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ABSTRACT

Sparse representations are widely used in a broad variety of
fields. A number of different methods have been proposed
to solve the sparse coding problem, of which the alternating
direction method of multipliers (ADMM) is one of the most
popular. One of the disadvantages of this method, however, is
the need to select an algorithm parameter, the penalty param-
eter, that has a significant effect on the rate of convergence of
the algorithm. Although a number of heuristic methods have
been proposed, as yet there is no general theory providing a
good choice of this parameter for all problems. One obvious
approach would be to try a number of different parameters at
each iteration, proceeding further with the one that delivers
the best reduction in functional value, but this would involve
a substantial increase in computational cost. We show that,
when solving the sparse coding problem for a dictionary cor-
responding to an operator with a fast transform, requiring it-
erative methods to solve the main linear system arising in the
ADMM solution, it is possible to explore a large range of pa-
rameters at marginal additional cost, thus greatly improving
the robustness of the method to the choice of penalty param-
eter.

Index Terms— Sparse Coding, Alternating Direction
Method of Multipliers, Krylov Subspace, Subspace Recy-
cling

1. INTRODUCTION

Sparse representation has become a well established method
in a wide variety of disciplines, including statistics, signal
processing, computer vision, and machine learning [1, 2, 3,
4]. There are a number of different formulations of sparse
coding, the inverse problem of computing the sparse repre-
sentation of a given signal with respect to a given dictionary.
In this work we will focus on one of the most common forms,
Basis Pursuit DeNoising (BPDN) [5]

argmin
x

{‖D x− y‖2 + λ‖x‖1} , (1)
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where D ∈ Rm×n is the dictionary, y ∈ Rm is the input
signal, x ∈ Rn is the corresponding sparse representation of
the input signal, and λ is the regularization parameter.

Numerous computational methods have been developed
to solve problem Eq. (1) [6, 7, 8]. The Alternating Direc-
tion Method of Multipliers (ADMM) [8] is one of the leading
methods for this problem [9, 10]. When applying ADMM to
the BPDN problem in Eq. (1), we have the iterations [8, Ch. 6]

x(k+1) = argmin
x

{
‖D x− y‖2+

ρ‖x− u(k+1) + d(k+1)‖22
}
, (2)

s(k+1) = Sλ/ρ
(
x(k+1) + d(k)

)
, (3)

d(k+1) = d(k) + x(k+1) − s(k+1), (4)

where Sµ(v) = sign(v)�max(0, |v| − µ) is the soft thresh-
olding operation and ρ is the penalty parameter. The choice
of ρ is critical to obtaining good convergence [11].

The major computational cost involved in this algorithm
is in solving Eq. (2). Various computational methods have
been proposed for solving this problem. When the dictionary
D is an explicit matrix, an LU or Cholesky pre-factorization
of DTD + ρI can be used for an efficient solution at each
iteration [8], in which case the computational cost in solving
Eq. (2) becomes O(nm2) flops for the factorization [12], and
O(nm) flops for the iterations. When D is represented as
a transform operator, iterative solvers such as the Conjugate
Gradient method are necessary for solving Eq. (2) [13]. The
cost is O(nm) for all iterations.

A poor choice of ρ value can lead to very slow conver-
gence. In order to obtain the optimal solution to the BPDN
problem using ADMM method, complicated heuristics have
been implemented to select an appropriate ADMM penalty
parameter [14, 11, 15, 16]. These existing ADMM penalty
parameter selection methods, however, can be complicated to
implement, computationaly demanding, unreliable, or inap-
plicable to the BPDN problem. Therefore, an efficient and
robust computational technique is needed to solve the mini-
mization in Eq. (2).

The technique proposed in this work not only reduces the



computational cost at each solve of Eq. (2), but also provides
an automatic ADMM penalty parameter selection scheme
to yield good performance to the minimization problem in
Eq. (1).

2. KRYLOV SUBSPACE GENERATION -
GOLUB-KAHAN-LANCZOS BIDIAGONALIZATION

Krylov subspace based iterative solvers are more suitable than
others for large-scale applications [17]. Since the proposed
approach relies heavily on these solvers, here we provide nec-
essary detail regarding the generation of the Krylov subspace
utilizing Golub-Kahan-Lanczos (GKL) technique [17, 18].

For a given linear least-squares problem, minx ‖Ax −
b‖2, we start the recursion with the right-hand side vector
b

β(1)u(1) = b, α(1)v(1) = A′ u(1), (5)

where ‖u(1)‖2 = ‖v(1)‖2 = 1. For j = 1, 2, . . ., we take{
β(j+1)u(j+1) = Av(j) − α(j)u(j),

α(j+1)v(j+1) = A′ u(j+1) − β(j+1)v(j),
(6)

where α(j+1) ≥ 0 and β(j+1) ≥ 0. After k steps of the
recursion in Eqs. (5) and (6), we can decompose the matrix A
into three matrices: U (k+1), B(k), and V (k)

V (k) =
[
v(1), v(2), . . . ,v(k)

]
,

U (k+1) =
[
u(1), u(2), . . . ,u(k+1)

]
,

and

B(k) =



α(1)

β(2) α(2)

β(3) . . .
. . . α(k)

β(k+1)

 .

The GKL bidiagonalization procedure also generates a
subspace, named Krylov subspace, which is spanned by the
column vectors in Vk, i.e.

Kk = span(V (k)) = Kk(A′A,A′ b). (7)

3. ROBUST AND EFFICIENT SPARSE
REPRESENTATION

3.1. Linear System Transformation and Matrix Structure

Using x̃ = x− s(k+1) + d(k+1), we can transform the mini-
mization problem in Eq. (2) into a standard form

x̃(k+1) = argmin
x̃

{
‖D x̃− ỹ‖2 + ρ‖x̃‖22

}
, (8)

where ỹ = D s(k+1)−D d(k+1)−y. The standardized form
in Eq. (8) can be therefore posed equivalently as

x̃(k+1) = argmin
x̃

{∥∥∥∥[ D√
ρ I

]
x̃−

[
ỹ
0

]∥∥∥∥
2

}
. (9)

With x̃ calculated, the original solution can be obtained cor-
respondingly

x(k+1) = x̃(k+1) + s(k+1) − d(k+1). (10)

We observe that in Eq. (9), the system matrices consist of
two parts: the dictionary matrix D and the identity matrix I .
To select the optimal ADMM penalty parameter ρ, the dictio-
nary matrix D remains the same while ρ varies. A significant
amount of computational cost can be wasted without consid-
ering this special matrix structure.

3.2. Efficient Sparse Representation with Krylov Sub-
space Recycling

Employing a similar bidiagonalization procedure as in Eqs. (5)
and (6), we have

min
x̃

{∥∥∥∥[ D√
ρ I

]
x̃−

[
ỹ
0

]∥∥∥∥
2

}
→ min

x̄

{∥∥∥∥[B(k)

√
ρ I

]
x̄− β(1)e(1)

∥∥∥∥
2

}
. (11)

The corresponding Krylov subspace generated in Eq. (11) is

Kk = span {D′D + ρI,D′ ỹ} . (12)

From the definition of a Krylov subspace in Eq. (7), it is clear
that the subspace is invariant under translations of the system
matrix. Therefore, we will have

Kk {D′D + ρI,D′ ỹ} = Kk {D′D,D′ ỹ} . (13)

We observe that in Eq. (13), the Krylov subspace generated
through the bidiagonalization procedure is independent of the
ADMM penalty parameter ρ. This invariance property of the
Krylov subspace allows us to develop a novel ADMM penalty
selection strategy.

3.3. Robust ADMM Penalty Parameter Selection

We generate n logarithmically spaced ADMM penalty param-
eters ρ between 10a and 10b. We randomly select one out of
the n values as the seed system and the remaining n−1 as the
non-seed systems, and further solve them, respectively. The
objective function values in Eq. (1) are evaluated and com-
pared for each update of x at every iteration when Eq. (2) is
solved. We select the ρ that yields the smallest objective func-
tion value in Eq. (1) and use that to further obtain s and update
d in Eqs. (3) and (4). It is worth mentioning that the selection
of the optimal penalty parameter is independent of the linear
solvers, although it can be computational extremely intensive
and impractical when direct methods are employed. The pro-
posed computational method, on the other hand, can obtain
multiple solutions with different ADMM penalty parameters
at marginal additional cost.



3.4. Seed and Non-Seed Systems

Solving the seed system achieves two goals: obtaining the
Krylov subspace in Eq. (13) and solving for the solution x̃.
To generate the the Krylov subspace, we employ the GKL
bidiagonalization as in Eqs. (5) and (6) discussed previously.

The solution x̃ can be obtained by solving the approxi-
mated linear system in Eq. (11). We observe that Eq. (11)
is an augmented least-squares problem with a system-matrix
consisting of a lower-bidiagonal matrix B(k) and a diagonal
matrix

√
ρ I . Careful exploration of the matrix structure of

Eq. (11) can further reduce the computational cost in solv-
ing for the solution x̃. We employ Givens rotations to elim-
inate the diagonal matrix

√
ρ I and meanwhile transform the

lower-bidiagonal matrix B(k) into a upper-bidiagonal matrix.
Specifically, provided with a Givens matrix Gi,j for the ith

row and jth column, at each iteration, we have

G1,2G1,k+2

[
B(k)

√
ρ I

]
. (14)

Because of the orthogonality of the Givens matrix, we can
transform the least-squares problem in Eq. (11) into an equiv-
alent problem

min
x̄

{∥∥∥∥G1,2G1,k+2

([
B(k)

√
ρ I

]
x̄− β(1)e(1)

)∥∥∥∥
2

}
. (15)

Performing k steps of Givens rotation, we will have an equiv-
alent least-squares problem

min
x̄

{∥∥∥∥([(R(k))′

0

]
x̄−

[
(g(k))′

(φ(k))′

])∥∥∥∥
2

}
. (16)

It is worth mentioning that the upper bidiagonal matrix
(R(k))′ in Eq. (16) now contains the ADMM penalty pa-
rameter, ρ. Many efficient methods can be used to solve the
least squares problem in Eq. (16) such as Gaussian elimina-
tion and back-substitution [19]. A three-term-recursion can
be derived to update the solution

x̃(k) = x̃(k−1) + (φ(k))′(z(k))′,

(z(k))′ =
1

(γ(k))′
(v(k) − (θ(k−1))′(z(k−1))′).

(17)

Solving the non-seed systems involves one purpose only,
to obtain the solution x̃. Since the Krylov subspace has been
generated, we will recycle the subspace for all the non-seed
systems. With the subspace generated, all that is needed to
solve for x̃ of the non-seed systems is to solve the system in
Eq. (16), which leads to the three-term-recursion in Eq. (17)
with different values of the ADMM penalty parameter ρ.
Therefore, solving the non-seed systems is computationally
efficient.

3.5. Computational Cost

Solving the seed system can be computationally intensive. It
involves matrix-vector multiplications to generate the Krylov
subspace as shown in Eqs. (5) and (6). Hence, the cost of
solving the seed system is O(nm). While solving the non-
seed system involves only the projection operations given in
Eq. (17), so its cost is O(n). Therefore, a significant amount
of cost has been reduced using subspace recycling technique.

4. NUMERICAL RESULTS

We now provide two numerical tests to demonstrate the per-
formance of our new computational technique for solving the
BPDN problem. We apply our method to standard image de-
noising problem [20]: a clean image x is corrupted with an
additive zero-mean white Gaussian noise with standard devi-
ation σ = 0.05. The image denoising is an important problem
since it not only serves a wide application, but also includes
all the ingredients of inverse problem, over which computa-
tional methods and techniques can be assessed.

We select the discrete cosine transform (DCT) basis as
the dictionary in Eq. (1). The testing image is a gray scale
“Lena” image with size of 512 × 512. In order to test the
robustness of our approach to the choice of initial penalty pa-
rameter ρ init, we repeat our experiment for all values of ρ init

in the set {0.05, 0.08, 0.1, 0.2, 0.3, 1.0, 3.0, 10.0, 20.0 and
30.0}. For each choice of ρ init we generate n = 10 ADMM
penalty parameters at which the functional will be evaluated
using the proposed method. These values are logarithmically
spaced between 10a and 10b, where a = −ln(ρ init) and
b = ln(ρ init).

The stopping criterion is an important issue for any iter-
ative method. We employ two stopping criteria to justify the
convergence of the iteration

‖x(k) − x(k−1)‖2 ≥ τ ‖x(k)‖2, (18)
Iteration Number < 100, (19)

where τ = 1.0× 10−6. We select BPDN with CG method as
a reference method (“BPDN-CG”) and denote our method as
“BPDN-RS” short for BPDN with Recycled Subspace.

4.1. Test on Linear Solver Efficiency

In this test, we provide the computation time using both meth-
ods of “BPDN-CG” and “BPDN-RS”. In Fig. 1, we give the
computation time in solving the systems in Eq. (2) using n =
10 penalty parameters using our method. We observe that at
each iteration, almost all the computation time is utilized in
the first ADMM penalty parameter, which corresponds to the
seed system. As discussed previously, the computation cost
in solving the seed system is dominated by the generation of
the Krylov subspace. Solving the non-seed systems is much
more efficient than solving the seed system. As shown in the
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Fig. 1. The computation time costs in solving the systems in
Eq. (2) using n = 10 penalty parameters for our method. The
time cost in solving the non-seed system is trivial. It is about
an order less time consuming than solving the seed system.
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Fig. 2. The overall computation time at each iteration us-
ing BPDN with CG solver (in red) and BPDN with our sub-
space recycling technique (in blue). Our method is consis-
tently more efficient than BPDN-CG method.

Fig. 1, the time cost in solving the non-seed system is trivial.
It is about an order of magnitude less time consuming than
solving the seed system, which confirms with our computa-
tional cost analysis in previous sections. We also provide in
Fig. 2 the results of the overall computation time at each iter-
ation using the reference method BPDN-CG and our method,
BPDN-SR. The overall computation time of BPDN-CG in-
cludes the time solving Eq. (2) using one ADMM penalty pa-
rameter. On the other hand, the overall computation time of
our method at each iteration includes the time solving Eq. (2)
with n = 10 ADMM penalty parameters. We notice that our
method is consistently more efficient than BPDN-CG method.

4.2. Test on Reconstruction Accuracy

The selection of ADMM penalty parameter is critical to the
resulting reconstruction in solving the BPDN problem in
Eq. (1). In this test, we provide results illustrating the recon-
struction accuracy of our computational method. We reported

1 2 3 4 5 6 7 8 9 10

10
2.67

10
2.68

10
2.69

ADMM Penalty Parameter

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

 

 

BPDN

BPDN with Recycled Subspace

Fig. 3. Plots of the objective function values versus ρ init by
solving BPDN in Eq. (1) using the same ρ init values (in red)
and by using our new technique (in blue). The results ob-
tained using our method yields objective function value con-
sistently close to the optimal value regardless of the ρ init.

the resulting objective function values versus different ρ init

values in Fig. 3. The results of solving BPDN in Eq. (1)
using the ρ init values is plotted in red. We observe that the
objective function values varies significantly with different
ρ init values. An increased objective function value in the
image denoising application means either over smoothed or
under regularized resulting image. By having the plot of ob-
jective function values versus ρ init values, we can locate the
optimal ADMM penalty parameter in-between ρ = 0.2 and
ρ = 0.3 in this testing problem, and the corresponding ob-
jective function value is roughly 458. On the other hand, our
computational technique yields a much more stable results.
As indicated by the blue curve in Fig. 3, the results obtained
using our method yields objective function value consistently
close to the optimal value regardless of ρ init, demonstrating
the robustness of our method.

5. CONCLUSIONS

We have developed a robust and computationally efficient
ADMM penalty parameter selection technique using Krylov
subspace recycling technique. We generate multiple penalty
parameters at each iteration and proceeding further with the
one that yields the largest reduction in objective function
value. To reduce the excessive computational cost in explor-
ing large range of parameters, we employ Krylov subspace
recycling technique, which consisting of solving for the seed
and the non-seed systems. In the seed system, a solution
is computed while Krylov subspace is generated. In the
non-seed systems, the generated subspace can be recycled
to obtain the new solution with high accuracy. We further
demonstrate the performance of our method by applying it to
sparse representation. Through our numerical tests, we show
that our method yields comparable costs to the traditional
linear solvers while significantly improve the robustness and
computational efficiency of the resulting reconstruction.
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