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Abstract—In the past two decades, nonlinear image recon-
struction methods have led to substantial improvements in the
capabilities of numerous imaging systems. Such methods are
traditionally formulated as optimization problems that are solved
iteratively by simultaneously enforcing data consistency and
incorporating prior models. Recently, the Plug-and-Play Priors
(PPP) framework suggested that by using more sophisticated
denoisers, not necessarily corresponding to an optimization
objective, it is possible to improve the quality of reconstructed
images. In this letter, we show that the PPP approach is applicable
beyond linear inverse problems. In particular, we develop the
fast iterative shrinkage/thresholding algorithm (FISTA) variant
of PPP for model-based nonlinear inverse scattering. The key
advantage of the proposed formulation over the original ADMM-
based one is that it does not need to perform an inversion on
the forward model. We show that the proposed method produces
high quality images using both simulated and experimentally
measured data.

Index Terms—Image reconstruction, plug-and-play priors,
FISTA, inverse scattering, nonlinear inverse problems.

I. INTRODUCTION

THE problem of estimating an unknown image from noisy
measured data is fundamental in computational imaging.

The estimation task is often formulated as an inverse problem
that minimizes a cost functional. The functional typically
includes two terms: a data-fidelity term that ensures that the
final image is consistent with measured data and a regularizer
that mitigates the ill-posedness of the problem by promoting
solutions with desirable properties [1]. For example, the `1-
penalty promoting spatial sparsity and total variation (TV)
penalty promoting sparsity in the image gradient are popular
image regularizers [2]–[4].

Optimization problems in imaging are often nontrivial to
solve. The challenging aspects are the non-smooth nature of
the popular regularizers and the large amount of data that
needs to be processed in a typical application. Proximal meth-
ods [5] such as fast iterative shrinkage/thresholding algorithm
(FISTA) [6] and alternating direction method of multipliers
(ADMM) [7] are standard approaches that circumvent the
non-smoothness of the regularizers while being able to handle
large-scale optimization problems. The key ingredient in both
of these methods is the proximal operator, which in itself is
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an optimization problem corresponding to a simple denoising
of intermediate solutions.

Recently, Venkatakrishnan et al. [8] introduced the idea
of Plug-and-Play Priors (PPP), which simply replaces the
proximal operator by a suitable image denoising method. Plug-
and-play methods generally lose interpretability as optimiza-
tion problems, as most image denoising algorithms such as
BM3D [9] do not have a known optimization formulation.
Nonetheless, the framework has gained in popularity due to
its effectiveness in a range of applications, in particular, in the
context of linear inverse problems [10]–[13].

In this letter, we develop a new algorithm based on PPP and
show its effectiveness in solving nonlinear imaging inverse
problems. Specifically, we consider the problem of recon-
structing the spatial distribution of dielectric permittivity from
the measurements of its scattered light. This problem is com-
mon in numerous imaging applications such as tomographic
microscopy, digital holography, and radar imaging [14]–[18].
When scattering is strong, multiple scattering of light leads to
a nonlinear forward model [19], for which the challenge lies
in finding computationally tractable methods that can account
for the nonlinearity while also accommodating model-based
priors for imaging. To that end, we propose a new FISTA
variant of PPP for model-based nonlinear inverse scattering.
The nonlinearity of the forward model is handled by a recently
introduced technique—called Series Expansion with Accel-
erated Gradient Descent on Lippmann-Schwinger Equation
(SEAGLE)—based on a series expansion of the scattered light
with an accelerated-gradient method [20], [21]. The proposed
method is validated on both simulated and experimentally
measured data.

II. PROPOSED APPROACH

In this section, we describe Plug-and-Play FISTA for solv-
ing nonlinear inverse problems. As a practically relevant
nonlinear inverse problem, we also introduce the problem of
estimating the spatial permittivity distribution of an unknown
object from the measurements of the scattered waves.

A. Nonlinear Inverse Problem

We consider an imaging inverse problem

y = H(x) + e , (1)

where the goal is to recover the unknown image x ∈ RN from
the noisy measurements y ∈ CM . The measurement operator
H : RN → CM models the response of the imaging system
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and the vector e ∈ CM represents the measurement noise,
which is often assumed to be independent and identically dis-
tributed (i.i.d.) Gaussian. When the inverse problem is linear,
the measurement operator is represented as a measurement
matrix H ∈ CM×N .

In practice, problems such as (1) are often ill-posed; the
standard approach for solving them is by formulating an
optimization problem

x̂ = arg min
x∈RN

{D(x) + τR(x)} , (2)

where the data-fidelity term D ensures that the final image
is consistent with measured data, the regularizer R promotes
solutions with desirable properties, and τ ∈ R+ is a parameter
that controls the strength of the regularization. For example,
a popular data-fidelity term is least-squares

D(x) ,
1

2
‖y −H(x)‖2`2 . (3)

Two common regularizers for images include the spatial
sparsity-promoting penalty R(x) , ‖x‖`1 and total variation
(TV) penalty R(x) , ‖Dx‖`1 , where D is the discrete
gradient operator [2]–[4].

FISTA is a well-studied iterative method, effective in large-
scale setting, for solving (2) when R is non-smooth. It can be
expressed as

zt ← st−1 − γ∇D(st−1) (4a)

xt ← proxγτR
(
zt
)

(4b)

qt ←
1

2

(
1 +

√
1 + 4q2

t−1

)
(4c)

st ← xt + ((qt−1 − 1)/qt)(x
t − xt−1) , (4d)

for t = 1, 2, . . . , where q0 = 1 and x0 = s0 = xinit ∈ RN .
Here, γ ∈ R+ is a step-size and {qt}t∈N are the parameters
for improving the global convergence rate of the algorithm [6].
Note that different strategies for selecting γ for nonconvex D
and convex R were described in [22]. The proximal operator
in (4) is defined as

proxτR(z) , arg min
x∈RN

{
1

2
‖x− z‖2`2 + τR(x)

}
, (5)

and corresponds to an image denoising problem with a given
regularizer R. Note how (4a) only depends on the forward
model via the gradient of the data-fidelity term, while (4b)
only depends on the prior via the proximal operator of the
regularizer.

B. Plug-and-Play Priors with FISTA
FISTA enjoys a modular structure similar to ADMM, where

the prior model on the image is only imposed via the proximal
operator [8]. In the spirit of plug-and-play, one can then
consider the Plug-and-Play FISTA

zt ← st−1 − γ∇D(st−1) (6a)

xt ← Dσ

(
zt
)

(6b)

qt ←
1

2

(
1 +

√
1 + 4q2

t−1

)
(6c)

st ← xt + ((qt−1 − 1)/qt)(x
t − xt−1) , (6d)
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Fig. 1. Schematic representation of scattering scenarios considered in this
letter. An object of a scattering potential f(r) is illuminated with an input
wave uin, which interacts with the object and leads to the scattered field usc

at the sensors.

where Dσ is a general denoiser of strength σ ,
√
γτ ∈ R+,

which might not necessarily conform to equation (5). For ex-
ample, we will later see that the denoising operators BM3D [9]
and WNNM [23], which are not easily formulated as an
optimization problem, can be used as a powerful regularizer
for nonlinear inverse scattering of images consisting of similar,
spatially replicated features.

The main advantage of Plug-and-Play FISTA (6) over the
original ADMM-based formulation is that there is no need to
perform an inversion on the forward model. This advantage
becomes especially important when dealing with nonlinear
inverse problems, as such inversions become computationally
prohibitive. FISTA only requires an efficient evaluation of
the gradient ∇D without an explicit inversion of the forward
model. This gradient can be easily obtained for a range of
nonlinear inverse problems, including for nonlinear inverse
scattering, described in Section II-C.

Convergence of Plug-and-Play ADMM to the global min-
imum of some implicitly defined MAP cost function was
recently studied by Sreehari et al. [10]. In particular, the work
builds on the result by Moreau [24] that establishes that Dσ

is a valid proximal mapping of some implicit regularizer if
and only if it is non-expansive and it is the sub-gradient
of a convex function on RN . Note that when D is convex
and the sufficient conditions outlined in [10] are met, the
global convergence of our Plug-and-Play FISTA (6) can be
established in a similar fashion to Plug-and-Play ADMM.
However, as we shall see, similarly to Plug-and-Play ADMM,
Plug-and-Play FISTA exhibits reliably converging behavior
even for a possibly nonconvex D and a general denoiser Dσ .

C. Nonlinear Inverse Scattering

Consider the scattering problem (Fig. 1) where an object
of the permittivity distribution ε(r) in the bounded domain
Ω ⊆ R2 is immersed into a background medium of permittiv-
ity εb and illuminated with the incident electric field uin(r).
We assume that the incident field is monochromatic and
coherent, and it is known inside Ω and at the locations of
the sensors. The result of object-light interaction is measured
at the location of the sensors as a scattered field usc(r). The
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Fig. 2. Three scanning electron micrographs. From left to right: Zea mays
pollen, Schlumbergera truncata pollen, and Malva alcea pollen.
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Fig. 3. Illustration of the reconstructed image for Zea mays at fmax = 1e−4
with 40 dB input SNR: (a) linear, non-negativity; (b) nonlinear, non-negativity;
(c) linear, TV; (d) nonlinear, TV; (e) linear, WNNM; (f) nonlinear, WNNM;
(g) linear, BM3D; (h) nonlinear, BM3D.

multiple scattering of light can be accurately described by the
Lippmann-Schwinger equation [19] inside the image domain

u(r) = uin(r) +

∫
Ω

g(r − r′) f(r′)u(r′) dr′, (r ∈ Ω) (7)

where u(r) = uin(r) + usc(r) is the total electric field,
f(r) , k2(ε(r)− εb) is the scattering potential, which is
assumed to be real, and k = 2π/λ is the wavenumber in
vacuum. The function g(r) is the Green’s function, defined as

g(r) ,
j

4
H

(1)
0 (kb‖r‖`2) (8)

where kb , k
√
εb is the wavenumber of the background

medium and H
(1)
0 is the zero-order Hankel function of the

first kind. Note that the knowledge of the total-field u inside
the image domain Ω enables the prediction of the scattered
field at the sensor domain

usc(r) =

∫
Ω

g(r − r′) f(r′)u(r′) dr′. (r ∈ Γ) (9)

The discretization and combination of (7) and (9) leads
to the following matrix-vector description of the scattering
problem

y = S(u� x) + e (10a)
u = uin + G(u� x) , (10b)

where x ∈ RN is the discretized scattering potential f ,
y ∈ CM is the measured scattered field usc at Γ, uin ∈ CN is
the input field uin inside Ω, S ∈ CM×N is the discretization
of the Green’s function at Γ, G ∈ CN×N is the discretization
of the Green’s function inside Ω, � denotes a component-
wise multiplication between two vectors, and e ∈ CM models
the additive noise at the measurements. Using the shorthand
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Fig. 4. Evolution of average SNR over all contrast levels with respect to
iteration number. Left: nonlinear, BM3D. Right: nonlinear, WNNM.

notation A , I−Gdiag(x), where I ∈ RN×N is the identity
matrix and diag(·) is an operator that forms a diagonal matrix
from its argument, we can formally specify the nonlinear
forward model in (1) as follows

H(x) , S(û(x)� x) (11a)

where

û(x) , arg min
u∈CN

{S(u)} (11b)

with S(u) ,
1

2
‖Au− uin‖2`2 . (11c)

Most remarkably, several recent works have proposed compu-
tationally tractable approaches for evaluating the gradient

∇D(x) =

[
∂H(x)

∂x

]H

(H(x)− y) (12)

which can be readily plugged into steps (4a) and (6a) of
FISTA [20], [21], [25], [26]. In the remainder of this work, we
rely on the SEAGLE algorithm [20], [21], which is obtained by
expanding the forward computation using Nesterov’s acceler-
ated gradient method [27] for a fixed number of iterations. The
final expression for the gradient is then obtained by running
an error backpropagation algorithm on a fixed number of
Nesterov’s iterations [20].

III. PERFORMANCE EVALUATION

We now present the results of validating our method on two
distinct sets of scattering data. The first data-set was obtained
using a high-fidelity solution of the forward scattering problem
with the conjugate-gradient solver. The second data-set was
collected and made publicly available by Institut Fresnel [28].

We validate the model-based recovery capability of Plug-
and-Play FISTA by selecting three electron microscopy im-
ages1 with high levels of spatial self-similarity (see Fig. 2).
Non-local algorithms such as BM3D and WNNM are known
to be effective for denoising such images [9], [23]. We
consider images of physical size 18 cm × 18 cm, discretized
to a 128 × 128 grid. The background medium is assumed to
be air with εb = 1 and the wavelength of the illumination
is set to λ = 0.15 cm. The measurements are collected over
30 transmissions uniformly distributed along a circle of radius
1.78 m and, for each transmission, 360 measurements around
the object are recorded. The simulated scattered data was

1All images are in public domain and can be downloaded at the Cell Image
Library http://www.cellimagelibrary.org/images.
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TABLE I
SNR (dB) PERFORMANCES OF THREE METHODS ON THE SET OF THREE IMAGES FOR VARIOUS CONTRAST LEVELS

Image name Contrast (fmax)
Non-negativity Constraint Total Variation (TV) Plug-and-Play WNNM Plug-and-Play BM3D
linear nonlinear linear nonlinear linear nonlinear linear nonlinear

Zea mays
1e−5 22.42 22.46 28.17 28.22 28.75 28.78 29.05 29.13

1e−4 19.16 22.48 25.08 28.22 25.92 28.77 25.16 28.97

1e−3 4.46 22.33 16.36 28.24 15.99 28.76 15.40 29.02

Schlumbergera truncata
1e−5 22.65 22.71 31.34 31.43 30.91 30.99 31.48 31.56

1e−4 17.54 22.72 28.00 31.44 28.21 30.97 27.90 31.59

1e−3 3.61 22.70 19.47 31.42 20.12 30.96 19.77 31.54

Malva alcae
1e−5 21.93 21.99 24.76 24.82 25.27 25.32 25.13 25.17

1e−4 17.35 22.11 20.86 24.67 21.24 25.27 21.01 25.09

1e−3 3.49 22.18 13.75 24.68 12.76 25.18 13.26 25.19
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Fig. 5. Experimental validation of the proposed method on the highly scattering object FoamDielExtTM: (a) ground truth; (b) non-negativity; (c) TV; (d)
WNNM; (e) BM3D. All results correspond to a nonlinear forward model. The scale bar length is equal to the wavelength λ at 5 GHz.

additionally corrupted by an additive white Gaussian noise
(AWGN) corresponding to 40 dB of input signal-to-noise ratio
(SNR).

Table I summarizes the results of comparing four distinct
priors: non-negativity constraints on the image, total variation
(TV), and two plug-and-play priors, BM3D and WNNM.
Note that for TV, BM3D, and WNNM non-negativity of
the solution was imposed by setting the negatively valued
pixels in the iterates to zero. For each prior, we consider the
effects of the linearity versus nonlinearity of the measurement
model. The linear measurement model is obtained using the
first Born-approximation [29]. The nonlinear model takes into
account multiple scattering using the SEAGLE framework.
The permittivity contrast was defined as fmax , (εmax− εb)/εb,
where εmax , maxr∈Ω{ε(r)}. The permittivity contrast quan-
tifies the degree of nonlinearity in the inverse problem, with
higher fmax indicating stronger levels of multiple scattering.
The regularization parameters for all the experiments were
optimized for the best SNR performance. For each prior, the
maximal number of FISTA iterations was set to tmax = 500
with an additional tolerance parameter δmax = 10−4 on the
relative change of the solution in two successive iterations.
We relied on a fixed step-size γ = 10 that was manually
selected to ensure the convergence. The results confirm that
as the level of scattering increases, the performance under
the linear inverse problem formulation degenerates with or
without regularization. On the other hand, regularization leads
to substantial improvements in quality under both linear and
nonlinear inverse problem formulations. The results confirm
that for highly self-similar images, the best quality results
are obtained by using nonlocal priors such as BM3D or

WNNM. Fig. 3 visually illustrates the result for Zea mays
at fmax = 1e− 4. Finally, Fig. 4 illustrates the convergence of
Plug-and-Play FISTA to the final solution. We observed the
method to be stable over all the experiments reported here.

To experimentally validate Plug-and-Play FISTA, we con-
sider microwave measurements at 5 GHz of the object
FoamDielExtTM from the dataset in [28]. The object consists
of two cylinders on a rim of radius 1.67 m, and a measurement
set-up that is identical to that in Fig. 1. The object is highly
scattering due to a high permittivity contrast of fmax = 2.
The image domain has size 18 cm × 18 cm, discretized to
a 64 × 64 grid. There are 9 transmitters and 240 detectors
for each transmitter, all equally spaced on the rim. The
results of image reconstruction are summarized in Fig. 5.
As expected, the imaging results indicate that TV is well
suited for piecewise-constant signals such as our object. On
the other hand, we also note that both BM3D and WNNM
substantially improve over the simple non-negativity prior by
offering stronger regularization of the solution. Generally, our
results indicates that Plug-and-Play FISTA can be used to
impose more sophisticated priors in the context of inverse
scattering on experimental data.

IV. CONCLUSION

The PPP framework is a powerful approach for model-based
image regularization. In this letter, we have presented a variant
of the PPP based on FISTA, for nonlinear inverse problems
where the data-fidelity term can be efficiently differentiated.
We have illustrated the method by reconstructing images from
the measurements of scattered waves and validated it on both
simulated and experimentally measured data.
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