
Convolutional Laplacian Sparse Coding
Xiyang Luo

Department of Mathematics
University of California, Los Angeles

Los Angeles, CA, United States

Brendt Wohlberg
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM, United States

Abstract—We propose to extend the the standard convolutional
sparse representation by combining it with a non-local graph
Laplacian term. This additional term is chosen to address some
of the deficiencies of the `1 norm in regularizing these represen-
tations, and is shown to have an advantage in both dictionary
learning and an example image reconstruction problem.

Index Terms—Sparse Representation, Convolutional Sparse
Coding, Laplacian Sparse Coding

I. INTRODUCTION

Convolutional sparse coding [1] is a relatively recent variant
of sparse coding in which an entire signal or image is
decomposed into a sum of convolutions of a set of coefficient
maps, each of the same size as the input signal or image, with
a corresponding dictionary filter. One of the most prominent
formulations of this problem is Convolutional Basis Pursuit
DeNoising (CBPDN)

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1 , (1)

where {dm} is a set of M dictionary filters, ∗ denotes
convolution, and {xm} is a set of coefficient maps. Recent
fast algorithms [2], [3] for solving this problem have begun to
make it a viable approach for a wider variety of applications.

Convolutional sparse representations have a number of
advantages over the standard approach of independently sparse
coding of overlapping image patches, including providing a
single-valued representation that is optimal over the entire
image instead of just locally within each patch. There are,
however, also some challenges to using this representation,
aside from the computational cost. One of these is the tendency
for the set of coefficient maps to be sparse both down the
stack of maps at each pixel location, as well as spatially
within each map. This latter property is undesirable in some
applications, including denoising of Gaussian white noise,
where the spatial averaging of independent pixel estimates
obtained from the standard patch-based method is beneficial,
or in dictionary learning where high spatial sparsity reduces
the number of patches in the training images that play a role in
forming the dictionary. The work reported here represents an
attempt to remedy this weakness by incorporating a non-local
regularization that reduces the spatial sparsity in an appropriate

The work of both authors was supported by the UC Lab Fees Research
grant 12-LR-236660.

The work of Wohlberg was also supported by the U.S. Department of
Energy through the LANL/LDRD Program.

way, while retaining the local sparsity of the representation at
each pixel location.

II. CONVOLUTIONAL LAPLACIAN SPARSE CODING

We propose to augment Eq. (1) with the graph Dirichlet
energy

∑
m〈xm, Lxm〉, where L is the graph Laplacian [4] of

the image non-local graph [5]. Each image patch corresponds
to a vertex of the graph, and the weights wij between vertices
represent the similarity between the corresponding image
patches, typically computed as

wij = exp
(
−d2ij/τ

)
, (2)

where dij is some metric (typical choices are Euclidean or
Cosine) between an image patch centered at pixel i and that
at pixel j , and τ controls the scaling of the metric. Given the
weight matrix W = (wij), the graph Laplacian L is defined as
L = D−W , where D is the diagonal matrix Dii =

∑
i 6=j wij .

Our model is motivated by the non-local smoothing properties
of the Dirichlet energy, which are apparent from the equation

〈u, Lu〉 =
∑
α,β∈V

wαβ(uα − uβ)2 . (3)

Here α, β range through all vertices on the graph, and u is any
real-valued function defined on the graph. Since wαβ is smaller
if the vertices α, β are more similar, the Dirichlet energy will
be small if similar vertices have similar u values.

In our context, the vertices α are image patches indexed by
their spatial location (i, j), and the u corresponds to the sparse
coefficients xm. Thus by the analysis above, the regularizer
is an explicit penalty to force similar image patches to have
similar sparse representations. In practice, we actually use the
normalized Laplacian Ls = I −D−1/2WD−1/2 [4], since it
handles outliers better and is the more common choice for
non-local image graphs. However, the motivation remains the
same and we will not make a distinction from here on.

Formally, our model can be written as

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1

+
µ

2

∑
m

〈xm, Lxm〉 . (4)

This model can be considered as a convolutional variant of
the previously-proposed Laplacian Sparse Coding method [6],
which has been applied to image classification tasks [6], [7]
as well as image restoration tasks [8], [9]. The key difference



between the proposed approach and the patch based Laplacian
Sparse Coding in [6] is that the sparse code is learned over
every single patch and jointly over the entire image, due to
the nature of the convolutional model. Thus unlike [6], [7],
there is no need to use the SIFT local descriptor to pre-define
a set of patches to learn on, and there is no need for patch
averaging to resolve the multi-valued estimation as in [8].

III. ALGORITHM

Our two alternative algorithms for solving Eq. (4) are both
based on the Alternating Direction Method of Multipliers
(ADMM) [10] framework. Their differences correspond to
whether we perform an additional splitting in 〈xm, Lxm〉, or
include it in the `1 subproblem.

A. ADMM Double-Split
In this approach, we perform an additional splitting to give

argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+ λ

∑
m

‖ym‖1 +

µ

2

∑
m

〈zm, Lzm〉 s.t. xm = ym, xm = zm . (5)

The corresponding ADMM primal updates are

{xm}(j+1) = argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+

ρ
∑
m

∥∥∥xm − 1

2

(
u(j)
m + y(j)

m + v(j)
m + z(j)m

)∥∥∥2
2

(6)

{ym}(j+1) = argmin
{ym}

λ
∑
m

‖ym‖1 +

ρ

2

∑
m

∥∥∥x(j+1)
m − (ym + u(j)

m )
∥∥∥2
2

(7)

{zm}(j+1) = argmin
{zm}

µ

2

∑
m

〈zm, Lzm〉+

ρ

2

∑
m

∥∥∥zm − (x(j+1)
m + v(j)

m )
∥∥∥2
2
. (8)

The xm and ym updates are the same as in the standard
convolutional learning case, and can be efficiently solved in
the Fourier domain and by soft thresholding respectively, as
in [2], [3]. The zm update involves solving a linear system.

It is worth emphasizing that, despite the double splitting,
this algorithm can be expressed in the standard ADMM form
if the two split variables are appropriately combined in block
form by defining the matrix A mapping x 7→ (x,x)T and
u = (y, z)T , and imposing the constraint um = Axm.

B. ADMM Single-Split

Instead of performing an additional splitting, we can also
group the Laplacian term together with the `1 term and solve
an `2 + `1 minimization as a sub-problem. The resulting
iterations are

{xm}(j+1) = argmin
{xm}

1

2

∥∥∥∑
m

dm ∗ xm − s
∥∥∥2
2
+

ρ

2

∑
m

∥∥∥xm − y(j)
m − u(j)

m

∥∥∥2
2

(9)

{ym}(j+1) = argmin
{ym}

λ
∑
m

‖ym‖1 +
µ

2

∑
m

〈ym, Lym〉

ρ

2

∑
m

∥∥∥x(j+1)
m − ym − u(j)

m

∥∥∥2
2
. (10)

An efficient implementation of the algorithm is obtained
by warm-starting the ym sub-problem from the previous
iterate. Moreover, each sub-problem can be solved inexactly
with an adaptive tolerance εn compatible with the primal
and dual residuals of the main ADMM iteration (we choose
εk = max{rk, sk}/10). Finally, the ym problem itself can be
solved via a standard algorithm such as ADMM or FISTA [11].

C. Eigenspace Decomposition

A common trick when dealing with the graph Laplacian
is to decompose L in the spectral domain, diagonalizing L
using its eigenbasis {ek}k∈{1,...,n}. Using this formulation,
iterates involving L can be computed explicitly by computing
inner products with eigenvectors. For example, the z update
of Eq. (8) becomes

zm =
∑
k

ρ

ρ+ µλk
〈xm + vm, ek〉ek , (11)

where λk is the k-th eigenvalue of L corresponding to ek. This
approach would still be infeasible if we were to compute all the
eigenvectors of L, but for many non-local graphs derived from
images, most of the larger eigenvalues are indeed close to unity
if the graph Laplacian is normalized. Thus only the smallest
few eigenvectors are needed to approximate the matrix L. This
technique, called spectral truncation, has been successfully
applied in graph cut algorithms for clustering [12], [13].

D. Speed of Algorithms

Here we compare the computational performance of various
algorithm options. We have a choice of using eigenvectors or
using the full matrix, and also using ADMM double-split or
ADMM single-split for the main algorithm, giving a total of
four combinations. We test each one on a set of problems of
varying sizes, and plot the total convergence time relative to
that of standard convolutional sparse coding (e.g. 2.0 means
it takes twice as long to converge as the standard algorithm).
The relative residual stopping tolerance [10] is set to 10−3.
All algorithms are tested on the same image with the same
parameters λ = 0.1, µ = 0.1 except for the standard convolu-
tional case, which is tested with λ = 0.1. As Figures 1 and 2
show, ADMM double-split is faster when using eigenvector
truncation, and single-split is faster when using the full matrix.
This discrepancy is due to different implementations of the
{zm} update in ADMM double-split. In the full matrix case,
{zm} is updated by solving a symmetric linear system which
can be costly, while in the eigenvector case the update only
involves inner products with the eigenvectors.



Double split
Single split

Number of eigenvectors

R
el

at
iv

e
tim

e

400350300250200150100

4.0

3.5

3.0

2.5

2.0

1.5

Fig. 1. Eigenvector Time Test

Double split
Single split

Number of neighborhoods

R
el

at
iv

e
tim

e

50454035302520

8.0

7.0

6.0

5.0

4.0

3.0

2.0

Fig. 2. Full Matrix Time Test

E. Efficient Graph Computation

In general, it is too computationally expensive to generate
the full non-local graph of the image. One way to deal with this
is to use eigenvector decomposition as described in Sec. III-C.
Since only the first few eigenvectors are needed, it makes
sense to use an algorithm that computes the eigenvectors
without constructing the full graph. We use the Nystrom
Extension [14], a sampling strategy used to compute an
approximation to the true eigenvectors. Error bounds for the
Nystrom Extension have been studied in [15].

There are cases where too many eigenvectors are needed
to accurately reflect the full graph Laplacian. In this case, we
have to resort to using the full matrix L. A straightforward way
to reduce cost is to sparsify the graph. Graph sparsification
can be done via building a k-nearest neighbor graph or spatial
localization, i.e., to restrict connections of pixels to only its
spatial neighborhood. An interesting observation is that the
case where too many eigenvectors are needed often occurs
when the graph construction parameters have made the graph
too disconnected, i.e., sparse. This suggests a guideline for
choosing the best algorithm: if we intend the graph to be well
connected, use eigenvector decomposition; otherwise, use a
sparse Laplacian.

Standard
Laplacian

Missing pixel fraction

PS
N

R
(d

B
)

0.750.700.650.600.550.500.450.40

40

39

38

37

36

35

34

Fig. 3. Lena Inpainting Comparison

IV. RESULTS

A. Image Inpainting

Laplacian convolutional sparse coding can improve the
performance of image inpainting compared to standard con-
volutional sparse coding. The model for inpainting using the
standard convolutional sparse coding is

argmin
{xm,z1,z2}

1

2

∥∥∥∑
m

dm ∗ xm + z1 + z2 − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1

+
∑
i

χ(i)z1(i) +
ν

2
‖∇z2‖22 , (12)

where χ(i) = 0 if i is a missing pixel, and +∞ otherwise.
Here s will be the corrupted image, z1 will absorb the missing
pixel values, z2 will be a low frequency component of the
image1, and the reconstruction will be srec =

∑
m

dm∗xm+z2.

The corresponding model for the Laplacian case is

argmin
{xm,z1,z2}

1

2

∥∥∥∑
m

dm ∗ xm + z1 + z2 − s
∥∥∥2
2
+ λ

∑
m

‖xm‖1

+
∑
i

χ(i)z1(i) +
µ

2

∑
m

〈xm, Lxm〉+
ν

2
‖∇z2‖22 . (13)

We use the standard model Eq. (12) to inpaint the image first
to construct the graph Laplacian L.

Inpainting is tested on the 512×512 “Lena” image with
missing pixel fraction ranging from 40% (PSNR 10.67dB) to
75% (PSNR 8.65dB), using a separately trained 12 × 12 ×
36 dictionary. A parameter search on λ and ν is done first
to produce the best performance for the standard model. The
same set of parameters is then used for the Laplacian model
with µ set to 0.1, which has proved empirically to be a good
choice, and with a K-Nearest neighbor graph with K = 40,
constructed using the cosine distance metric. A comparison of
PSNR values for both cases is given in Fig. 3. The Laplacian
model is consistently better than the standard convolutional
model for all noise levels, with an average PSNR increase of
around 0.85 dB.

1Employed here for similar reasons to the usual subtraction of the patch
mean in patch based sparse coding.



Standard
Laplacian

Missing pixel fraction

PS
N

R
(d

B
)

0.750.700.650.600.550.500.450.40

40

39

38

37

36

35

34

Fig. 4. Straw Inpainting Comparison

As might be expected, the Laplacian model yields better
performance for images with more structural similarity. If we
repeat the same experiment on “Straw”, a texture-rich image
consisted of vertically aligned straws [16], the average PSNR
increase is around 1 dB, as shown in Fig. 4. More importantly,
the performance gap is wider for the “Straw” image when the
corruption level is higher, showing that the model has better
performance on images with more structural similarity.

B. Dictionary Learning

Dictionary learning with the graph Laplacian regularizer can
be achieved by adding a constraint ‖dm‖ ≤ 1 to Eq. (4) and
updating d and x in a interleaved manner, as in [3]. In some
applications it is desirable to train dictionaries from images
corrupted by Gaussian white noise. Convolutional dictionary
learning has relatively poor resistance to noise in the training
images due to the homogeneous treatment of sparsity in
spatial and filter indices that is inherent in the `1 regularizer.
This is substantially improved by incorporating the graph
Laplacian regularization proposed here. This improvement
is due to the nonzero coefficients of the Laplacian model
having more spatial structure when given the same amount
of sparsity as a result of the non-local smoothing effect of the
graph Laplacian. A comparison using dictionaries trained on
5 randomly selected images from the MIRFlickr dataset [17]
is presented in Fig. 5 and 6; note that the dictionary filters
in Fig. 6 have substantially less noise in smooth regions.

Fig. 5. Best Standard Dictionary for N = 20

Fig. 6. Best Laplacian Dictionary for N = 20

V. CONCLUSIONS

We have proposed a modified form of Convolutional BPDN
that includes an additional regularization term based on the
Laplacian of the image non-local graph. Two algorithm vari-
ants have been developed for solving the resulting optimization
problem, and initial experiments indicate that the modified
form provides some advantages in both dictionary learning
and image restoration applications.

REFERENCES

[1] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in Proc. IEEE Conf. Comp. Vis. Pat. Recog. (CVPR),
June 2010, pp. 2528–2535.

[2] B. Wohlberg, “Efficient convolutional sparse coding,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), May 2014, pp. 7173–
7177.

[3] ——, “Efficient algorithms for convolutional sparse representations,”
IEEE Trans. Image Process., vol. 25, no. 1, pp. 301–315, Jan. 2016.

[4] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[5] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE Conf. Comp. Vis.
Pat. Recog. (CVPR), 2009, pp. 2272–2279.

[6] S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao, “Local features are
not lonely – Laplacian sparse coding for image classification,” in Proc.
IEEE Conf. Comp. Vis. Pat. Recog. (CVPR), 2010, pp. 3555–3561.

[7] S. Gao, I. W.-H. Tsang, and L.-T. Chia, “Laplacian sparse coding,
hypergraph Laplacian sparse coding, and applications,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 92–104, 2013.

[8] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph regularized sparse coding for image representation,” IEEE Trans.
Image Process., vol. 20, no. 5, pp. 1327–1336, 2011.

[9] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising
via dictionary learning and structural clustering,” in Proc. IEEE Conf.
Comp. Vis. Pat. Recog. (CVPR), 2011, pp. 457–464.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2010.

[11] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[12] A. L. Bertozzi and A. Flenner, “Diffuse interface models on graphs
for classification of high dimensional data,” Multiscale Modeling &
Simulation, vol. 10, no. 3, pp. 1090–1118, 2012.

[13] E. Merkurjev, E. Bae, A. L. Bertozzi, and X.-C. Tai, “Global binary
optimization on graphs for classification of high-dimensional data,” J.
Math. Imaging Vis., vol. 52, no. 3, pp. 414–435, 2015.

[14] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the Nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 2, pp. 214–225, 2004.

[15] A. Gittens, “The spectral norm error of the naive Nystrom extension,”
arXiv preprint arXiv:1110.5305, 2011.

[16] “Image of Vertical Straw Texture,” http://texturee.deviantart.com/art/
Straw-Texture-260793536 (Nov. 2015).

[17] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval evaluation,” in
Proc. ACM Intl. Conf. Multimedia Info. Retrieval, 2008, pp. 39–43.

http://texturee.deviantart.com/art/Straw-Texture-260793536
http://texturee.deviantart.com/art/Straw-Texture-260793536

