
COMBINATORIAL SEPARABLE CONVOLUTIONAL DICTIONARIES

Jorge Quesada† Gustavo Silva† Paul Rodriguez† Brendt Wohlberg*

†Department of Electrical Engineering, Pontificia Universidad Catolica del Peru, Lima, Peru
*T-5, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

ABSTRACT

Recent works have considered the use of a linear combination of
separable filters to approximate a non-separable filter bank (FB) to
obtain computational advantages in CNNs and convolutional sparse
representations / coding (CSR / CSC). However, it has been recently
shown that there are advantages to directly solving the convolutional
dictionary learning (CDL) problem considering a separable FB.

A separable filter bank of M 2-d filters is typically constructed
from a paired set of M horizontal filters and M vertical filters. In
contrast, here we propose an outer product construction involving
all possible combinations of vertical and horizontal filters, so that
M vertical and M horizontal filters generate M2 2-d filters. Our
computational experiments show that this alternative form results in
a reduction in computation time of 10% and 80% for the CDL and
CSC problems respectively, while matching the reconstruction per-
formance of the typical separable FB approach for the same cardi-
nality.

Index Terms— Convolutional Sparse Representation, Dictio-
nary Learning, Separable Filters

1. INTRODUCTION

Sparse representations and dictionary learning are well-known tech-
niques in the field of signal and image processing, yielding effec-
tive approaches in tasks such as denoising, object recognition, and
machine learning applications [1]. In particular, convolutional for-
mulations, which model an image as a sum over a set of convolu-
tions between coefficient maps and dictionary filters, have received
increasing attention for their ability to represent entire images, as
opposed to their patch-based counterparts [2]. The most common
form of Convolutional Sparse Coding (CSC) problem is Convolu-
tional Basis Pursuit Denoising (CBPDN)
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where s is the observed image, {xk} is the coefficient map set, and
{dk} are the non-separable dictionary filters. The corresponding
Convolutional Dictionary Learning (CDL) problem is

arg min
{xm,k}{dm}

1

2

∑
k

∥∥∥∑
m

dm ∗ xm,k − sk

∥∥∥2
2

+ λ
∑
k

∑
m

∥∥∥xm,k∥∥∥
1

s.t. ‖dm‖2 = 1 ∀m , (2)

where {sk} is a set of training images, and the constraint on the fil-
ter norms is used to avoid scaling ambiguities. It has been shown
that using separable filters in Convolutional Neural Network (CNN)
applications [3, 4] and as dictionaries in CSC [5] can provide sig-
nificant improvements in computational performance with respect

to a non-separable implementation, with little loss in accuracy or
reconstruction quality. As a consequence, some works have pro-
posed learning separable filter banks directly from an image training
set [6, 7], by solving a separable version of the CDL problem,
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s.t. ‖vm‖2 = ‖hm‖2 = 1 ∀m , (3)

where {hm} and {vm} are the horizontal and vertical components
of each filter. Natively separable filters have been shown to out-
perform the previous approach via separable approximation from a
non-separable set of filters [6].

Existing 2-d separable filter banks are constructed by pairing a
set of M vertical and M horizontal filters, the directional filters in
each pair being convolved to give a single 2-d filter, with the result-
ing filter bank consisting of M 2-d filters. In contrast, in this paper
we explore an alternative construction in which the directional filters
are not paired, so that the resulting 2-d filter bank consists of theM2

2-d filters composes of all combinations of a vertical and a horizontal
filter. The corresponding CDL problem can be posed as

arg min
{xm,n,k}{vm}{hn}
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s.t. ‖vm‖2 = ‖hn‖2 = 1 ∀m,∀n . (4)

The proposed method is derived as a natural extension of existing
separable CDL algorithms [6, 7], and compared against a baseline
separable CDL method. The computational results in Section 4 show
that the dictionary filters produced by this method attain speedups
both in learning and reconstruction runtime, with an equivalent de-
noising performance with respect to the baseline.

2. PREVIOUS RELATED WORK

2.1. Non-separable (standard) dictionary learning

The CDL problem (2) is non-convex when simultaneously minimiz-
ing for both variables, {xm,k} and {dm}, but is convex when either
of them is kept constant. Therefore, the most common optimiza-
tion approach consists of alternating between the updates for the
feature maps {xm,k} (sparse coding) and the filters {dm} (dictio-
nary update). This section will address the main existing dictionary
update methods [8, 9], which correspond to the solution of a con-
strained convolutional form [2, 9] of the Method of Optimal Direc-



tions (MOD) [10]
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where {xm,k} is a given coefficient map set.
Early methods solved this problem in the spatial domain, [11,

12, 13] while more recent approaches tackle the most computation-
ally demanding components of the problem in the frequency do-
main [14, 2, 9]. In the latter case, it is important to give an adequate
spatial support to the target filters through zero-padding, which is
usually denoted by a zero-padding projection operator P , and com-
bined with the normalization constraint in the constraint set

CPN = {z ∈ RN : (I − PPT )z = 0, ‖z‖2 = 1} . (6)

This allows the dictionary update to be written in unconstrained
form
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where ιCPN (·) is the indicator function of the constraint set CPN.
Most approaches to solving (7) are based on the Alternating Direc-
tion Method of Multipliers (ADMM) [15] framework, but the advan-
tages of the Accelerated Proximal Gradient (APG) framework [16]
for this problem have recently been noted [17, 18, 7, 9, 19].

2.2. Separable filters for CSR

The idea of using separable filters in order to improve computational
runtime was initially introduced in the context of CNNs [20], and
was approached by estimating a separable set {gr} from a given
larger set of non-separable filters {dm}, by placing a penalty on the
rank of the filters, which can be expressed as
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where ‖ · ‖∗ is the nuclear norm. Since this method has subopti-
mal convergence properties [20, 3], a faster approach based on the
Canonical Polyadic Decomposition has been proposed [21]
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where hr and vr are rank-1 tensors and ◦ represents tensor outer
product. A more computationally efficient reformulation of (8),
given by
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1

2

∑
m

∥∥∥dm −∑
r

αr,m · gr
∥∥∥2
F

+ λ
∑
r

∥∥∥gr − fr

∥∥∥2
F

s.t. rank(fr) = 1 ∀r (10)

was proposed in [22], along with an efficient SVD-based generation
of the initial solution. The method was shown to be faster than the
tensor decomposition approach for small (R < 40) values, and eval-
uated in a CSC setting in [5].

More recently, [6] proposed to learn the separable filter set na-
tively by solving and showed that the resulting dictionary filters en-
tailed equivalent performance to their non-separable counterparts
learned through an analogous method. A more computationally ef-

ficient variant based on the APG framework was proposed in [7],
where the separability was enforced through a rank-1 constraint.

2.3. Rank-1 Accelerated Proximal Gradient

Learning separable filters, such as vertical and horizontal filters, is
analogous to learning rank-one 2-d filters. Motivated by this ob-
servation, [7] applied an additional constraint on the typical non-
separable formulation (5) to enforce that the obtained dictionaries
be rank-one.
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where CPR = {z ∈ RN : (I − PPT )z = 0, rank(z) = 1}. The
APG solution for this problem was found to be more efficient than
the ADMM solution [7]. The APG formulation is given by

dm
(i+1) = ProxιCPR

(
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(i) − 1

L
∇F (d(i)

m )
)

, (12)

where the proximal operator of the constraint set is given by

[UΣV T ] = SV D(PPTy) (13)

proxιCPR
(y) = UΣ0V

T , (14)

where Σ0 is obtained from Σ by zeroing all but the first singular
value, i.e. if Σ = diag(σ0, σ1, . . .) then Σ0 = diag(σ0, 0, . . . , 0).

3. PROPOSED METHOD

Formulating the dictionary learning update for (4) and integrating
the norm constraint and the zero padding operator into a constraint
set as described in Section 2.1 results in the unconstrained problem

arg min
{vm}{hn}
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where ιCPhN (·) and ιCPvN (·) are the indicator functions of the con-
straint sets CPhN and CPvN (analogous to (6)), with zero-padding op-
erators applied along the horizontal and vertical dimensions, respec-
tively.

In a similar fashion to [6], the solution of (15) is approached
by alternating between updates of the vertical and horizontal filters.
When considering only the updates for the vertical filters, the prob-
lem can be simplified by integrating the fixed horizontal filters and
the feature maps into an auxiliary feature map variable xvm,k:

xvm,k =
∑
n

hn ∗ xm,n,k, (16)

which leads to the problem

arg min
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For simplicity of notation, we define a linear operator Xv,m,k

such that
Xv,m,kvm = xv,m,k ∗ vm



, which results in the formulation

arg min
V

1

2

∑
k

∥∥∥Xv,kV − sk

∥∥∥2
2

+ ιCPvN (V) , (18)

where Xv,k = [Xv,1,k, · · · ,Xv,M,k] and V = [v, · · · ,vM ]T . The
problem can be further simplified to

arg min
V
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+ ιCPvN (V) (19)

where Xv = [Xv,1, · · · ,Xv,K ]T and S = [s1, · · · , sK ]T . Problem
(18) can then be solved through the APG-based method derived in
[18], with update iterations are given by

∇F (V̂(i)) = X̂H
v (X̂vV̂

(i) − Ŝ) (20)

α(i) = ||∇F (V̂(i))||22/||X̂H
v ∇F (V̂(i))||22 (21)

V(i+1) = proxιCPvN
(V(i) − α(i)∇F (V(i))) , (22)

where the proximal operator for the third update is given by

proxιCPvN
(y) =

PPTy

||PPTy||2
.

Due to the commutative property of the convolution operation, a
similar approach can be followed to derive derive the updates for the
horizontal filters, by simply composing the auxiliary feature maps as
xvn,k =

∑
m

vm ∗ xm,n,k.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

Our experimental setup is similar to that in [6] and [7]. Two distinct
set of experiments were carried out on a desktop computer equipped
with an Intel i7-7700K CPU (4.20 GHz, 8MB Cache, 32GB RAM):
(i) learning simulations, in order to assess the convergence and run-
time performance of the proposed method, and (ii) denoising simu-
lations, in order to analyze the reconstruction quality of the attained
filter banks.

The denoising comparisons were performed on a set of standard
images corrupted with Additive White Gaussian Noise (AWGN)
with σ = 0.2, using filter banks with varying cardinalities and filters
of size 24 × 24 (determined in [23] to be the optimal size) learned
through one of the two following methods:

• Pair-SepF: baseline method. A set of M2 natively separable
filters learned through the APG-based method proposed in
[7] (to the best of our knowledge, the most computationally
efficient separable CDL method to date).

• Comb-SepF: proposed method. M×M separable filter bank
composed of ofM vertical andM horizontal separable filters
learned through the approach described in Section 3.

The denoising comparisons were performed using the CBPDN
solver proposed in [5], which is optimized to exploit filter separa-
bility, and evaluated on a grid of λ values, from which we report
only the peak performance for each case. It is also worth mention-
ing that when using the filters obtained by Comb-SepF, the solver is
further optimized in order to exploit the combinatorial nature of the
filter bank and thus improve the sparse coding runtime (see Figure
2 (b)), by applying the simplification shown in Eq. (16). We also
consider the L0 % sparsity measure attained in each case, defined as

100 · ||x||0/N , where x is the feature map set and N is the number
of pixels in a given image.

The learning comparisons assess the computational performance
in terms of learning runtime of our proposed method with respect to
the baseline [7] as well as the functional value behaviour, for a fixed
value of 500 iterations.

4.2. Learning runtime simulations

In Figure 1 we report the computational performance and functional
behavior comparison in logarithmic time for the evaluated methods
when trained with a batch of 50 training images, when learning target
filter banks of sizes [36, 144] and [6×6, 12×12] for the Pair-SepF
and Comb-SepF approaches, respectively. As can be observed, both
methods converge to roughly similar functional values (the proposed
method converges to a slightly higher value, which can be explained
by its more restricted solution space), with the proposed method at-
taining from 6% to 10% speedup with respect to the baseline.
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Fig. 1: Functional value behaviour when learning with a batch of 50
images

The learning runtime comparison of both methods can be ob-
served in more detail in Figure 2 (a). As can be seen from the graph,
the proposed method attains a speedup ranging from 6% to 10%, and
increasing as the filter bank size gets larger.

4.3. Denoising restoration simulations

In Table 1 we report the results for the denoising comparisons among
the evaluated methods in terms of the PSNR metric, as well as the
attained L0% sparsity measure in each case. It can be observed from
the table that the filters obtained through our proposed method show
equivalent performance with respect to the baseline filters, the dif-
ference between them being negligible in the two considered metrics
(as was previously mentioned, only the peak performance for each
image over the λ grid is reported). It is also worth noting that, as was
reported in [23], the best performance is not always achieved by the
largest filter bank, but rather a particular cardinality for each given
image.



Table 1: Denoising via CBPDN for different filter bank cardinalities in images corrupted with AWGN level σ = 0.2.

Barbara Mandrill Peppers Boats House GoldHill Monarch Airplane
PSNR L0 % PSNR L0 % PSNR L0 % PSNR L0 % PSNR L0 % PSNR L0 % PSNR L0 % PSNR L0 %

36 Pair-SepF 23.24 5.42 20.95 7.93 25.00 1.84 24.18 2.77 24.97 3.25 24.78 1.14 24.34 3.19 24.12 3.96
6× 6 Comb-SepF 23.22 5.93 20.93 8.59 24.92 1.50 24.05 3.04 24.74 3.65 24.71 1.23 24.26 3.37 24.00 3.59

64 Pair-SepF 23.38 4.49 20.95 10.17 24.97 1.98 24.15 2.26 24.91 2.75 24.77 0.88 24.30 3.58 24.10 3.22
8× 8 Comb-SepF 23.33 4.79 20.92 10.67 24.92 2.10 24.03 2.39 24.72 2.91 24.71 0.89 24.20 2.69 24.01 3.37

100 Pair-SepF 23.47 5.47 20.94 8.14 24.98 1.61 24.15 2.81 24.92 3.33 24.79 1.13 24.31 3.18 24.08 3.94
10× 10 Comb-SepF 23.36 5.59 20.93 8.21 24.91 2.07 24.06 2.81 24.83 3.39 24.74 1.10 24.23 3.17 24.01 3.94

144 Pair-SepF 23.45 3.95 20.97 9.15 24.97 1.66 24.11 3.31 24.91 2.36 24.76 1.37 24.29 3.69 24.06 2.77
12× 12 Comb-SepF 23.33 5.47 20.94 9.25 24.90 1.68 24.01 3.34 24.77 2.47 24.74 1.32 24.24 3.71 24.00 2.81
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Fig. 2: Comparison of mean time per iteration

One can also observe from Figure 2 (b) that after modifying [5]
to exploit the combinatorial structure of the proposed filter bank, a
speedup between 60% and 80% with respect to ”standard” separable
filters is attained in the denoising process. As in the learning case,
the denoising speedup also increases as the filter bank cardinality
grows larger. An additional contribution of the proposed method is
that the filter bank obtained by this approach significantly reduces
the amount of memory required to store and subsequently use the
filters, by a factor of M , where M2 is the cardinality of the origi-
nal filter bank. This is clearly a useful property when dealing with
memory-constrained tasks.

5. CONCLUSION

We have proposed and evaluated a novel formulation to solve the
separable Convolutional Dictionary Learning (CDL) problem by
constructing a separable filter bank as the result from all posible
combinations of outer products between a set of M vertical and
horizontal filters. Our numerical results show that the filters learned
through our proposed method consistently attain indistinguishable
restoration performance with respect to a baseline method with the
same filter size and cardinality.

Furthermore, the proposed method delivers a computational run-
time improvement in both learning and sparse coding contexts, the
highest speedup ratios being attained when the filter banks cardinal-
ities are large. An additional contribution of our method is that the
learned filters significantly reduce the memory representation space
required to use them.
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