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Abstract

Total Variation (TV) regularization is a popular method for solving a wide
variety of inverse problems in image processing. In order to optimize the
reconstructed image, it is important to choose a good regularization param-
eter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to
give a good estimate of this parameter for Tikhonov regularization. In this
paper we propose an extension of the UPRE method to the TV problem.
Since direct computation of the extended UPRE is impractical in the case of
inverse problems such as deblurring, due to the large scale of the associated
linear problem, we also propose a method which provides a good approxima-
tion of this large scale problem, while significantly reducing computational
requirements.
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1. Introduction

Many image restoration tasks can be posed as linear inverse problems of
the form

Kx = b + ν, (1)

where b represents the measured data, ν represents noise, K is a linear
transform (e.g. a convolution operator in the case of a deconvolution problem,
and the identity in the case of denoising), and x represents the vectorised form
of the recovered image. Regularization provides a method for controlling the
noise and possible poor-conditioning of the operator K, prominent examples
being the classical Tikhonov regularization [1],

arg min
x

{

1

2
‖Kx − b‖2

2 +
λ

2
‖Hx‖2

2

}

, (2)

where the matrix H is usually defined as a high-pass filtering operator, or
identity matrix. The more recent TV regularization [2],

arg min
x

{

1

2
‖Kx − b‖2

2 + λ ‖x‖TV

}

, (3)

where the TV norm ‖x‖TV is defined as
∥

∥

∥

√

(Dxx)2 + (Dyx)2

∥

∥

∥

1
, with scalar

operations applied to a vector considered to be applied element-wise, and
the horizontal and vertical derivative operators written as Dx and Dy re-
spectively. These two methods differ in the regularization term; TV regular-
ization is more difficult to compute, but usually provides superior results.

Effective application of these regularization methods depends critically
on correct selection of the regularization parameter λ. While it is common
practice for the user to simply try various values until the solution looks
reasonable, the preferred approach is to estimate the λ value which optimizes
some objective measure of image quality, such as the Signal to Noise Ratio
(SNR) of the reconstructed image with respect to the original undegraded
image. There are several existing parameter selection methods for Tikhonov
regularization [3, 4]: (1) those requiring some knowledge of the noise ν,
such as the Discrepancy Principle [5], and the UPRE [4], and (2) those
that do not, such as Generalized Cross-Validation (GCV) [6, 7] and the
L-Curve Method [8]. Optimal parameter selection for TV regularization,
in contrast, has received surprisingly little attention. To the best of our
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knowledge, there are very few papers discussing this issue under the TV
framework [9, 10, 11, 12, 13].

We chose to extend the UPRE method to TV regularization, based on
its good performance in the Tikhonov case [14], as well as the conceptual
simplicity of the extension. Since the direct extension is only able to deal with
relatively small-scale problems, we also discuss how to bypass this obstacle
by using a Krylov subspace method. Experimental results are provided to
demonstrate the efficacy of our approach.

2. Unbiased Predictive Risk Estimator

The UPRE approach, also known as the CL method, was first proposed
[15] for regression problems, and then extended [4] to optimal parameter
selection for Tikhonov problems. Define the predictive error pλ = Kxλ −
Kxtrue, where xλ ∈ R

n is the computed solution for parameter λ, and xtrue ∈
R

n is the ground truth solution. According to the UPRE method, the optimal
parameter λ as the minimizer of the predictive risk (1/n)||pλ||

2, which is
statistically estimated since xtrue is, in general, unknown. The full derivation
[4, Sec. 7.1], which is too lengthy to reproduce here, depends on the ability
to express the regularized solution as having linear dependence on the data,
xλ = RTK,λb, where the regularization matrix RTK,λ = (KTK + λI)−1KT .
Defining the regularized residual rλ = Kxλ − b, and the influence matrix

ATK,λ = K(KTK + λI)−1KT , the optimal parameter λ is the minimizer of

UPRETK(λ) =
1

n
||rλ||

2 +
2σ2

n
trace(ATK,λ) − σ2, (4)

where σ2 is the noise variance. The primary computational cost of evaluating
the function UPRETK at λ consists of solving the Tikhonov problem at λ to
obtain xλ, from which rλ is obtained, and, more significantly the computation
of trace(ATK,λ).

2.1. Extension of UPRE to Total Variation Regularization

Extension of the UPRE to TV regularization is complicated by the ab-
sence of a linear equation xλ = RTV,λb for the solution in terms of the data.
Following part of the derivation of the Lagged Diffusivity algorithm [4, Sec.
8.2], we approximate the TV term ‖x‖TV by ‖ψ((Dxx)2 + (Dyx)2)‖1, where

ψ(x) =
√

x+ β2 provides differentiability at the origin. Correspondingly,
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the gradient of the TV term, ∇(‖x‖TV), at xλ can be written as L(xλ)x,
where

L(xλ) = DT
x diag(ψ′(xλ))Dx +DT

y diag(ψ′(xλ))Dy,

allowing one to define

RTV,λ = (KTK + λL(xλ))
−1KT ,

which is in the required form except for the dependence of matrix L(xλ) on
xλ.

Followed this idea, the influence matrix in the TV case can be written as,

ATV,λ = K(KTK + λL(xλ))
−1KT . (5)

The derivation (which is too lengthy to reproduce here, please refer to
[4] for more details) of UPRETK(λ) depends on the symmetry of ATK,λ and
the Trace Lemma [4]. Since ATV,λ is also symmetric, the functional for
UPRETV(λ) can be derived in a similar way, and it can be shown that the
UPRE for TV method shares the same form of expression as the Tikhonov
method, with UPRE functional

UPRETV(λ) =
1

n
||rλ||

2 +
2σ2

n
trace(ATV,λ) − σ2. (6)

2.2. Computational Limitations

In the Tikhonov case the computation of trace(ATK,λ) in (4) is straight-
forward if the Singular Value Decomposition (SVD) of A is available, but
in many large scale problems it is too expensive to compute the SVD of A.
In [16] an approximation method is proposed to approximate the value of
trace(ATK,λ) and related work can be found in [17, 18, 19, 20].

The primary difficulty in implementing the UPRE in the TV case is the
computation of trace(ATV,λ) in (6), since the linear approximation of the
regularization term in the TV case further complicates the computation of
UPRE in comparison with the Tikhonov case. Direct computation of the
UPRE imposes very severe limits on the problem size due to computation
time and memory requirements. In the following sections, we will introduce
an algorithm which computes an approximation of the UPRE with vastly
reduced computational cost, allowing application of this method to standard
image sizes. In implementing this approximation, an enormous reduction in
memory requirements is achieved by avoiding explicit construction of matri-
ces such as A, Dx, D

T
x , Dy and DT

y , the algorithm implementation requiring
only matrix-vector products involving these matrices.

4



2.3. Extension of UPRE to Large Scale Total Variation

In the computation of (6), the most expensive part, as mentioned above,
is the trace of the influence matrix, trace{K(KTK + λL(xλ))

−1KT}, since
we need to deal with an inverse first then find the trace value. Applying
the approach of Hutchinson [21], we can approximate trace(f(M)) by the
unbiased trace estimator

E(uTf(M)u) ≃ trace(f(M)), (7)

where u is a discrete multivariate random variable, which takes each entry
the values -1 and +1 with probability 0.5, and the matrix M is symmetric
positive definite (SPD).

Define the eigenvalue decomposition of M as M = QT ΛQ, where Q is an
orthogonal matrix and Λ is a diagonal matrix of eigenvalues ρi in increasing
order. Then, following [19, 20], it can be shown that

uTf(M)u =

n
∑

i=1

f(ρi)ũ
2
i

=

∫ b

a

f(ρ)dµ(ρ), (8)

where ũ = Qu, ũi are the components of ũ, and the measure µ(ρ) is defined
as

µ(ρ) =











0 if a ≤ ρ < ρ1
∑i

j=1 ũ
2
j if ρi ≤ ρ < ρi+1, 1 < i < n

∑n

j=1 ũ
2
j if ρn ≤ ρ < b.

(9)

In order to compute the Riemann-Stieltjes integral in (8), Gauss quadrature
is used,

∫ b

a

f(ρ)dµ(ρ) ≈

k
∑

i=1

ωif(θi), (10)

where the weights ωi and the nodes θi are unknown. Golub et al. [19] men-
tioned a way to determine ωi and θi, by constructing a sequence of orthogonal
polynomials pk(ρ)

N

k=0, based on the measure µ(ρ) in (9), subject to

∫ b

a

pi(ρ)pj(ρ)dµ(ρ) = δij .
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and satisfying a three term recurrence relation

γkpk(ρ) = (ρ− αk)pk−1(ρ) − γk−1pk−2(ρ),

where k ∈ {1, ..., N}, p−1(ρ) = 0, and p0(ρ) = 1.
The equivalent matrix form of the above can be written as,

ρP(ρ) = TNP(ρ) + γNP(ρ)eN,

where PT(ρ) = [p0(ρ), ..., pN−1(ρ)], eT

N
= [0, ..., 0, 1], and

TN =















α1 γ1

γ1 α2 γ2

. . .
. . .

. . .

γN−2 αN−1 γN−1

γN−1 αN















. (11)

It has been shown in [22] that θi are the eigenvalues of TN , and ωi are
squares of the first components of the normalized eigenvectors of TN , and
this observation is utilized as Golub-Welsch algorithm. Golub [19] points
out that these eigenvalues/vectors can be computed by applying the Lanczos
procedure to M with initial vector x(0) = u/‖u‖2, and such approximation
works best for sparse matrices. Further details of the procedure outlined
above can be found in [19, 20].

In our problem, the linear transform matrix K is often reasonably sparse,
and more importantly, the matrix KTK + λL(xλ) is SPD. We can adapt the
above algorithm by setting f(x) = 1/x and deriving the trace of ATV,λ as

trace(ATV,λ) ≈ E(uTK((KTK + λL(xλ))
−1)KTu),

= E(vT((KTK + λL(xλ))
−1)v), (12)

where v = KTu. Related to the eq. (7) above, the matrix M = KTK +
λL(xλ) and f(x) = x−1. The tridiagonal matrix TN in eq. (11) can be
derived correspondingly under this transformation, and the weights ωi and
the nodes θi can be assured according to the “Golub-Welsch” algorithm as
mentioned. Numerically, we need to implement the Lanczos procedure on
the newly defined matrix M , but with a slightly different starting vector.
Instead of using x(0) = u/‖u‖2 as previously, we now need to utilize the
corresponding initial vector for this case, i.e., x(0) = v/‖v‖2.
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If provided with a confidence probability p = 1 − α and the required
accuracy δ of the approximated trace value, it has been shown [20] that we
can find out the sample size, N , of the Monte Carlo test which needs to be
processed to achieve this accuracy of δ. Specifically, by denoting AppTRj as
the jth approximation to the trace, we have

N ≥
(ρα

δ

)2
(

σt

mt

)2

, (13)

wheremt and σt are the mean and standard deviation respectively of {AppTRj |j ∈
{1, 2, . . . , t}}.

2.4. General Algorithm

For Monte Carlo test sample size N given by (13), the general algorithm
for computing the approximated trace is illustrated as follows:

for (j = 1 to N)
Setup the tolerance, TOL;
Setup the initial vector for the Lanczos procedure as:
x(0) = v/‖v‖2 as in (12);
Setup the Lanczos level, k = 1;
while (RelErr > TOL)

αk = x(k−1)T (KTK + λL(xλ))x
(k−1);

z = (KTK + λL(xλ))x
(k−1);

z = z − αkx
(k−1) − γk−1x

(k−2);
γk = ‖z‖2;
x(k) = z/γk;
Construct the matrix T according to (11);
Compute the Ritz values θi and the first elements ωi

of Ritz vectors of T ;

Compute IG =
∑LEV

i=1 ωif(θi) by using Gauss
quadrature as described in (10);
Update the relative error RelErr from two successive
approximations of IG;
k = k + 1;

end (while)
AppTRj = ‖v‖2

2IG;
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Approx. Trace = 1/j
∑j

p=1 AppTRp;

Update the Monte Carlo test sample size N according to (13);
end (for)

It is worth pointing out that the test sample size N given by (13) is updated
each time along with a new approximation of AppTRj is computed.

Once we have the trace value, the UPRE functional value can be found
using (6), and in our algorithm, we use two ways to locate the minimizer
of the UPRE functional. One is by exhaustive search, which means we set
up a grid of points of λ, and sweep through all of them and find out the
corresponding λ value with respect to to the minima. The other method is
based on the Golden Section search [23]. From numerical experiments, we
have found that calculation of the UPRE functional is significantly slower
for large λ (due to the corresponding computational cost of the TV solver
at large λ). The Golden Search method is much faster than the exhaustive
search, as it computes the UPRE functional at fewer λ values, and, when the
target λ is small, is able to avoid more than one computation for large λ.

3. Computational Results

In this section, we present four numerical tests: one denoising problem,
two deblurring problems, and some comparison results, all of which are im-
plemented in Matlab. The blurring kernel is chosen to be Gaussian, with
additive Gaussian white noise. We assume that the variances of the added
noise are known for all our tests below, for those applications where the vari-
ances are unknown, certain techniques to estimate the noise [24, 25] can be
applied before performing our proposed algorithm. Since we are using syn-
thetic data, we can find out the true optimal parameter λ by sweeping over a
wide enough range of possible values of [λmin, λmax], and compare the corre-
sponding SNR values. Similarly, we can also compute the predictive risk. For
the purpose of showing the effectiveness of our approximation algorithm, we
compute the exact UPRE value at the same time by exactly constructing the
explicit matrix Aλ in (4). We evaluate the performance of our approximated
UPRE approach by comparing to the above three values.

3.1. Test Problem 1 - Deblurring: Lena Image with Size 32 × 32

To demonstrate the strength of our approximation algorithm, we set up
a small test problem, so that we can compute both the direct method, by
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using the explicit matrix for the UPRE value, and the approximated method
proposed above. We compare our approximated UPRE with the predictive

risk, the exact UPRE and the actual result using the optimal parameter.
The test image is a 32 × 32 image cut from the original 256 × 256 version
of the well-known “Lena” image. The test image is blurred using an 11× 11
Gaussian kernel before adding zero-mean white noise with a variance of 63.0.
The corresponding blurring matrix has size 1024 × 1024. Table 1 shows
the results of estimated parameter λ and the estimated SNR value of the
recovered image using the approximated UPRE, the true predictive risk and
the exact UPRE functional as well as the optimal values. In this example,
the Exact UPRE is a good estimate of the True Predictive Risk, and the
Approximate UPRE is a good estimate of Exact UPRE (in fact, in this small
example, these values are the same to displayed precision), and the resulting
λ estimate is very close to the optimal λ (the same to displayed precision).

Optimal True Pred. Risk Exact UPRE Approx. UPRE
SNR (dB) 14.70 14.70 14.70 14.70

λ 94.90 94.90 94.90 94.90

Table 1: Performance results for Test Problem 1. Image size: 32 × 32, Lena; blurring
matrix size: 1024 × 1024, consisting of 11 × 11 Gaussian kernel with σ = 0.46; Gaussian
noise with 0 mean and variance 63.0; SNR of the original noisy image: 13.24 dB; accuracy
of the trace approximation in (13): δ = 0.02.

3.2. Test Problem 2 - Denoising: Lena Image with Size 256 × 256

In order to show the feasibility of UPRE for denoising, in our first example
we generate a denoising problem by setting K = I in (3). Gaussian noise
with mean 0 and variance 37.9 was added to the image. The UPRE plot and
the SNR plot are given separately in Figure 1 and in Figure 2. The optimal
λ estimated by UPRE gives a very promising result, since in Figure 2 the
estimated optimal SNR value is very close to the maximum SNR. The TV
solver used in this testing problem is lagged-diffusivity [4], but this is not a
requirement of the method.

3.3. Test Problem 3 - Deblurring: Lena Image with Size 256 × 256

In this test problem, we use the whole 256 × 256 pixel Lena image, again
adding Gaussian white noise after blurring with a Gaussian kernel. The
blurring matrix under this setup has size 65536 × 65536, which is too large
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Figure 1: Comparison of predictive risk and approximate UPRE for the 256 × 256 de-
noising test. Note that location of the minima are so close that they are virtually indis-
tinguishable.
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against λ. Note the proximity of the maximum SNR region to the minimum of the Ap-
proximate UPRE in Figure 1.
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to be able to compute the SVD, so the traditional UPRE is impractical due to
memory limitations. However by using our approximated algorithm, we can
still process this image and the numerical results in Table 2 show the good
accuracy of our approximated algorithm by comparing column 5 and column
2. Figure 3 compares the predictive risk with the UPRE value, from which
we can see that the minima of those two curves are located close together. It
is worth pointing out that, what we want here is the location of the minimum
of the function, so the functional value is irrelevant. In Fig. (4), the box is
the SNR value achieved by using the UPRE approach, which is close to the
maximum of the SNR value.

Optimal True Pred. Risk Exact UPRE Approx. UPRE
SNR (dB) 15.27 15.27 - 15.25

λ 257.85 257.85 - 228.61

Table 2: Performance results for Test Problem 3. Image size: 256 × 256, Lena; blurring
matrix size: 65536 × 65536, consisting of 11 × 11 Gaussian kernel with σ = 0.91; Gaussian
noise with 0 mean and variance 27.93; SNR of the original degraded image: 13.13 dB;
accuracy of the trace approximation in (13): δ = 0.02.

3.4. Test Problem 4 - Comparison Result

For the denoising problem, we compare our algorithm performance with
that of Gilboa et al. [10], which appears to be the most effective of the
existing methods, [11], [12], and [13] (of which there are surprisingly few,
given the prominence of TV as a regularization method). From Figure 5, we
can see that our estimation provides a much closer match to the “Optimal
SNR” curve; the average difference of our estimation and optimal value is
0.02 dB, while the average loss of the method of Gilboa et al. is 0.76 dB.

Similar performance results for the deblurring problem are provided in
Figure 6, of which nine different deblurring tests with original SNR ranging
from 11.36 dB to 29.49 dB are constructed and tested using UPRE approach.
In this comparison test, we are unable to provide results for other existing
approach, as all of those of which we are aware are restricted to the denoising
problem. Again our algorithm gives very good results, with an average loss
of 0.03 dB.
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Figure 3: Comparison of predictive risk and approximate UPRE for the 256 × 256 deblur-
ring test. Note that the location of the minima at the curve are very close.
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4. Conclusions

Our method for computing the UPRE for Total Variation regularization,
via the approximated trace, gives a good approximation to the UPRE com-
puted using the exact trace value, while very significantly reducing compu-
tational requirements. The approximated value may be computed without
explicit representation of very large matrices, and therefore also avoids mem-
ory limitations which prevent the application of the direct computation to
problems involving images of practical size. In addition to providing better
accuracy than the method of Gilboa et al. [10] for the denoising problem,
the proposed approach is applicable to more general problems, such as de-
convolution.
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