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Abstract— Regularization is an important method for solving
a wide variety of inverse problems in image processing. In order
to optimize the reconstructed image, it is important to choose the
optimal regularization parameter. The Unbiased Predictive Risk
Estimator (UPRE) has been shown to give a very good estimate
of this parameter. Applying the traditional UPRE is impractical,
however, in the case of inverse problems such as deblurring, due
to the large scale of the associated linear problem. We propose an
approach to reducing the large scale problem to a small problem,
significantly reducing computational requirements while provid-
ing a good approximation to the original problem.

Index Terms— Parameter Selection, Large Scale Problem,
Inverse Problem, Tikhonov Regularization, Total Variation Reg-
ularization

I. INTRODUCTION

Many image restoration and related image processing tasks
can be posed as linear inverse problems of the form Ax =
b + ν, where b represents the measured data, ν represents
noise, A is a linear transform (e.g. a convolution operator in the
case of a deconvolution problem), and x represents the restored
image. Regularization provides a method for controlling the
noise and possible ill-posedness of the operator A, prominent
examples being the classical Tikhonov regularization [1],

arg min
x

{
1
2
‖Ax− b‖2

2 +
λ

2
‖Bx‖2

2

}
, (1)

where A is the known blurring operator and B is a highpass
filter in the case of a deconvolution problem, and the more
recent Total Variation (TV) regularization [2],

arg min
x

{
1
2
‖Ax− b‖2

2 + λ‖∇x‖1

}
, (2)

which is more difficult computationally, but usually provides
superior results.

Effective application of these regularization methods de-
pends critically on correct selection of the regularization
parameter λ. The optimal choice of regularization parameter
maximizes the Signal to Noise Ratio (SNR) of the recon-
structed image with respect to the original undegraded image.
There are several existing parameter selection methods for
Tikhonov regularization: (1) those requiring some knowledge
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of the noise ν, such as the Discrepancy Principle [3], and the
Unbiased Predictive Risk Estimator (UPRE), and (2) those that
do not, such as Generalized Cross-Validation(GCV) [4], [5]
and the L-Curve Method [6], [7]. Optimal parameter selection
for TV regularization, in contrast, has received surprisingly
little attention.

In this paper, we first extend the traditional UPRE approach
to large scale Tikhonov regularization, and then adapt it to TV
regularization.

II. UNBIASED PREDICTIVE RISK ESTIMATOR

The UPRE approach, also known as the CL method, was
first recommended [8] for regression problems. Vogel [9]
applied this idea to the selection of the optimal parameter
λ for Tikhonov problems, as in (1). The UPRE is based on
minimization of the predictive error, which is defined by

1
n
||Pλ||2 =

1
n
||Axλ −Axtrue||2, (3)

where xλ is the computed solution for parameter λ, xtrue is
the true solution, and we define the optimal parameter λopt to
be such that

λopt = arg min
λ

{
1
n
||Pλ||2

}
. (4)

Since xtrue, is, in practice, unknown, it is necessary to define
an unbiased estimator to estimate the value of (4). Vogel [9]
proved that, if we have

UPRETikh(λ) =
1
n
||rλ||2 +

2σ2

n
trace(Aλ)− σ2, (5)

where the regularized residual rλ = Axλ−b, and the influence
matrix Aλ = A(AT A + λI)−1AT , then E(UPRETikh(λ)) =
E( 1

n ||Pλ||2), which is the desired estimator. Under this as-
sumption, the problem of (4) becomes

λopt = arg min
λ

{UPRETikh(λ)} . (6)

A. UPRE and Its Limitations

While the computation of (5) is straightforward if the
SVD decomposition of A is available, in many large scale
problems, it is too expensive to compute the SVD of A. Kilmer
[10] mentioned a method for using the Lanczos procedure
to approximate the eigenvalues of the large scale system
matrix by a small matrix. Girard [11] introduced an alternative
approximation of the trace(Aα), based on randomization and



Monte-Carlo techniques. Our idea is the combination of the
above two; we first use a low dimension matrix to approximate
the large scale matrix of Aα by the Lanczos method, and then,
in order to compute the trace of the approximated matrix, we
apply the the randomization technique to perform the second
approximation. Similar ideas can be found in [12], which
focuses on the Generalized Cross-Validation approach, and
which does not provide any specific information on how to
choose the number of samples to be used for the Monte-Carlo
test. In our work, inspired by [13], we are able to control the
size of the Monte Carlo test in terms of the required accuracy
of trace value.

B. Extension of UPRE to Large Scale Tikhonov

In the computation of (5), the most expensive part is the
trace of the influence matrix, trace{A(AT A + λI)−1AT }
because we need to deal with an inverse first then find the
trace value. Applying the approach of Hutchinson [14], we
can approximate trace(f(M)) by the unbiased trace estimator

E(uT f(M)u) ' trace(f(M)), (7)

where u is a discrete random variable which takes the values
-1 and +1 each with probability 0.5, and the matrix M is
symmetric positive definite (SPD).

Define the eigenvalue decomposition of M as M = QT ΛQ,
where Q is an orthogonal matrix and Λ is a diagonal matrix
of eigenvalues in increasing order. Then, following [12], [13],
it can be shown that,

uT f(M)u =
n∑

i=1

f(λi)ũ2
i

=
∫ b

a

f(λi)dµ(λ), (8)

where ũ = (ũi) = Qu, and the integral is the Riemann-
Stieltjes integral. In order to solve (8), Gauss quadrature is
used to calculate this integral as follows,∫ b

a

f(λi)dµ(λ) = IG[f ]

=
k∑

i=1

ωif(θi), (9)

where the weights ωi and the nodes θi are unknown. If we start
the Lanczos procedure for matrix M with the initial vector
x(0) = u/‖u‖2, we will obtain a tridiagonal matrix Tk. It
can be shown that θi in (9) are the eigenvalues of Tk, and
ωi are the squares of the first components of the normalized
eigenvectors of Tk. Further details of the procedure outlined
above can be found in [12], [13]. This approximation works
best for sparse matrices.

For our problem, it can be proved that the blurring matrix
is reasonably sparse, and more importantly, the matrix of
AT A + λI is SPD. We can adapt the above algorithm by
setting f(x) = 1/x and deriving the trace of Aλ as

trace(Aλ) = uT A((AT A + λI)−1)AT u,

= vT ((AT A + λI)−1)v, (10)

where v = AT u. Instead of using x(0) = u/‖u‖2 as the initial
vector for the Lanczos procedure for computing ωi and θi in
equation (9), we now need to utilize the corresponding initial
vector for this case, i.e., x(0) = v/‖v‖2.

If provided with a confidence probability p = 1−α and the
required accuracy δ of the approximated trace value, it has
been shown [13] that we can find out the samples size, N , of
the Monte Carlo test which needs to be processed to achieve
this accuracy of δ. Specifically, we have

N ≥
(

λα

δ

)2 (
σ

trace(Aα)

)2

, (11)

where σ denotes the standard deviation of the trace value.

C. General Algorithm

For Monte Carlo test sample size N , the trace is approxi-
mated by

Trace =
1
N

N∑
i=1

AppTRi,

where the value of AppTRi computed as follows:

Setup the tolerance, TOL;
Setup the initial vector, x(0) = vi/‖vi‖2 as in (10);
while (RelErr > TOL);

Construct T by one step of Lanczos procedure
on (AT A + λI)−1;
Compute the eigenvalues θi and the first elements ωi

of eigenvectors of T ;
Compute I =

∑
ωif(θi) by using Gauss quadrature

as described in equation (9);
Update the relative error RelErr from two successive
approximations of I;

end
Evaluate AppTRi = ‖vi‖2

2I;

D. Extension of UPRE to Total Variation Regularization

In the Total Variation case, the difficulty is that the penalty
functional in the TV term is non-quadratic. The idea is
to approximate the non-quadratic equation by a quadratic
equation, using the interpolation formula,

f(x + p) ≈ f + pT∇f +
1
2
pT∇2fp

≈ 1
2
pT∇2fp.

We see that we can use Hessian matrix to approximate
our TV term by a quadratic term. Another feature of this
approximation is that, by defining the influence matrix

Aλ = A(AT A + λHessian)−1AT , (12)

we can prove that Aλ is symmetric, which means the UPRE
for TV methods shares the same expression as the Tikhonov
method.

The primary difficulty is again the computation of (12), but
we are now faced with the additional problem of dealing with
the Hessian matrix. For the results presented here, we have
used the direct computation of the UPRE, which poses severe



computation time and memory constraints on the size of the
problem that can be addressed, but we are currently developing
an approximate method corresponding to that for Tikhonov
regularization described above.

III. COMPUTATIONAL RESULTS

In this section, we present three numerical examples, all of
which are implemented in Matlab. The first two are Tikhonov
problems, and the third one is a TV problem. The blurring
kernel is chosen to be Gaussian, with additive Gaussian white
noise. Since we are using synthetic data, we can find out the
true optimal parameter λ by sweeping over a wide enough
range of possible numbers, [λmin, λmax]. Similarly, we can
also compute the true predictive error as given in (3). In
order to show the effectiveness of our approximated algorithm,
we compute the exact UPRE value at the same time by
exactly constructing the explicit matrix A in (5). We evaluate
the performance of our approximated UPRE approach by
comparing to the above three values.

A. Test Problem 1 for Tikhonov: Satellite Image with Size 32
× 32

This is a very small test problem, so that we can compute
both the direct method, by using the explicit matrix to compute
the UPRE value in (6), and the approximated method proposed
above. We compare our approximated UPRE with the True
Predictive Risk (4), the Exact UPRE and the actual result using
the optimal parameter. The test image is a 32 × 32 region cut
from the original 256 × 256 “satellite” image frequently used
for deconvolution tests. The test image is blurred using an
11×11 Gaussian kernel before adding zero-mean white noise
with a variance of 50. The corresponding blurring matrix has
size 1024 × 1024. Table (I) shows the results of estimated
parameter λ, the estimated SNR value of the recovered image
and the run time cost of the direct and approximated methods
described above.

B. Test Problem 2 for Tikhonov: Satellite Image with Size 256
× 256

In this test problem, we use the whole satellite image of size
256 × 256, again adding Gaussian white noise after blurring
with a Gaussian kernel. The blurring matrix under this setup
has size 65536 × 65536, which is is too large to be able to
compute the SVD, so the traditional UPRE is impractical due
to memory limitations. However by using our approximated
algorithm, we can still process this image and the numerical
results in Table II show the good accuracy of our approximated
algorithm. Fig. 1 plots the “True Predictive Error” against the
“UPRE Value”, from which we can see that the minima of
those two curves are located close together. However it is still
worth pointing out that, as an unbiased estimator, it does not
require that UPRE has exactly the same minimum value as the
true predictive error, but the location of their minimum should
be close. In Fig. (2), the dot is the SNR value achieved by
using the UPRE approach, which is close to the maximum of
the SNR value.
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Fig. 1. Comparison of True Predictive Error and Approximate UPRE for
the 256 × 256 test. Note that curves are so close that they are virtually
indistinguishable.
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Fig. 2. Variation of reconstruction SNR (with respect to known ground truth
image) against λ. Note the proximity of the maximum SNR region to the
minimum of the Approximate UPRE in Fig. 1.

C. Test Problem 3 for Total Variation: Satellite Image with
Size 64 × 64

In this test problem, we show the feasibility of (12) by
implementing UPRE for a TV problem over a small image of
size 64 × 64, with blurring and noise added as before. The
minima of the “True Predictive Error” and “UPRE Value”
curves in Fig. (3) are located close together, and the plot
of SNR in Fig. (4) shows that the UPRE estimate gives a
reconstructed SNR close to that of the optimum λ value.

IV. CONCLUSIONS

Our method for computing the UPRE for Tikhonov regu-
larization, via the approximated trace, gives a good approx-
imation to the UPRE computed using the exact trace value,
while very significantly reducing computational requirements.
The approximated value may be computed without explicit
representation of very large matrices, and therefore also avoids
memory limitations which prevent the application of the direct
computation to problems involving images of practical size.
We have also extended the UPRE method to TV regulariza-
tion, and are currently developing an efficient algorithm for
computing it for large problems, based on a similar approach
to that applied for Tikhonov regularization.



Optimal Value True Pred. Error Exact UPRE Approx. UPRE
Estimated SNR(dB) 18.07 18.06 18.07 18.07
Estimated λ 0.0036 0.0014 0.0028 0.0028
Run Time Per Iteration (sec) —- —- 2.49 0.62

TABLE I
PERFORMANCE RESULTS FOR TEST PROBLEM 1. IMAGE SIZE: 32 × 32; BLURRING MATRIX SIZE: 1024 × 1024, CONSISTING OF 11 × 11 GAUSSIAN

KERNEL WITH σ = 0.41; GAUSSIAN NOISE WITH 0 MEAN AND VARIANCE 50; SNR OF THE ORIGINAL NOISY IMAGE: 5.06 dB; ACCURACY OF THE TRACE

APPROXIMATION IN (11): δ = 0.02.

Optimal Value True Pred. Error Exact UPRE Approx. UPRE
Estimated SNR(dB) 17.91 17.67 Insufficient memory 17.60
Estimated λ 0.095 0.037 Insufficient memory 0.030
Run Time Per Iteration (sec) —- —- Insufficient memory 1.81

TABLE II
PERFORMANCE RESULTS FOR TEST PROBLEM 2. IMAGE SIZE: 256 × 256; BLURRING MATRIX SIZE: 65536 × 65536, CONSISTING OF 21 × 21

GAUSSIAN KERNEL WITH σ = 1; GAUSSIAN NOISE WITH 0 MEAN, VARIANCE 50; SNR OF THE ORIGINAL NOISY IMAGE: 4.48 dB; ACCURACY OF THE

TRACE APPROXIMATION IN (11): δ = 0.02.
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Fig. 3. Comparison of True Predictive Error and Approximate UPRE for
the 64 × 64 test in Total Variation.
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Fig. 4. Variation of reconstruction SNR (with respect to known ground truth
image) against λ. Note the proximity of the maximum SNR region to the
minimum of the Approximate UPRE in Fig. 3.
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