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ABSTRACT

Ultrasound computed tomography (USCT) is an emerging imaging modality that holds great promise for breast
imaging. Full-waveform inversion (FWI)-based image reconstruction methods incorporate accurate wave physics
to produce high spatial resolution quantitative images of speed of sound or other acoustic properties of the breast
tissues. However, FWI reconstruction is computationally expensive, which limits its application in a clinical
setting. This contribution investigates using the use of a convolutional neural network (CNN) to learn a mapping
from USCT data to speed of sound estimates. The CNN was trained using a supervised approach that employed
a large set of anatomically and physiologically realistic numerical breast phantoms (NBPs) and simulated USCT
measurements. Once trained, this CNN can then be evaluated for real-time FWI image reconstruction from
USCT data. The performance of the proposed method was assessed and compared against FWI using a hold-out
sample of 41 NBPs and corresponding USCT images. Accuracy was measured using relative mean square error
(RMSE) and structural self-similarity index measure (SSIM). This numerical experiment demonstrates that a
supervised learning model can achieve accuracy comparable to FWI, while significantly reducing computational
time and memory requirements.

1. INTRODUCTION

a In particular, USCT holds a great promise for breast cancer diagnosis.1 Full waveform inversion (FWI) is an
image reconstruction that allow to estimate quantitatively accurate values of speed of sound distribution, as well
as of other tissue acoustic properties, from USCT data. FWI is a model-based iterative image reconstruction
method that incorporate the solution of the wave equation in the evaluation of the imaging operator.2,3 However,
the computational burden associate with solving the wave equation at each FWI iteration has hampered the
use of the FWI reconstruction approach in a clinical setting, in favor of less accurate but faster reconstruction
methods such as bent-ray approaches.4,5

This work investigates a deep learning based image reconstruction method, InversionNet, to alleviate the
computational burden of FWI. InversionNet is a convolutional neural network architecture originally proposed
for seismic imaging applications.6 This work proposes modifications of InversionNet for use in USCT image
reconstruction, including the use of training/testing sets relevant to medical imaging and architectural changes
to accommodate the larger amount of waveform data in USCT compared to seismic imaging. Once trained,
InversionNet neural network can be used to reconstruct tissue speed of sound estimates from USCT data in just
a few seconds, assuming that the data acquisition parameters are the same as those used for training.

A simulation study is conducted to compare InversionNet to an FWI. The objects used in this study are a large
set of anatomically-realistic numerical breast phantoms with acoustic properties assigned to the corresponding
tissues.7 USCT measurements are virtually acquired over a circular aperture by numerical simulation of wave
propagation in acoustically heterogeneous media. After training, InversionNet is then compared, in terms of
RMSE and SSIM, to an FWI method on a hold-out sample of 41 numerical breast phantoms.
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2. METHOD

Imaging Operator In USCT imaging, the object is insonified from several directions (shots). Acoustic pres-
sure waves propagating through the object are then measured on an aperture S surrounding the object.

Assuming wave propagation in a two-dimensional (2D) acoustic nonlossy medium with homogeneous density
and spatially varying speed of sound c = c(r), the canonical USCT continuous to continous (C-C) imaging
operator is defined as

Hcs := p(r, t) (r, t) ∈ S × [0, T ], (1)

where the notation Hc is used to underline the dependence of the imaging operator on the medium speed of
sound c. Above, T denotes the acquisition time for a single shot, s denotes the excitation pulse, and the acoustic
pressure p = p(r, t) solves the wave equation

1

c(r, t)2
∂2

∂t2
p(r, t)−∆p(r, t) = s(r, t) (r, t) ∈ R2 × [0, T ]. (2)

Assuming thatM idealized point-like transducers are distributed along the measurement aperture at locations
rj ∈ S (j = 1, . . .M),the sampling operator M mapping the pressure p(r, t) to the vector g ∈ RNtM is defined
as

[Mp]k+(j−1)Nt
:= [g]k+(j−1)Nt

= p(rj , k∆T ) j = 1, . . . ,M ; k = 1, . . . , Nt, (3)

where ∆T = T/Nt is the sampling interval andNt is the number of pressure samples measured over the acquisition
interval [0, T ].

Using the the continuous-to-discrete imaging operator MHc, the USCT data acquisition process is modeled
as

di = MHcsi + n i = 1, . . . ,m, (4)

where si := si(r, t) is the ith excitation pulse, m is the number of shots, and n ∈ RNt×M is additive noise.

Finally, the discrete-to-discrete (D-D) imaging operator is established by introducing a Cartesian grid with
N pixels. Denoting with rn the center of the nth pixel, the finite dimensional vectors c ∈ RN and si ∈ RNtM

are defined as
[c]n = c(rn), [si]k+(n−1)Nt

= si(rn, k∆T ) n = 1, . . . , N ; k = 1, . . . , Nt.

With the above notation, the D-D USCT model is given by

di = MHcsi + n i = 1, . . . ,m, (5)

where M : RNtN 7→ RNtM is the discrete counterpart of the sampling operator M defined via nearest neighbor
interpolation of transducer coordinates to the pixel centers of the Cartesian grid, and Hc : RNtN 7→ RNtN stems
from finite difference approximation of the C-C imaging operator H.8

Full Waveform Inversion One method of reconstructing the speed of sound map c given pressure traces d
is full waveform inversion (FWI).9 By use of the D-D USCT imaging model in Eq. (5), FWI seeks a speed of
sound estimate ĉ such that

ĉ := argmin
c∈RN

1

2

m∑
i=1

∥di −H(c)si∥2. (6)

This discrete optimization problem can then be solved using a gradient-based method to update estimates of c.
This optimization process can be accelerated by leveraging multi-channel measurements and linearity of the wave
equation with respect to the excitation pulse via a stochastic optimization method known as source-encoding .2

Even with acceleration, these methods are still slow to converge and reconstructions for individual images may
take several minutes or hours.



Table 1. Virtual imaging system and discretization parameters

Ultrasound system Discretization
Number of receivers M 256 Grid size Nx 360
Number of transmitters m 64 Grid intervals δx 0.6 mm
Transducer radius R 110.4 mm Points per wavelength cmin

f0δx
2.33

Pulse frequency f0 1 MHz Number of time steps Nt 400
Sampling frequency 5 MHz Time steps δt 0.2 µs
Acquisition time (per source) 640 µs CFL Number cmaxδt

δx 0.53

Learned FWI via InversionNet This work proposes leveraging a convolutional neural network (CNN) to
learn an inversion map from USCT measurements to the speed of sound maps of breast tissues. Once trained,
this CNN can be evaluated much quicker than FWI methods, significantly reducing the computational burden
of reconstructions.

The specific CNN architecture used here is InversionNet.6 InversionNet utilizes an end-to-end trained encoder-
decoder structure. In this scheme, pressure traces are encoded to a high-dimensional topological space and then

decoded to the space of images. Specifically, the input to InversionNet is a 3-d tensor d =
(
d1 . . . dn

)
∈

Rm×Nt×M corresponding to USCT measurements collected for multiple excitation pulses and its output is a 2-d
tensor c ∈ RN×N corresponding to pixel values of speed of sound estimates over the field of view.

InversionNet was originally developed for FWI of seismic tomography data in geophysics, which presents
several similarities to USCT imaging but with a few key differences. Primarily, measurements in seismic imaging
are sparse and expensive to acquire while USCT measurements are quite large. This means that modifications to
the InversionNet architecture are needed to accommodate a larger input space and also more training examples
are needed to learn a larger number of network parameters.

Additionally, InversionNet was trained with a supervised approach which requires pairs of ground truth
speeds of sound and pressure traces. Since InversionNet implicitly learns an image prior from the examples in
the training set,10 it is mandatory to train InversionNet on a set of images that are relevant to USCT and display
sufficient variability. However, a large data sets of accurate speed of sound estimates from clinical USCT data
are not readily available. Therefore the training and testing sets were constructed using anatomically accurate
numerical breast phantoms (NBPs). These NBPs were constructed using tools from the Virtual Imaging Clinical
Trial for Regulatory Evaluation (VICTRE) project at the US Food and Drugs Administration11 and adapted for
use in USCT virtual imaging studies.7,12 In particular, the size and breast density of such phantoms is randomly
sampled based on the four BI-RADS categories of breast density type: A] almost all fatty breasts, B] breasts
with scattered fibroglandular density, C] breasts with heterogeneous density, and D] extremely dense breasts.
Then anatomically realistic breast tissue structures are stochastically generated by use of the VICTRE tools and
the speed of sound maps corresponding to physiological variations in breast tissues are stochastically generated.7

The parameters ξ ∈ RW of the InversionNet Φξ was then trained by minimizing the loss function

min
ξ∈Rw

1

2N

N∑
j=1

∥Φξ(d
j)− cj∥2, (7)

where {(cj ,dj)}Nj=1 and {dj}Nj=1 are the speed of sounds maps and corresponding USCT measurements. Above,

the l2 norm of the difference between the speed of sound map and the output of Φξ is used for training, however
other choices are possible.6

3. NUMERICAL STUDIES

A simulation study was performed to demonstrate the feasibility of the proposed method. The image quality
achieved by InversionNet was compared to that of FWI with stochastic source-encoding.2 The parameters of the
virtual imaging study are presented in Table 1.

The training set and testing set consists of 1,353 and 41 NBPs and corresponding USCT data, respectively.
Ultrasound measurements are simulated using the two-dimensional virtual imaging system pictured in Figure 1.
The virtual imaging system has a circular measurement aperture with M = 256 idealized point-like transducers.



Figure 1. Virtual 2D USCT imaging system in (left): Receiving transducers (shown in blue and red), transmitting
transducers (shown in red) are distributed along a circular aperture surrounding the field of view (shown in green).
Example measurement (right) resulting from an excitation pulse from one transmitter and recorded pressure trace across
all receiving transducers

Emitters are also equidistributed along the measurement aperture (every fourth transducers acts in both emitter
and receiver mode). The excitation pulse of the m = 64 emitters is given by

si(r, t) = δ(r− rj) exp

(
− (t− t0)

2

2σ2

)
sin(2πf0t) i = 1, . . . ,m,

where rj is the location of the emitter, f0 is the frequency of the signal, t0 is the time shift, and σ controls
the signal width. Measurements are collected by firing one transmitter at a time and recording data at every
receiver. This is repeated for each transmitter and results in multi-channel measurements.

For each evaluation of the imaging operator in (5), the wave equation is solved using a finite difference scheme
(4th order in space and 2nd order in time) using a spatial grid of size Nx × Nx, with Nx = 360, and a spatial
grid with Nt = 400 samples. Absorbing boundary conditions are implemented to prevent wave reflections at
the boundaries of the computational domain. Electronic noise is modeled as a Gaussian additive with noise
with a standard derivation of 10−5. Image quality is assessed using two metrics; relative root mean square error
(RMSE) and structural self-similarity index measure (SSIM).13

An instance of InversionNET6 is implemented in PyTorch, an open-source machine learning framework,14

and trained for 1,000 epochs with a batch size of 50 using Adam optimizer.15 Training InversionNet took
approximately 10 hours on an HPC cluster with 512 GB of memory and 4 NVidia Volta V100 graphic processing
units (GPUs). The FWI method is implemented in Python using the acoustic wave solver built into Devito,
a Python library for optimized computation of finite difference stencils.16 Each FWI reconstruction took 18
minutes on a MacBook Pro with an M1 chip, and 8 cores with 16 GB of 3228 MHz memory.

4. RESULTS

Estimation of the speed of sound maps for all 41 objects in the testing set took approximately 42 seconds using
InversionNet and 12 hours using FWI. Figure 2 displays the RMSE and SSIM box plots for the InversionNet
and FWI reconstructions over the testing set. Additionally, reconstructions of four selected NBPs one for each
BI-RADS breast type are shown in Figure 3. The FWI method still results in better reconstructions than the
InversionNet in terms of both RMSE and SSIM. However, InversionNet results present fewer streak artifacts
when compared to FWI and sufficient resolution to capture the primary features and structures of the object.

5. CONCLUSION

This work presents a deep learning image reconstruction method for ultrasound computed tomography (USCT).
In particular, the InversionNet architecture, originally proposed for seismic imaging, was extended to produce



Figure 2. RMSE (left) and SSIM (right) box plots of reconstructed estimates obtained by InversionNet and FWI methods
applied to a testing set of 41 NBPs and corresponding USCT data.

Figure 3. Reconstructions of 4 selected phantoms from the testing set for each BI-RADS breast density type. Type A:
Almost all fatty; Type B: Scattered fibroglandular density; Type C: Heterogenous density; Type D: Extremely dense.
The speed of sound distributions of the objects are shown in the left column. Reconstructed estimates using InversionNet
and FWI methods are shown in the middle and right columns, respectively. Grayscale range is 1400− 1600 m/s



quantitatively accurate speed of sound maps of breast tissues from simulated USCT data, without the compu-
tational burden of model-based iterative methods, such as full waveform inversion (FWI). The proposed deep
learning image reconstruction method was illustrated in a virtual imaging study using a large set of anatomically
and physiologically realistic numerical breast phantoms. The numerical results demonstrate that InversionNet is
over three orders of magnitude faster than FWI while producing estimates that are only slightly inferior to those
produced by FWI in terms of RMSE and SSIM. Notably, speed of sound estimate produced by InversionNet
were not affected by any streak artifact, which was present in the FWI estimates.

Future work will compare InversionNet to FWI using task-based measurements of image quality, as well as
investigate unsupervised approaches to train InversionNet from clinical USCT measurement data.
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