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Abstract—Physical and budget constraints often result in inad-
equate sampling for accurate subsurface imaging. Pre-processing
approaches, such as missing trace interpolation, are typically
employed to enhance seismic data in such cases. The compressed
sensing (CS) framework has been applied for modeling missing
seismic data, which is estimated by sparsity-based computational
algorithms. While existing work mainly focuses on recovering
missing traces resulting from receiver subsampling, source sub-
sampling has greater economical advantages, as sources are
more expensive than receivers. Moreover, stronger image mod-
els different from sparsity have not been explored for source
recovery. This work presents a consensus equilibrium (CE)
approach to recover missing seismic shots, which enables to
incorporate various regularization operators modeling different
data priors. Simulation results from a real 3D land seismic data
set demonstrate that the CE approach provides more accurate
estimations of the linear and hyperbolic events in the recovered
shots, compared with pure sparsity-based reconstructions.

Index Terms—Seismic Shot recovery, Consensus Equilibrium,
Regularization.

I. INTRODUCTION

S
OURCE sampling plays an essential role in seismic acqui-

sition due to its direct effect on the quality and resolution

of the seismic imaging process. Research efforts have focused

on survey design to obtain high density sampling, as well

as new techniques for the improvement of data acquired in

complex areas including topographical, environmental, and

social restrictions. Missing trace recovery, which involves in-

terpolation techniques [1]–[5], is one of the major approaches

to address the aforementioned quality issues.

In contrast to high density sampling, the compressed sensing

(CS) framework establishes that a signal can be accurately

recovered from far fewer samples than those dictated by the

classical Shannon-Nyquist theory, given that the signal is

compressible in a particular domain, i.e. it has an approximate

sparse representation [6], [7]. Based on this premise, CS

has been recently introduced to the seismic data acquisition

process [8]–[12]. In particular, it has favored the design of

subsampling approaches that result in less-expensive field

acquisitions [13], as it allows the designer to reduce the
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number of receivers, such that less data is captured. The

reduced number of receivers translates to missing traces, which

can be recovered by exploiting the compressible nature of the

signal in a given transformation basis [14] even for irregularly

sampled traces [15], or deep learning approaches [5], [16],

[17]. An obvious choice of a dictionary for seismic data is pro-

vided by the curvelet transform, which is a type of directional

anisotropic wavelet that can effectively capture textural char-

acteristics of these data [18]. Other common transformations

employed for seismic signal compression include Seislet, and

atom waves [19]–[24]. One of the main drawbacks of receiver-

subsampling approaches is that CS capabilities are not fully

exploited as the cost of a receiver is considerably less than that

of a source. Moreover, missing seismic sources are related to

typical environmental, topographic or social constraints, where

data acquisition is prohibited. Nevertheless, subsampling of

the seismic sources has not received much attention in the

literature. For instance, methods to recover wavefields from

missing sources in 3D othogonal geometries, exploiting local

and non-local data redundancies were developed in [25], [26].

In general, the selection of the dictionary is critical for the

effectiveness of sparsity-based methods, and it is not a trivial

problem for seismic data. Transform basis such as Curvelets

and Seislets, might not be able to appropriately represent par-

ticular signal features that vary among geographical locations

[20], and they cannot be adaptively selected according to the

data characteristics [20], [27]. Therefore, this work proposes to

use alternative regularization operators, such as plug and play

priors (PnP), to complement sparsity-based fidelity terms in the

seismic source CS reconstruction problem. In particular, PnP

enables the embedding of state-of-the-art denoising algorithms

as priors in the reconstruction process [28]. Essentially, the

proposed approach takes advantage of the intrinsic capabilities

of the consensus equilibrium (CE) [29] optimization frame-

work (CE) to deal with multiple regularization functions, i.e.

sparsity along with various denoising operators, such that

the missing seismic source data can be accurately recovered.

Simulations on a real 3D seismic data set verify the quality

performance of the proposed method. Specifically, the CE

approach provides more accurate estimates of the linear and

hyperbolic events in the recovered shots. Further, it leads to

precise noise and data cut-off frequencies when compared to

purely sparsity or plug and play denoising-based methods.

II. SUBSAMPLED SEISMIC DATA ACQUISITION MODEL

Seismic data can be viewed as three-dimensional structures

representing L samples in time of the reflected energy emitted
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Fig. 1. (a) Full cross-spread acquisition and (b) Subsampled cross-spread by
removing the seismic sources at z2 and zM−1

by M sources, captured by N receivers, as illustrated in Figure

1(a). In particular, this cross-spread configuration consists

of a source line orthogonally intercepted by a receiver line,

resulting in a subset of the general 3D seismic acquisition. This

is one of the most common configurations because it allows the

receiver line to conveniently register the seismic structures and

provides seismic signals with less coherent noise, e.g. ground

roll [25].

Letting x ∈ RMNL be the vector representation of the full

seismic cube X, illustrated in Fig. 1(b), the acquisition process

can be modeled as a system of linear equations given by

y = ΦΦΦx+ωωω, (1)

with ΦΦΦ ∈ RMN(L−k)×MNL modeling the acquisition operator

defined as Φ = S⊗ IMN , where ⊗ represents the Kronecker

product, IMN is a MN ×MN identity matrix, S ∈ RL−k×L

is an identity matrix, whose k rows corresponding to the linear

indices of the missing sources have been set to zero, such that

it models the source subsampling effect, and ωωω accounts for the

acquisition noise. The acquired seismic shots y are then used

to estimate the whole data set including k missing shots. The

traditional inverse CS problem exploits the sparsity data prior

on a given dictionary D ∈ RMNL×MNL such as Wavelets or

Curvelets [14]. Thus, the recovered data is the solution to the

problem

argmin
x

(1/2)||y −ΦΦΦx||22 + ||Dx||1 . (2)

Even though this sparsity formulation has been successful for

seismic data recovery, it might not accurately model complex

structures inherent to these data since the ℓ1 norm is a coarse

prior. Thus, to the best of the authors’ knowledge, stronger

image models have not been to date explored for recover-

ing missing seismic shots. The following section presents

an implicit prior defined by the image model in denoising

algorithms, which will be jointly used with a sparsity prior in

the reconstruction process.

III. CONSENSUS EQUILIBRIUM APPROACH FOR SOURCE

RECONSTRUCTION

In recent years, the plug and play priors (PnP) method has

become popular as an alternative mechanism for incorporat-

ing image denoisers as priors within more general inverse

problems [28]. This framework has the advantage of enabling

the embedding of state-of-the-art denoising algorithms in the

reconstruction process even if the denoiser cannot be expressed

as an optimization problem. We propose to leverage the

advantages of the implicit image model in a denoiser such

as BM3D [30] as an alternative to the sparsity model, or

as a complement to it, for the recovery of seismic sources.

Since our data is three-dimensional, a volumetric denoiser

such as the BM4D [31] would seem to be a natural choice,

but the computation resources required for such volumetric

denoisers is too high and could extend the time of recovering

the seismic data from hours to days. We therefore propose to

apply BM3D through receiver and time slices, as illustrated

in Fig. 1 (b), as an efficient mechanism for employing two-

dimensional denoisers to three-dimensional data [32].

The recovery of seismic sources using multiple regulariza-

tion functions can be modeled as the optimization problem

argmin
x

f(x) +
∑

i

gi(x) (3)

where the function f represents the data fidelity term and the

functions gi are different regularization functions.

Since we aim to use multiple regularization terms, we

employ the consensus equilibrium (CE) framework, which can

be viewed as a generalization of PnP that supports multiple

data fitting and regularization terms [29]. To the best of

our knowledge, neither the PnP nor the CE framework have

been previously applied in the context of a seismic source

reconstruction problem.

In the following, we first present the general mathematical

formulation of the consensus equilibrium theory within the

seismic shot reconstruction problem, and then we present

the mathematical formulations of the particular regularization

functions employed in our work.

Formally, to solve problem (3) using CE, we first reformulate

it as the consensus optimization problem given by

argmin
x,xi

K
∑

i

hi(xi)

subject to xi = x (4)

where the functions hi include both the data fidelity term and

the regularization functions (e.g. h0 = f and hi = gi+1). Each

hi corresponds to a vector-valued agent map Hi : R
n → R

n,

with i = 1, · · · ,K. If function hi is known explicitly, then

the corresponding agent is its proximal operator

Hi(v) = argmin
x

{

‖v − x‖2

2σ2
+ hi(x)

}

, (5)

but the main value of this technique is its ability to employ

agents that are not necessarily associated with a function

hi [29].

These agents are in equilibrium for (x∗,u∗) ∈ (Rn,RKn)
such that

Hi(x
∗ + u∗

i ) = x∗, i = 1, · · · ,K
K
∑

i=1

u∗

i = 0 . (6)

These equations are solved by rewriting them in uncon-

strained form and expressing the solution in terms of a fixed



3

point problem. First, for vector v ∈ R
Kn, define H,Gµ :

R
Kn → R

Kn as

H(v) =







H1(v1)
...

HK(vK)






Gµ =







v̄µ

...

v̄µ






(7)

where vµ is the average vector given by vµ = 1
K

∑K
i=1 vi, and

define x̂ as denoting K copies of x ∈ R
n stacked vertically.

With this reformulation, the CE equations (6) can be written

as

H(x̂∗ + u∗) = x̂∗

u∗

µ = 0 . (8)

Following theorem 2 and corollary 3 in [29], the solution of

these equations is the point (x∗,u∗), if and only if, the point

v∗ = x̂∗ + u∗ satisfies v̄µ = x∗ and

(2Gµ − I) (2H− I)v∗ = v∗ . (9)

This implies that v∗ is a fixed point of the operator T =
(2Gµ − I) (2H− I), which can be found via the Mann itera-

tions [29]

vℓ+1 = (1− ρ)vℓ + ρT(vℓ) , (10)

where ρ ∈ (0, 1) is an algorithm parameter. Given the fixed

point ṽ = [ṽ1, · · · , ṽK ]T found via these iterations, the

solution to the CE problem, corresponding in this case to the

recovered seismic shots, is given by x̃ = 1/K
∑K

i=1 ṽi.

The agents used in this work to construct H in (7), required

by the operator T in (10), are defined as

H1(v1) = argmin
x

{

‖x− v1‖
2

2σ2
+ ‖y −Φx‖

}

(11)

H2(v2) = argmin
x

{

‖x− v2‖
2

2σ2
+ λ‖Dx‖1

}

(12)

H3(v3) = BM3Dt(v3, σn) (13)

H4(v4) = BM3Dr(v4, σn), (14)

where BM3Dt and BM3Dr refer to the denoising of the data

cube along time and receiver slices, respectively; σ and λ are

parameters controlling the strength of the regularization; D is

a dictionary for the sparse representation of the seismic data

while the parameter σn is the variance parameter employed

in the BM3D algorithm. It should be noted that the variance

parameter is the same for both denoisers.

IV. SIMULATIONS AND RESULTS

Simulations were conducted to evaluate the CE approach in

the reconstruction of missing shots of a cross-spread. Specifi-

cally, we used CE with three regularizers: BM3D through time

and receiver slices and sparsity prior in the Wavelet domain,

with the proximal mappings in (11). The experiments use the

BM3D version from [30], which was implemented through

the Python wrapper publicly available at [33]. The results

are compared with respect to two methods: (i) sparsity-based

regularization using the Symlet-8 Wavelet transform [25]; (ii)

reconstruction based on plug and play priors (PnP) [28], where

the BM3D denoiser was set as the mapping along receiver

slices. A variant of PnP with the sparsity initialization was also

considered (PnP-i). The crucial task of tuning the parameters σ
and λ for CE was performed via a grid search. The employed

parameters are summarized in Table I.
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Fig. 2. Average PSNR evaluation as a function of the sampling reduction
rate for PnP, Sparsity and CE reconstruction approaches. Sampling reduction
rate represents the percentage of removed sources.

TABLE I
PARAMETER CONFIGURATION FOR THE DIFFERENT EVALUATED METHODS.

Method σ λ σn

Sparsity 0.008 0.001 -

PnP 0.0001 - 0.1

PnP-i 0.008 - 0.001

CE 0.008 0.00001 0.001

The experiments employed jittered subsampling to select

the subset of shots to be removed. This subsampling method

consists in applying a compression rate to blocks of shots, such

that the same number of shots is removed for all blocks [34].

The seismic data set employed for the simulations comprises

a 3D land swath acquisition project from South Texas, which

was rearranged to a cross-spread by using a geometric analysis

of the seismic acquisition; the original data set size was

3000 time samples, 120 receivers, and 128 sources. Additional

details regarding this data set can be found in [35]. Due

to the computational burden of the available equipment, a

subset of 1001 time samples, 90 receivers, and 18 sources

was used. To assess the accuracy of the reconstructions,

we used the peak signal-to-noise ratio (PSNR) value in the

frequency-wavenumber domain (FK) exactly as described by

[22], and the Structural Similarity Image Metric (SSIM) from

[36]. Although the PSNR in the FK domain shows significant

changes in the reconstructed seismic signal, it does not take

into account the similarity of the seismic events perceived,

which is an important aspect to be analyzed in seismic data,

we took a special consideration with the SSIM metric, since it

is a novel metric for the evaluation of these data. Figure 2 illus-

trates the attained PSNR for different sampling reduction rates,

i.e. the percentage of removed sources, using the approaches

under comparison. These results are the average PSNR for all

recovered shots on each run trial, and a total of 10 experiment

trials, each with a different jittered subsampling realization,

were conducted for each case. The PnP approach without
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Fig. 3. Reconstruction performance for 20% sampling reduction rate and visual analysis of seismic source 11. a) In time-space domain (TX). (b) In
frequency-wavenumber domain (FK).

initialization (i.e. zero initialization) provides the lowest re-

construction quality for all evaluated sampling reduction rates,

while the sparsity-initialized PnP (PnP-i) approach provides

greatly improved performance, exceeding or equalling that of

the sparsity-based method. CE is clearly the best performing

method, with significantly better performance than the tradi-

tional sparsity-based approach at the 10% and 20%sampling

reduction rates. It also has the advantage of not requiring an

expensive pre-computed initialization because sparsity prior is

directly included with the model.

Table II summarizes the numerical results for each recov-

ered source of one experiment trial using 20% sampling reduc-

tion. These results show that the CE substantially improves the

quality of seismic events when compared to PnP and Sparsity.

Additionally, the proposed scheme is capable of reconstructing

both linear structures and reflection hyperbolas, which are a

fundamental part of the seismic signals.

TABLE II
COMPARISON OF RECOVERED SOURCE QUALITY METRICS USING 20%

SAMPLING REDUCTION RATE FOR PNP, SPARSITY AND CE. THE FINAL

ROW INDICATES THE AVERAGE RESULTS ACROSS ALL RECOVERED DATA

CUBE.

PnP Sparsity CE

Source PSNR (dB) SSIM PSNR SSIM PSNR SSIM

2 16.52 0.543 20.83 0.534 21.21 0.591

7 13.65 0.486 17.49 0.582 18.60 0.582

9 13.39 0.421 21.41 0.0.390 21.75 0.391

11 14.34 0.504 20.02 0.585 22.42 0.677

2,7,9,11 15.42 - 19.28 - 21.94 -

Figure 3(a) presents the reconstructions of the removed

source 11 in time-space (TX) domain for 20% sampling re-

duction, and their corresponding frequency-wavenumber (FK)

representations.The main relevant differences in the seismic

signal and reconstructed events are shown with black arrows

in the zoomed portions of Fig. 3(a). It can be noted that PnP

provides the poorest reconstruction, while all hyperbolic events

are well recovered by both Sparsity and CE. However, the

Sparsity reconstruction presents some artifacts that mortify

the shape of relevant seismic features. On the other hand,

the ground truth in Fig. 3(b) shows that the data exhibits a

clear frequency range between 7 and 80 Hz. Also, it can be

noted that the PnP and Sparsity approaches do not provide

clear frequency ranges related to the seismic signal and alias.

Meanwhile, CE provides an accurate frequency spectrum with

easily noticeable Fmax signal and Fmax noise values at 79.8

Hz and 7 Hz, respectively.

V. CONCLUSION

This work proposes to employ a consensus equilibrium (CE)

reconstruction approach to estimate missing seismic sources

in cross-spread acquisitions. Unlike traditional reconstruction

methods that rely on sparsity priors on universal or learned

transformations, CE enables the introduction of various reg-

ularization terms in the reconstruction problem, such as the

BM3D denoiser along with a sparsity prior, thus, improving

the attained source estimations. Simulation results on a real

3D land seismic data set demonstrate the advantages of the

proposed method for different sampling reduction rates, with

respect to sparsity and plug and play priors. Particularly, CE
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provides more accurate results in FK domain, which in turn,

avoids error propagation during the seismic data processing

workflow, seismic migration and imaging. Quantitatively, CE

provides up to 2 dB of PSNR improvement over the traditional

sparsity-based approach.
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