimum value. In practice,
however, this choice does not give significantly different
results than the standard IRLS approach represented by τF,εF .

We now consider some results required for the convergence
proof in Section IV-F, starting with a proof that

R(u) < Q
(k)
R (u) ∀u 6= u(k) q ≤ 2. (15)

This is easily shown by defining the scalar functions

f(vn) =
1
q

(vn)
q
2

g(k)(vn) =
1
2

(
v(k)
n

) q
2−1

vn + (1− 0.5q)f
(
v(k)
n

)
.

Function g(vn) defines a line tangent to f(vn) at vn = v
(k)
n ,

and since q ≤ 2, function f(vn) is concave, so that f(vn) ≤
g(k)(vn) ∀vn, with equality only for vn = v

(k)
n . Let v =

(Dxu)2 + (Dyu)2, and define R(u) and Q(k)
R (u) as

R(u) =
∑
n

f(vn) Q
(k)
R (u) =

∑
n

g(vn)

which are equivalent to definitions in (9) and (11), and imply
(15). Some algebraic manipulation is needed to compute the
Fréchet derivatives of R(u) and Q(k)

R (u)

∇uR(u) = (DT
x ΩDx +DT

y ΩDy)u

∇uQ
(k)
R (u) = DTW

(k)
R Du,

where Ω = diag
((

(Dxu)2 + (Dyu)2
)(q−2)/2

)
. Note that the

weighting matrix Ω for ∇R(u) does not have the superscript
(k) and is the result of re-arranging the terms when computing
the gradient. It is straightforward to check that

∇uR(u)|u=u(k) = ∇uQ
(k)
R (u)|u=u(k) (16)

when εR → 0. As for the fidelity term, note that the original
regularization term (9) and its quadratic version (11) have the
same value and tangent direction at u = u(k).

D. General Algorithm

Combining the terms described in Sections IV-B and IV-C,
gives the functional

T (k)(u) =
1
2

∥∥∥∥W (k)
F

1/2
(Au− b)

∥∥∥∥2

2

+
λ

2

∥∥∥∥W (k)
R

1/2
Du
∥∥∥∥2

2

+ C(u(k)) (17)

where C(u(k)) combines the constants, with respect to u, in
(3) and (11). (This functional may be expressed as

T (k)(u) =
1
2

∥∥∥W (k)1/2
(
Ãu− b̃

)∥∥∥2

2
+ C(u(k)), (18)

where

W (k) =

(
W

(k)
F 0
0 W

(k)
R

)
, Ã =

(
A√
λD

)
, and b̃ =

(
b
0

)
,

which has the same form as a standard IRLS problem, but
differs in the computation of the weighting matrix.) Since (17)
represents a quadratic functional, the gradient and Hessian

∇uT
(k)(u) =

(
ATW

(k)
F A+ λDTW

(k)
R D

)
u

+ATW (k)
F b (19)

∇2
uT

(k)(u) = ATW
(k)
F A+ λDTW

(k)
R D (20)

are easily derived.
The resulting procedure to iteratively minimize (17), derived

by setting (19) equal to zero, is summarized in Algorithm 1.
This algorithm does not include an explicit termination con-
dition since a number of possibilities exist, depending on the
specific problem context. The obvious choice is based on the
fractional change of the functional value at each iteration, but
we note that a smaller functional cost does not always imply
a better reconstruction quality. For the experiments reported
here, we have utilized a fixed number of iterations, which
simplifies comparisons across variations in other parameters.

While functional (1) does not necessarily have a unique
minimizer when p, q ≤ 1, functional (17), being quadratic,
has a unique minimizer for all p, q ≤ 2 at each iteration
of the IRN algorithm. When solving a problem without a
unique minimizer, the solution found by the IRN algorithm
will depend on the initial solution and the trajectory followed
by the iterations, which depends on parameters εF and εR, and
on the accuracy with which the linear system derived from the
gradient of (17) is solved at each iteration.

Inputs Linear operator: A Noisy image: b
Initialize

u(0) =
(
ATA+ λDTD

)−1
ATb

for k = 0, 1, ...

W
(k)
F = diag

(
τF,εF (Au(k) − b)

)
Ω(k)
R = diag

(
τR,εR

(
(Dxu(k))2 + (Dyu(k))2

))
W

(k)
R =

(
Ω(k)
R 0
0 Ω(k)

R

)
u(k+1) =

(
ATW

(k)
F A+ λDTW

(k)
R D

)−1

ATW
(k)
F b

end
Algorithm 1: IRN algorithm - General case. (Matrix D is
defined in (10)).

The matrix inversion in Algorithm 1 can be achieved using
the Conjugate Gradient (CG) or a Preconditioned CG (PCG)
method such as Jacobi line relaxation (JLR) or symmetric
Gauss-Seidel line relaxation (SLGS) [48]. We have found that
a significant speed improvement per iteration may be achieved
by starting with a high CG (PCG) tolerance which is decreased
with each main iteration until a preset value is reached.
This behavior (i.e. speed improvement and better quality
reconstruction for variable CG/PCG tolerance) is observed for
other iterative methods, such as Newton’s method [14].
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Ideas described above led to the implementation of an
Inexact Newton (IN) method [14], [15], [16] to solve the
linear system described in the Algorithm 1, in which the
tolerance is automatically adapted at each iteration [49]. First
we notice that u(k+1) may be found via Newton’s method
[15, Ch. 5]. Setting (19) to zero and noting that ∇2

uT
(k)(u) =

ATW
(k)
F A+ λDTW

(k)
R D, then(

∇2
uT

(k)(u)
)
u(k+1) = ATW

(k)
F b,

and by adding and subtracting the Hessian times a current
estimate for the solution we get

(
∇2

uT
(k)(u)

)
u(k+1,n+1) =

ATW
(k)
F b +

(
∇2

uT
(k)(u)

)
u(k+1,n)−

(
∇2

uT
(k)(u)

)
u(k+1,n).

After some algebraic manipulation we obtain the Newton form

u(k+1,n+1) = u(k+1,n) −
(
∇2

uT
(k)(u)

)−1

∇uT
(k)(u). (21)

While this equation resembles the core equation of the
Lagged-Diffusivity (LD) algorithm for `2-TV (particularly the
description found in [26]), we emphasize that IRN is not
simply a generalization of the LD algorithm. The derivation
of the LD method is motivated by finding the gradient of
TLD(u) = 1

2‖Au − b‖22 + λψ
(
(Dxu)2 + (Dyu)2

)
where a

choice such as ψ (v) =
√

v2 + ε2 gives a smooth approxima-
tion to the square root, whereas the IRN method is motivated
by finding the gradient of (17), leading to a different choice
of weighting matrix. In addition, the substitution described
in IV-E (first described in [12], [13]), which has a dramatic
impact in the computational and quality performance of the
IRN method for `1-TV denoising, has no obvious motivation
within the LD framework.

Auto tol.
Var. tol.

Fixed tol.

Iteration number

SN
R

(d
B

)

54321

24

22

20

18

16

14

12

10

8

Fig. 1. `1-TV deconvolution SNR values against algorithm iteration number
with λ = 10−3 and for fixed (10−13), variable (hand-tuned, exponentially
decreasing between 10−8 and 10−13) and auto (via the Inexact Newton
method) CG tolerance. Input image was Peppers, convolved with a blurring
Gaussian filter and then corrupted with salt and pepper noise (10% of pixels,
SNR 1.2dB).

Algorithm 2 summarizes how the IRN approach takes
advantage of the IN method. Details of the full derivation are
not provided here since they correspond to simple algebraic
manipulation of (21), following the descriptions found in [14],
[15], [49]. Once again, we do not include any fixed condition
to stop the main iteration and leave it open to accommodate the

particular needs of a specific problem. However, we do include
a simple condition to terminate the inner loop in Algorithm
2; this condition, proposed in [49], along with the constants
defined in Algorithm 2, adapts the tolerance used to solve the
linear system at every outer and inner loop.

To show the differences between Algorithm 1 and 2, and
emphasize the effect of different CG tolerance policies, we `1-
TV deconvolved a blurred and noisy version of the Peppers im-
age using three different choices of regularization parameter λ
(0.75, 1.0 and 1.25), employing a fixed CG tolerance (10−13),
a variable hand-tuned CG tolerance (exponentially decreasing
between 10−8 and 10−13) and variable auto-adapted CG tol-
erance (via the IN method, with αG, αL = 1.3, see Algorithm
2). The blurred and noisy Peppers image was constructed
by convolving the noise-free Peppers image by a separable
smoothing filter having 9 taps and approximating a Gaussian
with standard deviation of 2 (i.e. exp(−k2/2 ·σ2)/2πσ2 with
k ∈ [−4, 4] and σ = 2), and then corrupting the result with
salt and pepper noise (10% of the pixels), giving an image
with an SNR of 1.4dB with respect to the original. Fig. 1
and Table I display the reconstruction qualities and run times
respectively for λ = 10−3 (similar results are obtained for
10−2 and 10−1) and the three CG accuracy policies of the
simulation previously described. Clearly when a variable CG
tolerance policy is used, the reconstruction quality is not only
improved, but the elapsed time is reduced, independent of
parameter λ. Similar results are obtained for other images.

In Fig. 2 we show the evolution for the automatically
adapted tolerance when solving the problem described for
Fig. 1, with variable (exponentially decreasing between 10−8

and 10−13) and fixed (10−13) CG tolerances shown for com-
parison. Note that the automatically adapted tolerance rapidly
decreases the tolerance to 10−13 within a few iterations.
Although these different approaches do not have a significant
impact on the reconstruction quality, there are noticeable
differences in the elapsed time (see Table I), the hand-tuned,
exponentially decreasing CG accuracy policy being about 15%
faster than the IN method accuracy, both of which significantly
outperform the fixed accuracy policy. While careful hand
tuning of the accuracy evolution strategy can improve upon
that of the IN method, it represents a very useful method when
hand tuning is not practical, or to provide a good starting point
for subsequent hand tuning.

E. Denoising Algorithm

In the case of the denoising problem, when A = I and p 6= 2
(i.e. not applicable for `2-TV since matrix WF will be equal
to the identity), we may apply the substitution v = W

1/2
F u in

(17) giving

T (v) =
1
2

∥∥∥v −W 1/2
F b

∥∥∥2

2
+
λ

2

∥∥∥W 1/2
R DW

−1/2
F v

∥∥∥2

2
,

with solution

v =
(
I + λW

−1/2
F DTWRDW

−1/2
F

)−1

W
1/2
F b. (22)

This substitution not only gives a better time performance
than the general algorithm (see Table II) but the resulting
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Inputs Linear operator: A Noisy image: b
Constants

η(k,0) = 0.5 (initial tolerance for SOLVER)

αG, αL = (1 +
√

5)/2 (see [49])
γG, γL = 0.5

Initialize

u(0) =
(
ATA+ λDTD

)−1
ATb

for k = 0, 1, ...

W
(k)
F = diag

(
τF,εF (Au(k) − b)

)
b(k) = W

(k)
F b

r(k) =
(
∇2

uT
(k)(u)

)
u(k) − b(k)

η(k) = γG

( ∥∥r(k)
∥∥∥∥b(k)
∥∥
)αG

(global tolerance)

u(k+1,0) = b(k)

b(k,0) =
(
∇2

uT
(k)(u)

)
b(k) − b(k)

x(k,0) = SOLVER(∇2
uT

(k)(u),b(k,0), η(k,0))

u(k+1,1) = u(k,0) − x(k+1,0)

for n = 1, 2, ...

b(k,n) = b(k,n−1) −Ax(k,n−1)

if

(∥∥b(k,n)
∥∥

‖b‖
< η(k)

)
{u(k+1) = u(k+1,n) , BREAK }

η(k,n) = γL

( ∥∥b(k,n)
∥∥∥∥b(k,n−1)
∥∥
)αL

x(k,n) = SOLVER(∇2
uT

(k)(u),b(k,n), η(k,n))

u(k+1,n+1) = u(k+1,n) − x(k,n)

end

end
Algorithm 2: IRN algorithm via Inexact Newton. SOLVER is
any procedure to solve a linear system, e.g. CG, PCG, IN,
where η(k,n) sets its tolerance. ∇2

uT
(k) is defined in (20).

linear system (22) to be solved in the `1-TV case is better
conditioned than (19) or (21) which need to be solved for the
general case, and thus its accuracy requirements can be looser.

In a similar fashion to Algorithm 1, the denoising IRN
algorithm can be adapted to take advantage of an auto-adapted
tolerance policy through the Inexact Newton method. Neither
the derivation of this procedure (denoising IRN algorithm via
Inexact Newton) nor the algorithm itself are listed here since it
is a simple exercise of setting A = I in (20) and (21) and then
applying the change of variable described in Section IV-E.

Applying this modification to the general algorithm of
Section IV-D for `1-TV denoising was found to result in a
very large reduction in the required number of CG iterations,
and also in increased reconstruction quality. The advantages
of the denoising-specific algorithm over the general algorithm

Auto tol.
Var. tol.

Fixed tol.

Iteration number

C
G

A
cc

ur
ac

y

54321

1.0e-08

1.0e-09

1.0e-10

1.0e-11

1.0e-12

1.0e-13

Fig. 2. Evolution of the three different the CG accuracy policies for
simulation described in Fig. 1.

Iter.
Method

1 2 3 4 5

Fixed tol. 66.3 173.7 283.7 362.0 418.6
Var tol. 18.8 41.2 66.8 100.4 150.1
Auto tol. 24.7 67.2 86.3 141.6 181.9

TABLE I
`1-TV DECONVOLUTION ELAPSED TIME (S) AGAINST ALGORITHM

ITERATION NUMBER, CORRESPONDING TO THE SIMULATION DESCRIBED
IN FIGURE 1.

(Section IV-D) are clearly observed in Figures 3 and 4,
computed using the Goldhill image corrupted with salt and
pepper noise (10% of pixels). The denoising-specific algorithm
not only outperforms the general algorithm in the number
of CG iterations needed (and thus in time-performance —
about 10 seconds compared with about 120 seconds) but in
reconstruction quality as well. The general algorithm used a
fixed CG accuracy policy (10−6) whereas for the denoising-
specific algorithm we used 3 different policies: fixed (10−5),
exponentially decreasing between 10−3 and 10−5, and auto-
accuracy via the Inexact Newton method. The high accuracy
used by the general algorithm is needed in order to attain
a comparable SNR reconstruction quality. These results (re-
duction in CG iterations and improved SNR) are observed
independent of the λ parameter and CG accuracy policy.

To the best of our knowledge the Goldfarb-Yin parametric
maximum flow algorithm [23] for `1-TV denoising is the
fastest implementation available, with better time performance
than Chambolle’s MRF model [20] and Darbon-Sigelle’s
graph-cut method [21], [22]. In Table III we compare the
time-performance of the IRN algorithm and the Goldfarb-Yin
parametric maximum flow algorithm (using their implemen-
tation [36]) for `1-TV denoising for several values of the λ
parameter. The IRN algorithm was set up to use PCG (via
Jacobi line relaxation), and to auto-adapt the the thresholds
for the weighting matrices (see section IV-G) and to run for
5 iterations. Overall results are similar for time-performance
and reconstruction quality, but we have to acknowledge that
the balance favors the Goldfarb-Yin parametric maximum flow
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General
Denoising (auto)
Denoising (var)

Denoising (fixed)

Iteration number

SN
R

(d
B

)

54321

22
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14
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10

8

6

Fig. 3. `1-TV denoising SNR values against algorithm iteration number,
for λ = 1.25. Three curves correspond to the denoising algorithm, with
fixed CG accuracy (10−5), variable (exponentially decreasing between 10−3

and 10−5) and auto adapted (via the inexact Newton method) CG accuracy.
The last curve corresponds to the general algorithm with fixed CG accuracy
(10−6). Input image was Goldhill corrupted with salt and pepper noise (10%
of its pixels, SNR 1.2dB).

General
Denoising (auto)
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Fig. 4. A comparison between the number of CG iterations for the denoising
(Section IV-E) and general (Section IV-D) algorithms, corresponding to the
simulation in Fig. 3.

algorithm. Their method has the advantage of providing an
exact solution to the TV optimization problem (although this
is usually not an issue in practical denoising application), but
is not extensible to more general image restoration problems.

Iter.
Method

1 2 3 4 5

Fixed 0.60 1.01 1.59 2.67 4.09
Var 0.71 1.36 2.29 5.25 9.50
Auto tol. 1.50 2.40 3.36 6.49 10.53
General 26.04 52.14 72.73 97.14 119.11

TABLE II
`1-TV DENOISING ELAPSED TIME (S) AGAINST ALGORITHM ITERATION
NUMBER, CORRESPONDING TO THE SIMULATION DESCRIBED IN FIG. 3.

λ
Method

0.50 0.75 1.00 1.25

PMF-4 0.76 s 0.9 s 1.08 s 1.33 s
19.2 dB 17.5 dB 15.8 dB 14.7 dB

PMF-16 1.42 s 1.75 s 2.20 s 2.45 s
10.8 dB 18.6 dB 16.9 dB 15.5 dB

IRN 2.41 s 3.04 s 2.06 s 2.09 s
(denoising) 13.3 dB 15.9 dB 16.6 dB 17.4 dB

TABLE III
A COMPARISON BETWEEN PMF [23] (4 AND 16 NEIGHBORS) AND IRN
`1-TV DENOISING RUN TIMES FOR A 512 × 512 GOLDHILL IMAGE

CORRUPTED BY 10% SALT AND PEPPER NOISE.

F. Convergence Analysis

For convenience, we reproduce the generalized TV cost
functional (1)

T (u) =
1
p

∥∥∥∥Au− b
∥∥∥∥p
p

+
λ

q

∥∥∥∥√(Dxu)2 + (Dyu)2
∥∥∥∥q
q

,

and its quadratic approximation (17)

T (k)(u) =
1
2

∥∥∥∥W (k)
F

1/2
(Au− b)

∥∥∥∥2

2

+
λ

2

∥∥∥∥W (k)
R

1/2
Du
∥∥∥∥2

2

+ C(u(k)),

and note that from (6) and (14) it is easy to check that
T (u(k)) = T (k)(u(k)), where u(k) is the vector used to
compute the weights W (k)

F and Ω(k)
R . Moreover, from (7) and

(15) we have that

T (u) ≤ T (k)(u) ∀u p, q ≤ 2

with equality only for u = u(k). It is also easy to check (see
(8) and (16)) that

∇uT (u)|u=u(k) = ∇uT
(k)(u)|u=u(k) . (23)

In the general k ≥ 1 case, (20) implies that ∇2
uT

(k)(u)
is positive definite, since λ > 0, and W

(k)
F and W

(k)
R are

positive diagonal weighting matrices. For the k = 0 initial-
ization (corresponding to classical Tikhonov regularization),
∇2

uT
(0)(u) = ATA + λDTD is also positive definite, since

λ > 0.
The solution to ∇uT

(k)(u) = 0 (see (19)) is given by

u(k+1) =
(
ATW

(k)
F A+ λDTW

(k)
R D

)−1

ATW
(k)
F b. (24)

This solution is the unique minimum of T (k)(u) since
∇2

uT
(k)(u) > 0. Note that

T (u(k+1)) ≤ T (k)(u(k+1)) ≤ T (k)(u(k)) = T (u(k)), (25)

so the sequence
{
T (u(k))

}∞
k=1

is decreasing, and since
T (u) > 0 ∀u, it is also convergent. In particular,∣∣∣T (u(k+1))− T (u(k))

∣∣∣→ 0 as k →∞. (26)

The limit value will be the minimizer of the generalized TV
cost functional (1), if and only if ‖∇uT (u)|u=u(k)‖22 → 0 as
k →∞. Using a similar approach as for the derivation of (21)
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we may rewrite (24) as

u(k+1) − u(k) = −
(
∇2

uT
(k)(u)

)−1

∇uT
(k)(u). (27)

Since functional T (k)(u) is a quadratic function, its Taylor
expansion is exact, so that for u = u(k+1), χ(k+1) = u(k+1)−
u(k) and using the notation T (k) = T (k)(u(k)), ∇T (k) =
∇uT

(k)(u)|u=u(k) and ∇2T (k) = ∇2
uT

(k)(u)|u=u(k) , we
have

T (k)(u(k+1)) = T (k) +∇T (k)Tχ(k+1) + ...

...
1
2
χ(k+1)T∇2T (k)χ(k+1). (28)

Using (27), we have

T (k)(u(k+1)) = T (k) − 1
2
∇T (k)T

(
∇2T (k)

)−1

∇T (k)

= T (k) −
∥∥∥∥(∇2T (k)

)−1/2

∇T (k)

∥∥∥∥2

2

. (29)

Finally we may compute the norm of ∇uT (u)|u=u(k) =
∇T (k) (recall (23))∥∥∥∇T (k)

∥∥∥2

2
=

∥∥∥∥(∇2T (k)
)1/2 (

∇2T (k)
)−1/2

∇T (k)

∥∥∥∥2

2

≤
∥∥∥∥(∇2T (k)

)1/2
∥∥∥∥2

2

∥∥∥∥(∇2T (k)
)−1/2

∇T (k)

∥∥∥∥2

2

.

Since weighting matrices W (k)
F and Ω(k) are bounded (by

definition, see (4) and (13)), there exists a constant ζ such that∥∥∥(∇2T (k)
)1/2∥∥∥2

2
≤ ζ, and using (25) and (29),∥∥∥∇T (k)

∥∥∥2

2
≤ 2 · C ·

∣∣∣T (k)(u(k+1))− T (k)(u(k))
∣∣∣

≤ 2 · C ·
∣∣∣T (u(k+1))− T (u(k))

∣∣∣ . (30)

Therefore
∥∥∇T (k)

∥∥2

2
→ 0 as k → ∞ follows from (26). For

the case when the generalized TV functional (1) is strictly
convex (e.g. `2-TV case), the continuous function ‖∇uT (u)‖22
has a unique zero at u∗ and u(k) → u∗ as k → ∞.
The quadratic approximation is strictly convex, with a unique
minimizer, even when the generalized TV functional itself is
not (e.g. `1-TV).

G. Parameter Selection

Automatic selection for the accuracy needed to solve the
linear system described in Algorithms 1 and 2 (and their
denoising variants) has already been introduced in Sections
IV-D and IV-E. Here we focus on selecting the threshold
values for the weighting matrices in the data fidelity and
regularization terms (see (5) and (12) respectively). These
threshold values have a great impact in the quality of the
results and in the time performance, since the weighted `2

approximations to the `p and `q norms deteriorate as these
values become larger, giving poor quality results, and the
linear system in (19), (21) or (22) becomes increasingly poorly
conditioned as they become smaller, resulting in excessive run
time with no obvious increase in the quality of the results.

For the specific case of Huber’s M-estimator,
min

∑
n ρε(rn), where ρ is the Huber function and ε

its threshold, and the linear `1 estimator, min
∑
n |rn|, there

is a detailed analysis of the relationship between the solution
(minimizer) and the parameter (threshold) ε of the Huber
function [50], [51]. Moreover, it is shown that the minimizer
is a piecewise linear function of ε (see [50]) and the proposed
algorithms reduce the threshold ε at each iteration, following
procedures which makes the threshold ε a function of the
current solution [50], [51].

εF
εR

Iteration number

T
hr
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ld
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lu
e

54321

1.0000

0.1000

0.0100

0.0010

0.0001

Fig. 5. Evolution of threshold value against iteration number for variable
tolerance and automatically adapted thresholds (scheme (iii)), corresponding
to the simulation described for Fig. 6.

These procedures do not directly apply to the case of the
generalized TV (1), but we notice that reducing the threshold
ε (for Huber’s M-estimator and linear `1 estimation cases)
affects how many points are treated as in a standard least-
squares problem and how many as in a `1 problem, and by
reducing the threshold at each iteration, the probability of
having too many points below the threshold is reduced as well.

Auto tol., auto-thresh.
Var tol., auto-thresh.

Var. tol., fixed thresh.
Fixed tol., fixed thresh.
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Fig. 6. `1-TV denoising SNR values with parameter λ = 1.0 for fixed, vari-
able (exponentially decreasing between 10−3 and 10−5) and automatically
adapted CG tolerance and for fixed and automatically adapted thresholds (see
(5) and (12)). Input image was Goldhill, corrupted with salt and pepper noise
(10% of its pixels, SNR 2.2dB).
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Fig. 7. A comparison of the number of CG iterations for the denoising
corresponding to the simulation described for Fig. 6.

This core idea can be used to adapt the threshold
values for the weighting matrices (see (5) and (12)) in
(17). Once a solution u is given, we may compute the
histograms hF = HISTOGRAM (|Au− b|p) and hR =
HISTOGRAM

(
|(Dxu)2 + (Dyu)2|q/2

)
and decide that only a

fixed percentage will be below the thresholds εF and εR. This
can be easily accomplished by using cumulative histograms of
hF and hR to determine the corresponding values of εF and
εR respectively. Experimentally, we have found that setting
the percentage less than or equal to 5% and 1%, for the
regularization and fidelity terms respectively, improves the
time-performance and quality of the results.

It is worth understanding how these threshold values scale
with algorithm input b. This depends on the scaling properties
of τF,εF (·) and τR,εR(·), which are easily derived

τF,αεF (αx) = αp−2τF,εF (x) τR,αεR(αx) = α
q−2
2 τR,εR(x).

It follows that scaling the input b (and working solution
u(k)) by α corresponds to scaling εF by α, W (k)

F by αp−2, εR
by α2, and W (k)

R by αq−2. After substituting these properties
into the final equation in Algorithm 1, and rearrangement of
scaling factors, we obtain the system for scaled input αb as

û(k+1) =
(
ATW

(k)
F A+ αq−pλDTW

(k)
R D

)−1

ATW
(k)
F (αb) .

This implies that, when p = q such as for `1-TV (in which case
this is related to the contrast invariance property [9], [10]), the
linear system to be inverted is invariant under scaling of the
input, if thresholds and weighting matrices are properly scaled.
It is also interesting to note that, when p 6= q, the scaling
change in the linear system can be absorbed as a change in
regularization parameter λ.

As an example, the Goldhill image with 10% of its pixels
corrupted by salt and pepper noise (SNR 2.2dB) was denoised
(`1-TV with parameter λ = 1.25) using four different schemes:
(i) fixed tolerance (10−5) with εF = 10−4 and εR = 10−4, (ii)
variable (exponentially decreasing between 10−3 and 10−5)
tolerance with same values for εF and εR, (iii) variable
tolerance (logarithmically decreasing between 10−3 and 10−5)

Iter.
Method

1 2 3 4 5

Fixed tol./thresh. 0.60 1.30 2.53 4.85 7.72
Var tol./fixed thresh. 0.49 0.90 1.59 3.22 6.15
Var tol./auto thresh. 0.47 0.94 1.53 2.34 3.71
Auto tol./thresh. 0.56 0.96 1.57 2.25 3.05

TABLE IV
`1-TV DENOISING ELAPSED TIME (S) AGAINST ALGORITHM ITERATION
NUMBER, CORRESPONDING TO THE SIMULATION DESCRIBED IN FIG. 6.

and automatically adapted thresholds (as previously described)
and (iv) automatically adapted tolerance (via Inexact Newton
along with PCG) and automatically adapted thresholds. The
reconstruction qualities and run times for these schemes are
displayed in Fig. 6 and Table IV respectively. Schemes (iii)
and (iv) are the fastest, but scheme (ii) has the best SNR (18.61
dB at iteration 5), and while scheme (i) has a slightly better
SNR (but no noticeable visual difference) than scheme (iii),
the latter is twice as fast.

The evolution of parameters εF and εR for the first 5
iterations of scheme (iii) are shown in Fig. 5. Since these
values are greater than 10−4 (used for scheme (i) and (ii))
it should be clear that the diagonal values of the weighting
matrices WF and ΩR have lower variance and hence the linear
system to be solved (particularly, for denoising, (22)) is better
conditioned than the resulting linear system for weighting
matrices with εF = εR = 10−4. The number of iterations
needed to solve the linear system for schemes (ii) and (iii) are
shown in Fig. 7.

V. CONCLUSIONS

The IRN approach provides a simple but computationally
efficient method for TV regularized optimization problems,
including both denoising and those having a linear operator
in the data fidelity term, such as deconvolution. This method
is very flexible, and most of its parameters (solver accuracy
and thresholds for weighting matrices) can be automatically
adapted to the particular input dataset. Furthermore, it can be
applied to regularized inversions with a wide variety of norms
for the data fidelity and regularization terms, including the
standard `2-TV, and more recently proposed `1-TV formula-
tions, and, in particular, provides a very fast algorithm for the
`1-TV case, where it is competitive with the state of the art
for denoising, and is the fastest of which we are aware for
more general inverse problems such as deconvolution.
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Católica del Perú, Lima, Peru, in 1997, and the
MSc and PhD degrees in electrical engineering from
the University of New Mexico, USA, in 2003 and
2005 respectively. He spent two years as a postdoc-
toral researcher at Los Alamos National Laboratory,
and is currently an Associate Professor with the
Department of Electrical Engineering at Pontificia
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