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Abstract— Total Variation (TV) regularization has become
a popular method for a wide variety of image restoration
problems, including denoising and deconvolution. Recently, a
number of authors have noted the advantages, including superior
performance with certain non-Gaussian noise, of replacing the
standard `2 data fidelity term with an `1 norm. We propose a
simple but very flexible and computationally efficient method,
the Iteratively Reweighted Norm algorithm, for minimizing a
generalized TV functional which includes both the `2-TV and
and `1-TV problems.

I. INTRODUCTION

Total Variation (TV) regularization was first introduced for
image denoising [1], and has since evolved into a more general
tool for solving a wide variety of image restoration problems,
including deconvolution and inpainting [2], [3]. The `2-TV
regularized solution of the inverse problem involving data b
and forward linear operator A (the identity in the case of
denoising, and a convolution for a deconvolution problem, for
example) is the minimum of the functional

J(u) =
1
2

∥∥∥∥Au− b
∥∥∥∥2

2

+ λ

∥∥∥∥√(Dxu)2 + (Dyu)2
∥∥∥∥

1

(1)

where
∥∥∥√(Dxu)2 + (Dyu)2

∥∥∥
1

is the total variation of u, and
Dx, Dy denote the horizontal and vertical discrete derivative
operators respectively. While a variety of algorithms [4],
[5] have been proposed to solve this optimization problem,
it remains a computationally expensive task which can be
prohibitively costly for large problems and non-sparse forward
operator A.

Recently, the modified TV functional with an `1 data fidelity
term

J(u) =
∥∥∥∥Au− b

∥∥∥∥
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+ λ

∥∥∥∥√(Dxu)2 + (Dyu)2
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1

(2)

has attracted attention [6], [7] due to a number of advan-
tages, including superior denoising performance with salt
and pepper (speckle) noise [8]. The standard approaches to
solving problem (1) are not effective for problem (2), for
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which efficient (time-performance and memory requirements)
algorithm development is not well advanced [7].

In this paper, we introduce the Iteratively Reweighted Norm
(IRN) algorithm for solving the generalized TV functional

J(u) =
1
p

∥∥∥∥Au− b
∥∥∥∥p

p

+
λ

q

∥∥∥∥√(Dxu)2 + (Dyu)2
∥∥∥∥q

q

(3)

for p ≥ 1 and q ≥ 1 (we have found the algorithm to converge
for smaller p and q values, but cannot prove that the algorithm
converges in these cases). The IRN algorithm is a simple but
computationally efficient and very flexible method which is
competitive with existing, well-established [4], [5] algorithms
for `2-TV, and while we have not compared it with all of the
`1-TV algorithms of which we are aware [7], [8], [9], [10],
[11], it is significantly faster than those with which we have
performed comparisons, and in contrast to many of these other
methods, easily allows the inclusion of forward operator A for
a more general inverse problem than denoising.

II. ITERATIVELY REWEIGHTED NORM APPROACH

A. Previous Related Work

The IRN approach is closely related to the Iteratively
Reweighted Least Squares (IRLS) [12], [13] method, which
minimizes the `p norm

J(u) =
1
p

∥∥∥∥Au− b
∥∥∥∥p

p

(4)

by approximating it, within an iterative scheme, by a weighted
`2 norm problem, for which an algebraic solution is easily
derived. (It is also worth mentioning similar methods used
for constructing sparse signal representations [14], [15].) A
brief outline of the convergence proof for IRLS provides a
useful introduction to the outline of the IRN convergence
proof presented in Section II-D. At each iteration k, define
the functional

Q(k)(u) =
1
2

∥∥∥∥W (k)1/2
(Au− b)

∥∥∥∥2

2

+
(
1− p

2

)
J(u(k)),

where W (k) = diag
(
|Au(k) − b|p−2

)
, and u(k) is the current

solution (i.e., the solution obtained at the end of the previous
iteration). It may be shown that

J(u) ≤ Q(k)(u) ∀u
J(u(k)) = Q(k)(u(k))

∇J(u(k)) = ∇Q(k)(u(k)),

i.e. the quadratic functional Q(k)(u) is tangent to J(u) at
u = u(k), where it is also an upper bound for J(u). As a



result [13], the iteration

u(k+1) =
(
AT W (k)A

)−1

AT b, (5)

which minimizes Q(k)(u) using the weights derived from the
previous iteration, converges to the minimizer of J(u).

When p < 2, the definition W (k) = diag
(
|Au(k) − b|p−2

)
must be modified to avoid the possibility of division by zero.
For p = 1, it may be shown (see [16]) that the choice

W (k)
n,n =

{
|r(k)

n |−1 if |r(k)
n | ≥ ε

ε−1 if |r(k)
n | < ε ,

where r(k) = Au(k) − b, and ε is a small positive number,
guarantees global convergence to the minimizer of

∑
n

ρε(rn),

where
ρε(rn) =

{
ε−1r2

n if |rn| ≤ ε2

2|rn| − ε if |rn| > ε2

is the Huber function. We will address a similar question for
the IRN algorithm in the following sections.

B. IRN: Data Fidelity Term
The data fidelity term of Equation (3) has the form of the

IRLS functional in Equation (4), and is handled in the same
way, representing

1
p

∥∥∥∥Au− b
∥∥∥∥p

p

by
1
2

∥∥∥W 1/2
F (Au− b)

∥∥∥2

2

with iteratively updated weights WF . Since the choice of WF

(as described in Section II-A) gives infinite weights for zero-
valued components of Au− b, when p < 2, we set

WF = diag
(

2
p
fF (Au− b)

)
,

where fF is defined (for some small εF ) as

fF (x) =
{
|x|p−2 if |x| > εF

εp−2
F if |x| ≤ εF ,

which is a common approach for IRLS algorithms [17].

C. IRN: Regularization Term
It is not quite as obvious how to express the TV regular-

ization term from Equation (3) as a weighted `2 norm. Given
vectors ξ and χ we have (using block-matrix notation)∥∥∥∥∥

(
W

1/2
R 0
0 W

1/2
R
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ξ
χ

)∥∥∥∥∥
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=
∑

k

wkξ2
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k

so that when
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2
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)(q−2)/2
)

we have

1
2

∥∥∥∥∥
(

W
1/2
R 0
0 W

1/2
R

)(
ξ
χ

)∥∥∥∥∥
2

2

=
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We therefore set ξ = Dxu, χ = Dyu, and define the operator
D and weights W̃R

D =
(

Dx

Dy

)
W̃R =

(
WR 0
0 WR

)
so that ‖W̃R

1/2
Du‖2

2 = ‖W 1/2
R Dxu‖2

2 + ‖W 1/2
R Dyu‖2

2 with
weights defined by

WR = diag
(

2
q

(
(Dxu)2 + (Dyu)2

)(q−2)/2
)

gives the desired term. (Note that this is not the separable
approximation, as in [18], for example, which is often used.)

As in the case of the data fidelity term, care needs to
be taken when q < 2 and Dxu2 + Dyu2 has zero-valued
components. We define

fR(x) =
{
|x|(q−2)/2 if |x| > εR

0 if |x| ≤ εR

for some small εR, and set

WR = diag
(

2
q
fR

(
(Dxu)2 + (Dyu)2

))
.

Note that fR sets values smaller than the threshold, εR, to
zero, as opposed to fF , which sets values smaller than the
threshold, εF , to εp−2

F . The motivation for this choice is that a
region with very small or zero gradient should be allowed to
have zero contribution to the regularization term, rather than
be clamped to some minimum value. In practice, however, we
have found that this choice does not give significantly different
results than the standard IRLS approach represented by fF .

D. Convergence of the IRN algorithm

Here we briefly sketch the proof of global convergence of
the IRN algorithm. Combining the terms described in Sections
II-B and II-C, we define the generalized TV functional

Q(k)(u) =
1
2

∥∥∥W (k)1/2

F (Au− b)
∥∥∥2

2
+

λ

2

∥∥∥W̃ (k)1/2

R Du
∥∥∥2

2
+(

1− p

2

)
F (u(k)) + λ

(
1− q

2

)
R(u(k)), (6)

where W
(k)
F , W

(k)
R , and u(k) are the current data fidelity

weights, regularization weights, and solution respectively. The
constant (with respect to u) terms

F (u(k)) =
∥∥∥Au(k) − b

∥∥∥p

p

R(u(k)) =
∥∥∥∥√(Dxu(k))2 + (Dyu(k))2

∥∥∥∥q

q

do not effect the IRN iteration since they have zero gradient
with respect to u, but are necessary so that J(u(k)) =
Q(k)(u(k)). (Note that J(u(k)) = 1

pF (u(k)) + λ
q R(u(k)), as

in Equation (3).)
It is easily shown that

J(u) ≤ Q(k)(u) ∀u
J(u(k)) = Q(k)(u(k))

∇J(u(k)) = ∇Q(k)(u(k))

∇2Q(k)(u) = AT W
(k)
F A + λDT W̃

(k)
R D > 0



Fig. 1. 512× 512 Lena image.

As in the IRLS case (Section II-A), the quadratic functional
Q(k)(u) is tangent to J(u) at u = u(k), where it is also an
upper bound for J(u), and it has a positive definite Hessian.
Using these results, it can be shown that the minimizer of
Q(k)(u), given by

u =
(
AT W

(k)
F A + λDT W̃

(k)
R D

)−1

AT W
(k)
F b, (7)

converges to the minimizer of (3) as we iterate over k.

III. IRN ALGORITHMS

The IRN algorithm can be easily derived (see Algorithm 1)
from Equation (7). The matrix inversion can be achieved using
the Conjugate Gradient (CG) or Preconditioned CG (PCG)
method such as Jacobi line relaxation (JLR) or symmetric
Gauss-Seidel line relaxation (SLGS) [19]. We have also found
that a significant speed improvement may be achieved by
starting with a high CG/PCG tolerance, which is decreased
with each main iteration until the final desired value is reached.
For the results reported hereafter, operators Dx and Dy are de-
fined by applying the same one-dimensional discrete derivative
along image rows and columns respectively. Applied to vector
u ∈ RN , this discrete one-dimensional derivative is computed
as uk−uk+1 for the derivative at index k ∈ {0, 1, . . . , N−2},
and as (uN−3−8uN−2)/12 for the derivative at index N −1.
Values in the ranges 10−2 to 10−4 and 10−4 to 10−8 were
used for constants εF and εR respectively. All program run
times were obtained using the NUMIPAD library [20] on a
(Linux) 3.0GHz Intel Pentium-4 processor.

In the remainder of this paper we shall restrict our attention
to the l1-TV case (p = 1, q = 1), but note that this flexible
approach is capable of efficiently solving other cases as well,
including the standard l2-TV case (p = 2, q = 1) where
we have found it to have similar performance to the lagged
diffusivity algorithm [4]; for a 512× 512 input image (Figure
1), normalized between 0 and 1, corrupted with Gaussian noise
(σ = 0.05) lagged diffusivity required 1.69s for 5 iterations,
giving a denoised image with 16.24 dB, while the `2-TV

Algorithm 1 IRN algorithm - General case
Initialize

u(0) =
(
AT A + λDT D

)−1
AT b

Iterate

W
(k)
F = diag

(
2
p
fF (Au(k−1) − b)

)
W

(k)
R = diag

(
2
q
fR

(
(Dxu(k−1))2 + (Dyu(k−1))2

))
u(k) =

(
AT W

(k)
F A + λDT

x W
(k)
R Dx

+λDT
y W

(k)
R Dy

)−1

AT W
(k)
F b

IRN (via PCG-SLGS) required 1.69s for 5 iterations, giving
a 16.02 dB output. The number of CG iterations (per main
loop) needed by lagged-diffusivity and several flavors of the
IRN algorithm are shown in Figure 2.
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Fig. 2. A comparison of CG iterations for lagged-diffusivity and several
flavors of the IRN algorithm for `2-TV denoising. The IRN algorithm is slow
when coupled with a standard CG solver, but the use of preconditioned CG
(PCG) strategies, such as Jacobi line relaxation (JLR) and symmetric Gauss-
Seidel line relaxation (SLGS), dramatically reduces the number of required
CG iterations.

A. IRN `1-TV Denoising

Direct application of Equation (7) for `1-TV denoising is
slow due to the ill-conditioning of the system to be inverted.
However, in this case we may apply the substitution ũ =
W

(k)1/2

F u to Equation (7), giving

ũ =
(

I + λW
(k)−1/2

F DT W̃R
(k)1/2

DW
(k)−1/2

F

)−1

W
(k)1/2

F b.

Applying this modification (indirect IRN algorithm) to the
general (direct) algorithm results in a significant reduction in
the required number of CG iterations; moreover if a PCG strat-
egy is applied (e.g. JLR or SLGS), the number of CG iterations
is further reduced, as shown in Figure 4, where a comparison
between the number of CG iteration for 5 loops for the direct
and indirect CG, PCG-JLR and PCG-SLGS IRN algorithms is
carried out to denoise a 512×512 image (Figure 1) corrupted
with 5% speckle noise. The run times were 8.2s, 2.2s, 1.3s



(a) Image with 20% speckle noise. SNR: -1.76dB. (b) Denoised `1-TV (λ = 1.25). SNR: 17.42dB. Time: 1.63s

(c) Image with 50% speckle noise. SNR: -5.77dB. (d) Denoised `1-TV (λ = 1.25). SNR: 9.60dB. Time: 2.60s

Fig. 3. Extreme examples for `1-TV denoising using the IRN algorithm: original image (Figure 1) was corrupted with 20% and 50% speckle noise.

and 1.3s respectively, with denoised qualities of 17.36 dB,
21.85 dB, 20.35 dB, and 20.36 dB respectively. More extreme
examples are presented in Figure 3, with the original image
corrupted by 20% (Figure 3(a)) and 50% (Figure 3(c)) speckle
noise. The result of `1-TV denoising these images, using the
IRN (via PCG-JLR) algorithm, is surprisingly good: 17.4 dB
(Figure 3(b)) in 1.63s when denoising Figure 3(a) and 9.6 dB
(Figure 3(d)) in 2.6s when denoising Figure 3(c).

B. IRN `1-TV Deconvolution

We apply the IRN algorithm to the problem of decon-
volution of an image convolved by a separable smoothing
filter having 9 taps, approximating a Gaussian with standard
deviation of 2.0. In this case A is the corresponding linear
operator, and the substitution applied in the previous section is
no longer possible. We constructed a test image by convolving
the image in Figure 1 by the smoothing kernel, and adding
5% speckle noise (see Figure 5(a)), giving an image with an
SNR of 4.2dB. Comparing the performance of `2-TV (via the

lagged diffusivity algorithm) and `1-TV (via the IRN method)
deconvolution, we obtain a 12.2dB reconstruction in 9.2s and a
14.4dB reconstruction in 26.8s respectively (see Figure 5(b)).

IV. CONCLUSIONS

The Iteratively Reweighted Norm (IRN) approach provides
a simple but computationally efficient method for TV regu-
larized optimization problems, including both denoising and
those such as deconvolution having a linear operator in the
data fidelity term. This framework is very flexible, and can
be applied to regularized inversions with a wide variety of
norms for the data fidelity and regularization terms, including
the standard l2-TV, and more recently proposed l1-TV formu-
lations. This method provides a significantly faster algorithm
for the l1-TV formulation than any other algorithm of which
we are aware. The NUMIPAD library [20], is proving to be a
useful tool for solving optimization problems and can be used
to reproduce the results presented in this paper.
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Fig. 4. A comparison of CG iterations for the direct and several flavors
of the indirect IRN algorithm for `1-TV denoising. Both preconditioned CG
(PCG) strategies, Jacobi line relaxation (JLR) and symmetric Gauss-Seidel
line relaxation (SLGS), dramatically reduced the number of required CG
iterations.
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