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ABSTRACT
Ultrasound computed tomography (USCT) is an emerging imaging modality that holds great promise for breast
imaging. Full-waveform inversion (FWI)-based image reconstruction methods incorporate accurate wave physics
to produce high spatial resolution quantitative images of speed of sound or other acoustic properties of breast
tissues from USCT measurement data. However, FWI is computationally burdensome and requires a good initial
guess of the speed of sound distribution due to the nonconvex nature of the underlying optimization problem
(cycle-skipping). Alternatively, the use of a simplified linear model, such as the Born approximation, allows
the image reconstruction problem to be formulated as a convex optimization problem, but sacrifices accuracy.
This work proposes utilizing a convolutional neural network (CNN) to correct pressure data and accurately
reconstruct images using a simplified forward model, thus combining the benefits of accurate reconstructions
from traditional FWI methods with the reduced computational complexity of inversion with simplified models.
Furthermore, applying this correction to the measurements before inversion avoids issues inherent to other
deep learning reconstruction methods that first invert and then apply correction to the images. Specifically,
correction in the measurement domain is well-defined by a mathematical model and avoids hallucinations by an
improperly learned image prior. This reconstruction approach was validated with a set of anatomically realistic
test images and compared to traditional reconstruction methods (FWI and uncorrected Born inversion), a data-
driven learned reconstruction method, and a machine learning method for artifact correction in the image domain
after reconstructing using an inaccurate physics model.
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1. INTRODUCTION
Ultrasound computed tomography (USCT) is an emerging medical imaging technology that can provide high-
resolution estimates of tissue acoustic properties, such as speed of sound (SOS), by utilizing ultrasound and
tomographic principles.1 Image formation in USCT is based on the interaction of acoustic wave signals with
biological tissues. Quantitative reconstructions of a tissue’s acoustic properties from USCT data can then be
achieved via a variety of computational methods. Full waveform inversion (FWI)2,3 is an image reconstruction
method that can be utilized to estimate high-resolution maps of acoustic properties from USCT data but requires
solving a computationally expensive, nonconvex optimization problem. Alternatively, inversion can be done
utilizing a simplified forward model, such as the Born approximation4 which discards higher order scattering
effects, but sacrifices the primary benefit of accuracy.

This work explores multiple model-guided machine learning methods to correct for model mismatch when
an estimate of the SOS distribution is reconstructed from USCT data utilizing the Born approximation. These
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include the application of a convolutional neural network (CNN) for artifact correction in the image domain after
reconstruction utilizing an approximate physics model, the proposed CNN approach for data correction in the
measurement domain before reconstruction, and the combination of both of these forms of correction for dual
correction. These image reconstruction methods utilizing an approximated physics model and assisted by machine
learning are also compared to purely data-driven reconstruction methods that learn to create reconstructed images
from measurement data.5,6

A simulation study was performed to explore these machine learning based reconstruction methods for appli-
cation in USCT breast imaging. The objects used in this study were a large set of anatomically realistic breast
phantoms with stochastically assigned acoustic properties within physiological ranges.7 Ultrasound measure-
ments were then numerically simulated assuming a stylized 2D ring-array USCT system with 64 sources and 256
receivers and a 96 mm radius. The neural networks used for correction utilized a U-net architecture and were
trained on a set of 820 images (214×214 pixels), and tested on an additional 615 images.

2. METHOD

2.1 Wave Equation Model
Assuming a non-lossy medium with homogeneous density and a spatially varying SOS, acoustic propagation in
USCT can be modeled using the acoustic wave equation8
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(1)

where c = c(r) is the spatially varying SOS, s = s(r, t) denotes the excitation pulse, T is the data acquisition
time, and p = p(r, t) is the acoustic pressure field. Eqn. (1) defines a well-posed relationship between the SOS
c, pressure p and source term s, which can be expressed as p = Hcs.

2.2 Born Model
A simplified model of acoustic wave propagation often used in USCT is based on the Born approximation.4,9

To derive the Born approximation, the pressure field p = pi + ps is decomposed into the isotropic component pi
that satisfies Eqn. (1) for a known constant (or nominal) SOS c0 and the scattered component ps. Under the
Born model, the approximated scattered component p̃s ≈ ps satisfies
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Equation (2) defines an affine mapping between p̃ = pi + p̃s ≈ p and the squared slowness b(r) =
(

c0(r)
c(r)

)2

. In

what follows the relationship between p̃ and c under the Born approximation is denoted as p̃ = Hc
Borns.

2.3 Continuous-to-Discrete USCT Imaging Operator
Assuming that J idealized point-like transducers are distributed along the measurement aperture at locations
rj ∈ S (j = 1, . . . J), the sampling operator M mapping the pressure p(r, t) to the pressure traces matrix
g ∈ RK×J is defined as

[Mp]kj := [g]kj = p(rj , k∆T ), j = 1, . . . J, k = 1, . . .K, (3)

where ∆T = T/K is the sampling interval and K is the number of pressure samples measured over the acquisition
interval [0, T ]. This leads to the continuous-to-discrete imaging relationship

di = MHcsi + ni ≈ MHc
Bornsi + ni i = 1, . . . , I, (4)

where si := si(r, t) is the ith excitation pulse, I is the number of sources, and ni ∈ RK×J is additive noise.



2.4 Inversion
Inverting for the SOS c given (possibly noisy) measurements {d}Ii=1 can be formulated as one of two optimization
problems, the first using the wave equation model

ĉ := argmin
c

1

2

I∑
i=1

∥di −MHcsi∥2 +R(c) (5)

and the second using the Born approximation

ĉBorn := argmin
c

1

2

I∑
i=1

∥di −MHc
Bornsi∥2 +R(c), (6)

where R is a regularization functional added to incorporate prior information. Solving the first optimization
problem, with the accurate model of acoustic propagation Hc as in Eqn. (5), is known as full-waveform inversion
and results in high-resolution reconstructions at the cost of computational complexity. On the other hand,
inverting using the Born approximation Hc

Born, as in Eqn. (6), reduces computational complexity and can be
framed as a convex penalized linear least-squares optimization problem for the squared slowness b, but comes at
the cost of accuracy and resolution due to modeling errors.

2.5 Learned Measurement Correction
This work introduces the use of a convolutional neural network (CNN) as a means of learned measurement
correction, or data correction. The network maps data generated using the wave equation model to data generated
using the Born approximation. Applying this correction allows for capitalizing on the benefits of both models in
inversion, specifically the accuracy of FWI alongside the convexity and computational efficiency of Born inversion.

Applying correction on the measurements before inversion can be viewed as a form of pre-processing and
avoids some of the inherent issues of image-to-image deep learning based image reconstruction methods that
apply a learned correction in the image domain after inversion (post-processing). First, measurement correction
is based on well-posed mathematical relationships as opposed to artifact correction approaches, which are based
on learned image priors that cannot be easily defined. Second, the number and size of measurements collected
are often much larger than the size of reconstructed images and thus provide richer training sets for learned
methods. Third, this method avoids inducing direct bias in the distribution of reconstructed images based on
an encoded image prior from training. These three benefits mean that measurement correction is in general an
easier map to learn and more generalizable compared to artifact correction in the image domain.

Let Ψξ : RK×J → RK×J denote a CNN with weights ξ ∈ RW that maps data generated from the wave
equation model to data generated from the Born approximation. This network is trained in a supervised manner
by minimizing the data-domain empirical minimum square error loss

min
ξ
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for a set of training SOS maps {cn}Nn=1. Above, {nn
i }

N,I
n=1,i=1 denote i.i.d. realizations of measurement noise.

Once trained, this network can used to estimate the SOS map ĉDC obtained by solving an optimization problem
in the form of Eqn. (6) in which the USCT data di are replaced by Ψξ(di). That is

ĉDC := argmin
c

1

2

I∑
i=1

∥Ψξ(di)−MHc
Bornsi∥2 +R(c).

3. NUMERICAL STUDY
A simulation study was performed to compare the viability and accuracy of the proposed method for accelerated
FWI utilizing machine learning. This study considered six different reconstruction methods applied to the
waveform data generated by solving the wave equation model in Eqn. (1). The first method utilized a traditional
FWI method, where the exact operator was used for inversion. The second method utilized a large CNN,



Table 1. Numerical study parameters

Virtual USCT System
Number of sources I 64
Number of receivers M 256
Transducer radius R 96 mm
Number of time samples K 800
Sampling Interval ∆T 0.2 µs
Time horizon T 160 µs
Excitation central frequency f0 500 kHz
Excitation time shift t0 3.2 µs
Excitation width σ 10 µs

Image Formation
Grid size Nx 214
Grid intervals δx 0.6 mm

Training and Testing Sets
Size of Training Set 820
Size of Testing Set 615

Wave Solver Details
CFL Number cmaxδt

δx 0.53
Points per wavelength cmin

f0δx
4.7

with the InversionNet architecture,5,6, 10 for a data-driven learned reconstruction method. The third method
(Uncorrected) inverted the waveform data using the Born approximation as imaging operator. The fourth
method (Artifact Corrected) inverted waveform data using the Born approximation, then utilized a CNN to
correct artifacts due to model mismatch.11 The fifth method(Data Corrected), i.e. the the proposed method,
utilized a CNN for learned measurement correction before inversion using the Born approximation. The sixth
method (Dual Corrected) applied the CNN for measurement correction, inverted using the Born approximation,
then applied a second CNN for artifact correction.

3.1 Construction of the Speed of Sound Numerical Breast Phantoms
This study made use of anatomically realistic numerical breast phantoms (NBPs) to which spatially varying SOS
maps were stochastically assigned within feasible ranges. These NBPs were developed and constructed by Li et
al.7 using tools adapted from the Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) project
at the US Food and Drugs Administration12 for use in USCT virtual imaging studies. Examples of these NBPs
are available from.13 In particular, the generated NBPs are stratified based on the four different levels of breast
density.14 The training set consisted of 820 NBPs while the testing test consisted of 615 NBPs.

3.2 Definition of the Virtual Imaging System and Image Reconstruction
Parameters
The measurements geometry consisted of a circular transducer array of radius R = 96mm along which 256 equi-
spaced receiving transducers were distributed. Every fourth transducer, 64 in total, also acted as a transmitter.
The excitation pulse generated by the i-th emitter was of the form

si(r, t) = δ(r− ri) exp
(
− (t−t0)

2

2σ2

)
sin(2πf0t), i = 1, . . . , I,

where ri is the location of the i-th emitter, f0 is the central frequency, t0 = 3.2µs is the time shift, and σ = 2µs
controls the excitation width. Measurements are collected by firing one transmitter at a time and recording data
at every receiver. Waveform data generated by each source are collected over an acquisition time T = 160µs,
which is long enough to capture secondary wavefront arrivals. This is repeated for each transmitter and results
in multi-channel measurements.

To numerically simulate the pressure field generated by each transmitter, the wave equation in Eqn. (1) and
the Born approximation in Eqn. (2) were solved using a finite difference scheme (4th order in space and 2nd
order in time) with an absorbing boundary condition using Devito.15,16 Electronic noise, used to corrupt the
FWI data in both reconstruction and training, was modeled as additive white Gaussian noise with a standard
deviation of 3.0 · 10−5, corresponding to an SNR of 20 dB. The imaging system parameters are summarized in
Table 1.

3.3 Image Quality Assessment
Image quality was assessed using two methods. The first method was relative root mean square error (RRMSE)
defined as

RRMSE(ĉ) :=
∥ctrue − ĉ∥2

∥ctrue − cbackground∥2
.



Figure 1. From left to right: True object from the testing set, FWI reconstruction, InversionNet reconstruction, uncorrected Born
reconstruction, artifact corrected reconstruction, data correction reconstruction, and dual corrected reconstruction. The bottom row
shows a zoomed in feature for each reconstruction, outlined by the blue box. The InversionNet reconstructions and artifact corrected
reconstructions look plausible but have false (hallucinated) features. The data corrected reconstruction has improved image quality
with minor artifacts from model mismatch. The dual corrected method leads to best image quality among the learned methods.

Figure 2. Violin plots of relative root mean square error (RRMSE) and structural similarity index measure (SSIM) obtained by
reconstructing images in the training and testing sets using FWI, InversionNet, uncorrected Born approximation and the model-
guided learned methods. The Dual Corrected method leads to the highest accuracy in terms of RRMSE and SSIM among the
learned methods and is comparable to the FWI method.

This method serves as a numerical metric for reconstruction accuracy. The second method was structural
similarity index measure (SSIM) as defined in Wang et al.17 This serves as a metric of perceptual image quality.

4. RESULTS
Reconstructions using each method for a phantom in the testing set are shown in Fig. 1. The FWI reconstruction
serves as the reference for image quality. Although plausible, the SOS map estimated by InversionNet is highly
inaccurate when compared to the true object and contains several hallucinated features. The reconstructed SOS
estimate obtained with the Uncorrected method is affected by strong artifacts stemming from modeling errors.
The Data Corrected method is able to remove these artifacts and has a visual appearance similar to the estimate
produced by FWI. The Artifact Corrected method provides a realistic breast image but introduces hallucinations
not present in the true image or in the Data Corrected reconstruction. The Dual Corrected method does not
display any hallucinations and provides higher resolution images than those produced by the Data Corrected
method.

The RRMSE and SSIM for each reconstruction in the training and testing sets are displayed in Fig. 2 as
violin plots. As expected, the FWI reconstructions can achieve very low RRMSE and very high SSIM, while the
Uncorrected reconstructions have the worse performance in terms of both RRMSE and SSIM. The InversionNet
reconstructions perform worse than the learned methods that leverage the Born approximation in terms of both
RRMSE and SSIM on the testing set. The Data Corrected method displays better performance on the testing



set than the Artifact Corrected method. The Dual Corrected method exhibits the highest accuracy in terms of
RRMSE and SSIM on the testing set among all learned reconstruction methods.

5. CONCLUSION
This work presents a method for learned measurement correction, or data correction, to enable accurate image
reconstruction using a simplified, or approximated, physical model, with application to ultrasound computed
tomography (USCT) breast imaging. This data correction method seeks to leverage the structure and richness
of physics data to enable ease of training and avoid the inherent bias of similar machine learning approaches for
artifact correction in the image domain.

In a computational imaging study, the proposed method of data correction was compared to a physics
based full-waveform inversion (FWI) method, a purely data-driven learned reconstruction method that did
not incorporate physics, an uncorrected image reconstruction method utilizing the Born approximation, an
artifact corrected image reconstruction method, and a method combining both data and artifact correction (dual
correction). In this study, reconstruction accuracy was assessed using relative root mean square error (RRMSE)
and structural similarity index measure (SSIM). Each form of correction (artifact, data, and dual) greatly
improved reconstruction accuracy when compared to the uncorrected Born method and displayed comparable
performance to the computationally expensive FWI methods. Comparably, the purely data-driven method
lead to inaccurate reconstructions with lower resolution and hallucinated features. This suggests that machine
learning methods incorporating an approximated physics model can lead to faster FWI reconstructions while
outperforming purely data-driven approaches. Furthermore, in this virtual imaging study, the artifact correction
methods showed propensity to introduce hallucinations into reconstructed images that are largely avoided by the
data and dual corrected methods. The results of this study suggests that incorporating learned measurement
correction helps to avoid the inherent bias in artifact correction and preserves image features.
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