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Abstract—There has recently been a rapid growth in interest in the
design of efficient algorithms for convolutional sparse coding, and in
the application of these methods to signal and image processing inverse
problems. Thus far, however, the design of algorithms and methods for
multi-channel signals has received very little attention. In this work we
extend our initial results in convolutional sparse coding and dictionary
learning for this type of data, proposing new algorithms that scale
well to signals with large numbers of channels, and demonstrate their
performance in an application involving hyperspectral imagery.

I. INTRODUCTION

Convolutional sparse representations [1], also known as translation-
invariant sparse representations [2], are a form of sparse representa-
tion with a structured dictionary that can be applied to an entire signal
or image, providing a convenient alternative to the usual approach
of independently applying sparse representations to relatively small
signal or image regions [3]. Despite the rapidly growing research
literature on this technique, their application to multi-channel signals
and images has received very little attention. The primary goal of the
present paper is to extend previous work on applying these methods to
color imagery [4], [5] to multi- and hyper-spectral imagery, involving
many more than three channels.

A. Convolutional Sparse Coding

The convolutional sparse coding (CSC) problem is usually posed
as 1 )
in 2|7 don = ||| A Il !
aﬁm}mQHZ x T ;IIX I M
where {d,, } is a set of M linear filters that constitute the dictionary,
{xm} is a corresponding set of M coefficient maps that constitute
the convolutional sparse representation, and s is the single-channel
image to be sparse coded, represented as an /N-vector, where N is
the number of pixels in the image. If we define matrices D,, such
that D,,X.m = dm * X, and block matrices

Xo0
D=(Do Dy ...) x X1 , )

we can rewrite (1) in the more convenient matrix-vector product form
arg min (1/2) HDX—ng—i—)\HXH1 . 3)
X

Algorithms for solving this problem are discussed in detail in [3].
The two leading approaches are based on the the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [6], [7], [3] and on the
Alternating Direction Method of Multipliers (ADMM) [8], [9], [10].
In the case of FISTA, the primary computational cost is in calculating
the gradient

Vx (1/2) | Dx —s||; = D" (Dx —s) )
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which is often more efficient to compute in the frequency domain [3,
Sec. IV.B]. The main computational cost of the ADMM method is
in solving a subproblem of the form

argmin(l/Q)HDx—st+(p/2) x — =z . )
This subproblem has a closed-form solution given by
(D"D + pI)x = D"s + pz . (6)

The matrix D' D is too large for solution via conventional methods,
but it can be solved efficiently by exploiting the diagonalization of
the D,, matrices in the frequency domain [9], [10].

B. Convolutional Dictionary Learning

The convolutional dictionary learning (CDL) problem is usually
posed as

arg min
{dm}{xm K}
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such that ||dm|l, =1Vm, ™)

sy, is the k™ of K training images and X, x are the corresponding
coefficient maps.

Algorithms for solving this problem are discussed in detail in [5].
These algorithms consist of an alternation between a sparse coding
stage, solving for X, ; for fixed d,,, and a dictionary update stage
that solves for d,, with fixed x,, 5. As in the case of the sparse
coding problem, the most efficient solutions for the dictionary update
problem are again based on the FISTA and ADMM frameworks, but
due to the different algebraic structure of the dictionary update, the
linear solve required by the ADMM approach is inherently more
computationally expensive than the corresponding linear solve in the
ADMM algorithm for sparse coding [5, Sec. IL.B].

II. MULTI-CHANNEL CSC

Thus far, the convolutional sparse coding of multi-channel signals
has received only limited attention [11], [4], [5], [12], and we are
not aware of any existing work that considers the application of con-
volutional sparse representations to multi-channel signals with many
more than three channels, such as multi- and hyper-spectral imagery.
There is a wide variety of different approaches to constructing a
convolutional sparse representation of a multi-channel signal:

1) Multi-channel dictionary and single channel representation
2) Single channel dictionary and multi-channel representation
a) Dictionary:
i) Same dictionary filters for each channel

ii) Different dictionary filters for each channel
iii) Product of convolutional and channel dictionaries

b) Representation:



i) Completely independent representation for each chan-
nel
ii) Distinct representation for each channel, but with a
coupling via an {2 ; norm regularization term
3) A combination of the above approaches applied to disctinct sets
of channels
Options 1, 2(a)i+2(b)i, and 2(a)i+2(b)ii were considered in [4],
[5], and methods for options 2(a)iii+2(b)i and 2(a)iii+2(b)ii will be
presented here. We do not consider any of the combinations of options
involving 2(a)ii or 3, but note that they do not involve solving any
fundamentally different optimization problems, and can be solved via
the same methods that are applicable to the other options.
To simplify notation, we will only consider the sparse coding of
a single image to avoid the need to introduce an initial index over
distinct images. While the extension to multiple images complicates
the notation, it is computationally straightforward since the sparse
coding problems are independent across the distinct input images.
Multi-channel input images will be denoted by a set of C individual
channels, {s.}, or by block matrix S = ('so s1 ... ).

A. Multi-Channel Dictionary

In this case the dictionary consists of a set of multi-channel filters
{d¢,m } where c indexes the C distinct channels and m indexes the M
distinct atoms in the dictionary, and the representation {X,, } consists
of a single channel of M coefficient maps. The CSC problem can be
posed as

arg min %ZHZ de,m * Xm — Sc

{xm}
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or in in matrix-vector form
arg min (1/2) [DX = S|[3 + A X, ©)

where D¢, is defined such that D¢ mXm = de,m * Xm, and

DO,U Do,l e X0

D = DI,O D1,1 X = X1 (10)

1) Algorithms: Algorithms for solving this problem are discussed
in [4][5, Sec. VI].

B. Single Channel Dictionary

In this case the dictionary consists of a set of M single channel
filters {d,, }, and the representation {X., .} consists of a set of C
distinct channel coefficient maps for each of the M dictionary atoms.
The CSC problem can be posed as

arg min %ZHde * Xm,c — Sc

{xm,c}
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or in matrix-vector form

arg min (1/2) [DX = S|[3 + A1 X, (12)
where D,, is defined such that D, Xm,c = dum, * Xp,¢, and
X0,0 Xo,1
D=(Dy Dy ...) X=| %0 X1 (13)

The distinct representations for the channels can be coupled by
replacing the ¢; norm with an ¢ ; norm, with the /> component
taken along the channel index c.

1) Algorithms: Since the channels are independent, or coupled
only via an /5 ; regularization term, this problem can be solved via
straightforward extension of algorithms for the single-channel case.

C. Product Dictionary

In this case the dictionary consists of a set of Mp single
channel filters {d,.}, as well as a C x Mp dictionary matrix B
that represents the cross-channel properties of the signal, and the
representation consists of a set of coefficient maps, {Xm,.}, where

m € {0,1,...,Mp—1} indicates the relevant filter in dictionary
{dm} and c € {0,1,..., Mp—1} indicates the relevant column of
dictionary B. The CSC problem can be posed as
(X dm *Xim0)" s\ |
arg min % B| X, dmx xm)" | _ | sT
{xm,c} . .

2

+AY xmeelly (14)
or in in matrix-vector form
argmin (1/2)| DXB" - S|+ 21X, (15)
where D, is defined such that Dy, Xm,c = dim * Xpm,c, and
X0,0 X0,1
D=(Dy Dy ...) X=| %10 X1 (16)

While this type of composite dictionary has not previously been
considered for convolutional sparse representations, it should be noted
that it is closely related to the t-product tensor decomposition [13],
[14], [15].

1) FISTA Algorithm: Solution of this problem via FISTA requires
calculating the gradient

Vx (1/2)|DXB" - S||3, = D"(DXB" - S)B. (17

Denoting the DFT transform by [, and defining D=FDF ' X =
FX and S = FS, this gradient can be computed in the frequency
domain as
2 R .
Vx % HDXBT - SH = F Y (D"DXB"B - D"$B). (18)
F
2) ADMM Algorithm: Solution of this problem via ADMM in-

volves solving a subproblem of the form

arg min 1/2)|DXB" = 8|5+ (/21X - Z|% . (19

By reuse of the notation of Sec. II-C1, and defining 7 =FZ, we
can write this as

argmin (1/2)|DXB" - S|2 + (p/2)|X - 2|, . (0)
X
the solution of which is given by the linear equation
D¥DXB"B+ pX = D"SB +pZ . @21

Since BT B is a normal matrix it has an eigenvector decomposition
BTB = QOQ7T where @ is an orthogonal matrix (ie. Q7 Q =
QQT = 1) and Q is diagonal. We therefore have

DYDXQNQ" + pX =D¥SB+pZ
DEDXQONQTQ + pXQ = DESBQ + pZQ

DPDXQQ+ pXQ = D"SBQ + p2Q , (22)



and by defining X = X@Q, we have

DEDXO+ pX = D¥SBQ + pZQ . (23)

Although this is a variant of a Sylvester equation [16, Sec. 13.3],
we cannot apply standard techniques for that class of equations due
to the very large size of DY D. However, since [17, Sec. 2.3][16,
Ch. 13]

vec(AXB) = (B @ A) vec(X) = vec(C) , (24)
we can express this problem in the form
(Q® D"D + pIpp) vee(X) = (QTBT) @ D) vec(S)+
pvec(ZQ) (25)

where Ipp is an MpMpN x MpMpN identity matrix. Since €2
is diagonal, we have

woﬁHD-i-pID 0
Q@DH_D+pIBD: 0 WIDHD+p]D...
where
wo 0
Q0= 0 wr Q € RMBXMB 26)

and Ip isan Mp N x Mp N identity matrix. Since Q®l§Hﬁ+pIBD
is block diagonal, we can independently solve each block of (25)
using the efficient approach that exploits the Sherman-Morrison
formula [10].

III. MULTI-CHANNEL CDL

As in the case of the single channel CDL discussed in Sec. I-B,
multi-channel CDL algorithms iteratively alternate between sparse
coding and dictionary update stages. Simultaneous sparse coding of
an entire set of training images is required, but since the sparse
coding problem for multiple images is entirely decoupled across
the individual images, it is straightforward to extend the single-
image sparse coding algorithms discussed in Sec. II as required. We
therefore focus on the dictionary update stage in this section.

A. Multi-Channel Dictionary

The reader is referred to [5, Sec. VI] for a detailed description of
the multi-channel dictionary update problem.

B. Single Channel Dictionary

If a distinct single channel dictionary is to be learned for each chan-
nel of the signal (option 2(a)ii+2(b)i in Sec. II), then the dictionary
learning problem decomposes into a set of independent single channel
dictionary learning problems. If the same single channel dictionary
is to be learned for all channels of the signal (option 2(a)i+2(b)i
in Sec. II), then the dictionary learning problem decomposes into a
single channel dictionary learning problem with all channels of the
training data treated as distinct single channel training signals (i.e.
a training data set consisting of K images each with C' channels is
treated as C'K single channel training images).

C. Product Dictionary

In this case, re-using the notation of Sec. II-C, we can write the
dictionary learning problem as

w53 [oxsT - s a3
argmin =S || DX.B fskH A3 IX
xoyps 2 - F - Xl

st.DeCp,BeCp, 27)

where Sy, is the k™ of K training images, Cp is the constraint
set expressing the required normalization and support projection
for D (see [5, Sec. IL.B]), and Cp is the set of matrices with
unit-norm columns. Since the sparse coding problem for the entire
training set decomposes into K independent single-image sparse
coding problems, we can solve it using the approach described
in Sec. II-C. The update for each of the two dictionaries is computed
by applying standard methods to the problems that remain after taking
the product of the sparse representation and the other dictionary.
Algorithms for the convolutional dictionary update are described in
detail in [5, Sec. III], and the non-convolutional dictionary update is
easily solved via simplified variants of the same algorithms'. The
full dictionary learning algorithm is summarized in Algorithm 1.
An alternative version with better convergence behavior but higher
computational cost can be constructed by inserting an additional CSC
update between the D and B dictionary updates.

Data: Training image set {Sk}
Initialize dictionaries D(® and B(O>;
Initialize iteration counter ¢ = 0;

while rermination criteria not satisfied do
Apply product dictionary CSC (see in Sec. II-C) to compute

{Xk}(i'*'l) for dictionaries D and B, and training
images {Si};

Set Xp = XU T(BO)T,

Apply a convolutional dictionary update (see [5, Sec. III]) to
compute D+1) for representation { X} and training
images {Sk};

Set Xp = DUV X[,

Apply a non-convolutional dictionary update to compute
BUHY for representation { X} and training images {S };

Increment iteration counter 7;

end
Algorithm 1: Multi-channel CDL with product dictionary.

D. Scaling with Number of Channels

In [5, Sec. VILG] we estimated the scaling of CDL algorithm
parameters with a change in the number of training images, K, by
considering the simplified case in which this scaling is achieved
by replicating the same training image. Here we estimate the cor-
responding algorithm parameter scaling behavior with the number
of channels, C, in the simplified case in which the scaling is
achieved by replicating channels. In Table I these properties are
reported separately for parameters of the sparse coding (CSC) and
for the dictionary updates (CDU) based on ADMM with an equality
constraint and on FISTA.

IV. EXTENDED CSC PROBLEM
We will compare the performance of the different approaches to
convolutional sparse representation of multi-channel signals in the

!'Such an algorithm is implemented as the Cnst rMOD solver class included
in the SPORCO software library [18]



TABLE I
SCALING PROPERTIES OF THE ALGORITHM PARAMETERS WITH RESPECT
TO NUMBER OF CHANNELS C'.

Step | Dict. | Method Parameter
Type | A
Multi-C | ADMM | p: O(C) o(C)
FISTA | Lese : O(C)
CSC |Single | ADMM | p:O(1) (1)
FISTA | Lese : O(1)
Product | ADMM | p: O(C) | O(Mp)
FISTA | Lese : O(C)
Multi-C | ADMM | o : O(C) —
FISTA | Leqi : O(1)
Single | ADMM | o:O(C) —
CDU FISTA | Leqr : O(C)
Product | ADMM | op : O(C)
op:0(1) —
FISTA | Lp : O(C)
LB : O(l)

context of a salt & pepper noise restoration problem [19]. The most
effective approach to solving this problem via convolutional sparse
representations is via a CSC variant with an ¢, data fidelity term [19,
Sec. 6] and an additional ¢ penalty on the gradient of one of the
coefficient maps [19, Sec. 3—4].

A. Single Channel

The single channel variant of this CSC problem can be written as

’zm:dm*xm—sHl—F/\zm:am |%m |, +
H 2 2|1
£ B ||/ (g0 + (1 23

arg min
{xm}

(28)

where go and g are filters that compute the gradients along image
rows and columns respectively. Defining linear operators Go and G
such that Gix,, = g * Xm, and

VBoGi 0
= 0 VvhG , (29)
this problem can be expressed in block matrix notation as
argmin |[Dx — s[|; + A la © x|, +
(1/2) ITox 13 + (1/2) [Tax]; - (30)

This problem can be written in a form suitable for solution via
ADMM as

argmin [[yoll, + A la @y, + (1/2) [Tox|l3 + (1/2) IT1x13

X,Y0,¥1

st. yo=Dx—s, yi=x. (31)

The main computational cost of the resulting ADMM algorithm is in
solving an equation of the form

S IDx — 2013 + L lpx — 23 4+ T IToxl + 5 IPaxl3 . (32)

2
Full details of the ADMM algorithm, which are omitted here due
to space considerations, can be found in [19, Sec. 6]. A spatial mask
to support careful boundary handling [20] can easily be included in
the data fidelity term, replacing ||yol|, with |[Wyol|, for a diagonal
weighting matrix W, with only minor changes to the algorithm.

B. Multi-Channel

Since the extensions to both the multi-channel dictionary/single
channel representation and single channel dictionary/multi-channel
representation forms are straightforward, here we will focus on
the extension to the product dictionary form of multi-channel con-
volutional sparse representation. Using the block-matrix notation
from Sec. II-C, we can write the problem as

arg;nin HDXBT - SHl +A|A0X]||, +
(1/2) T X I3 + (12/2) T2 X115 (33)

or in ADMM form

arg min Yol + XA ® Yally + (1/2) [To X5 + (1/2) T2 XI5

st. Yo=DXBT' -5, vVi=X. (34)

The only computationally expensive subproblem of the corresponding
ADMM algorithms consists of minimizing an equation of the form

P 2., P B 1%
5HDXBT = Zoll3 + S I1X — Z1)3 + 5 IToZ||2 + 5 Iy X |2 .
(35)

Transforming into the DFT domain as in Sec. II-C, we have

2||pxBT - 2 FoX

NI

[
2

LL A A~
§+5||F1X||§~

where Zo = FZ, Zl =FZ, and I' = FTF~!. The minimizer of
this functional is given by the linear equation

N S ~ H A ~ H ~ A
pD"DXBTB + (pI +ul'o" To 4 pul'y )X

=pD"Z4B+pZ1. (36)
Following the same procedure as in Sec. II-C, this equation can be
transformed into a block-diagonal form in which each block can be
efficiently solved via the Sherman-Morrison formula.

V. RESULTS

The results reported here were computed using the Python imple-
mentation of the SPORCO library [18], [21] on a Linux workstation
equipped with two Xeon E5-2690V4 CPUs. Experiments involving
color images used a set of images derived from the MIRFLICKR-
1M dataset [23] by cropping and rescaling, and those involving
hyperspectral images were selected from a dataset hosted at the
University of Manchester [26], [27].

A. Dictionary Learning

We compare the performance of a number of different dictionary
learning algorithms on color and hyperspectral imagery. While we
have previously published such a comparison for color imagery [5],
that work did not include any variants in which the CSC subproblem
is solved via FISTA. Since the structure of the CSC problem
with a multi-channel dictionary suggest that FISTA would enjoy an
advantage for large number of channels [5, Sec. VI.A], we include
this option in the comparisons presented here. In addition, due to the
sensitivity of the FISTA algorithms to the step size parameter that
was noted in our previous work [5, Sec. VIL.G], we also include CSC
and dictionary update algorithms based on a form of FISTA that is
more robust to the choice of this parameter [22].



1) Color Images: We used training sets of 40 color images of size
512 x 512 pixels, derived from the MIRFLICKR-1M dataset [23] by
cropping and rescaling. Each of the color components were divided
by 255 so that values were within the interval [0,1], and were highpass
filtered [24], [25], [3][19, Sec. 3] by subtracting a lowpass component
computed by Tikhonov regularization with a gradient term [21, pg.
3], with regularization parameter A = 5.0.

We compare the performance of the methods in learning a color
dictionary of 100 filters of size 8 x 8, setting the sparsity pa-
rameter A = 0.1. We used fixed penalty parameters p and o for
ADMM consensus, and three different parameter selection methods
for FISTA: fixed inverse of gradient step parameters Lcsc and Lcqi,
parameters adapted via standard backtracking (FISTA ST) [6], and
parameters adapted via robust backtracking (FISTA Robust) [22]. The
fixed parameters selected for ADMM and FISTA, listed in Table II,
were selected by a grid search for the parameters giving the lowest
functional value after 100 iterations for ADMM and 200 iterations
for FISTA. The initial parameters for FISTA ST and FISTA Robust
were set to values lower than the fixed FISTA setting: Lcsc = 100
and Lcq1 = 1000.

TABLE 11
PARAMETERS FOUND BY GRID SEARCH.

Parameter

Method [ | Data C p o
color 3 4.64 3.16
Cns hyperspectral | 3 4.64 0.06
hyperspectral | 10 16.68 12.91
hyperspectral | 33 16.68 12.91

Lecsc Lcal

color 3 251.19 | 4641.59
FISTA hyperspectral | 3 359.38 100.00
hyperspectral | 10 | 359.38 100.00
hyperspectral | 33 | 681.29 189.57

The convergence rates of the multi-image multi-channel sparse
coding functional with respect to both computation time and iterations
are displayed in Fig. 1. Note that all the methods achieve a similar
functional value at the end of 500 iterations, with FISTA Robust
yielding the best value and FISTA ST the worst. The ADMM parallel
consensus method (P11 Cns) [5, Sec. VII.A] has the best performance
with respect to time. While the FISTA algorithms could also be
parallelized over different training images, our implementations do
not do so. FISTA with fixed Lcsc and Lcgq; is the fastest of the FISTA
variants, because no additional operations are needed to adapt the
algorithm parameters. However, if these parameters are not set in the
appropriate range, the method may become unstable and diverge. Due
to the interleaved CSC and CDU updates [5, Sec. II.C], this tuning
becomes a more critical issue. FISTA Robust provides an effective
tracking mechanism for adapting the algorithm parameters, allowing
both adaptive increments and decrements in the gradient step size, at
higher computational cost than the other FISTA variants. In contrast,
FISTA ST only allows for decrements in the gradient step size, which
can yield very slow convergence rates.

2) Hyperspectral Images: We used training sets constructed from
a single 1021x1338 hyperspectral image (Scene 6 from [27]) by
cropping and taking a number of different channels per set. These sets
had resolution of 712 x 712 and included 1, 3, 10 and 33 channels,
respectively. Similarly to the color case, the different channels were
highpass filtered with regularization parameter A = 5.0.
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Fig. 1. Multi-Channel Dictionary Learning: A comparison on a set of K =
40, 512x512 color images (i.e. C' = 3 channels) of the decay of the value
of the multi-image multi-channel sparse coding functional with respect to run
time and iterations.
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Fig. 2. Multi-Channel Dictionary Learning (C' = 3): A comparison on a set
of C = 3 channels of the decay of the value of the multi-channel sparse
coding functional (8) with respect to run time and iterations.

We compare the performance of the methods in learning a multi-
channel dictionary of 72 filters of size 12 x 12 for 1, 3, 10 and
33 channels, setting the sparsity parameter A = 0.03. As in the
color case, selected the best choices of fixed penalty parameters for
ADMM consensus and the inverse of the gradient step parameter for
FISTA, listed in Table II, by a parameter grid search to determine
the parameters giving the lowest functional value after 100 iterations
for ADMM and 200 iterations for FISTA. The initial parameters
for FISTA ST and FISTA Robust were set to Lcse = 100 and
Lca1 = 100. We used consensus (Cns) rather than parallel consensus
because these data sets include only one training image.

Performance in terms of the convergence rate of the multi-channel
sparse coding functional (8), with respect to both computation time
and iterations, is compared in Figs. 2 — 4 for different number
of channels C. It can be seen that in all the cases the methods
achieve similar functional values at 500 iterations, with FISTA Robust
showing the best results. In addition, Fig. 5(a) summarizes the time
scaling with respect to C' for all the methods. Note that among
all these batch methods, consensus is very competitive for a small
number of channels but it does not scale as well as FISTA variants
for large number of channels.

Even though FISTA Robust [22] requires more computation time
and has slightly worse scalability than other FISTA variants, the very
good convergence with respect to iterations and the insensitivity to
initial parameter settings make it a very attractive method for the
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Fig. 3. Multi-Channel Dictionary Learning (C' = 10): A comparison on a
set of C' = 10 channels of the decay of the value of the multi-channel sparse
coding functional (8) with respect to run time and iterations.
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Fig. 4. Multi-Channel Dictionary Learning (C' = 33): A comparison on a
set of C' = 33 channels of the decay of the value of the multi-channel sparse
coding functional (8) with respect to run time and iterations.
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Fig. 5. Comparison of time per iteration for the dictionary learning methods
for 1, 3, 10 and 33 channels.

CDL problem.

We also learned two different single channel dictionaries of 72
filters of size 12 x 12. The one was learned with an independent
multi-channel representation (¢; regularization term), using FISTA
Robust for both the CSC and dictionary update steps, and the
other was learned with a joint-sparsity coupled representation (¢2,1
regularization term), using ADMM for the CSC step and FISTA
Robust for the CDL step. In addition we used Algorithm 1 with
ADMM algorithms for the sparse coding and dictionary update

stages to learn a multi-channel representation with a single channel
dictionary constructed as the product of convolutional (72 filters of
size 12 x 12) and channel dictionaries (C' x min(C, 15)). Scaling
of these single channel dictionary methods with respect to C' is
summarized in Fig. 5(b). The labels used are ‘Independent’, ‘Joint’
and ‘Product’, respectively.

Note that methods using FISTA Robust, i.e. independent and joint,
have good scaling performance, while the product method has worse
scaling performance for large C. Also, note that the joint method
has slightly better scaling than the independent method since the
ADMM CSC algorithm used for the joint method has better time
performance than the FISTA Robust CSC algorithm used for the
independent method in the single-channel dictionary case.

Finally, it is worth noting that while online CDL [28], [29]
is not considered here, we expect that it will prove to be more
effective than batch methods for CDL of hyperspectral images since
the considerable memory requirements of batch CDL methods will
usually limit them to training with only a few hyperspectral images.

B. Denoising Comparison

A 512x512 hyperspectral image with 33 channels obtained after
cropping Scene 7 from [27] was used to compare generalization
performance in a denoising task. The test image was generated by
corrupting the original image with 33% salt-and-pepper noise, i.e.
33% of the pixels, at randomly selected locations were set at random
to either O or 1.

The test image was restored using the following convolutional dic-
tionary learning methods for multi-channel signals: (i) multi-channel
dictionary with single channel representation, (i) single channel
dictionary with independent multi-channel representation, (iii) single
channel dictionary with ¢5 1 coupled multi-channel representation,
(iv) dictionary constructed as the product of convolutional and chan-
nel dictionaries, with dictionary B learned from the training scene
and independent multi-channel representation, and (v) dictionary
constructed as the product of a convolutional dictionary and a partial
PCA transform matrix B constructed from a PCA decomposition of
the training scene’, with 2 1 coupled multi-channel representation.
In addition, (vi) a multi-channel ¢;-TV denoising (with an ¢; data
fidelity term [31] and a vector-TV regularization term [32]) was
applied to provide a comparison with a dictionary-free method. All
the methods used a ¢; norm fidelity term.

The dictionaries were learned from Scene 6 from [27], as de-
scribed in the experiments of the previous section. The corresponding
dictionary learning algorithm was applied to learn the dictionary
for each method, except for methods (iv) and (v) that used for D
the same convolutional dictionary learned from method (iii). The
channel dictionary B, a dictionary of size 33x 15, was learned from
the training scene (Scene 6) in method (iv). In method (v), B
was constructed from the first 15 principal components of the PCA
decomposition of the training scene.

Parameters for all of the methods were optimized via a grid search.
Due to the computational cost of performing such a search on the full
33 channel test image, the search was performed for a subset of only
3 channels and the resulting parameters, reported in Table III, were
extrapolated to the 33 channel problem. All optimization problems
were solved over 200 iterations. The denoising performances of the
different methods are compared in Table IV. Small differences in
performance should not be considered to be significant due to the

2The use of this representation across the channels is suggested by the
efficacy of PCA in spectral decorrelation of hyperspectral imagery [30]



TABLE III
PARAMETERS FOR DENOISING EXPERIMENT (), i, AND v ARE THE £1, {2
OF GRADIENT, AND {2 1 REGULARIZATION PARAMETERS RESPECTIVELY,
AND p IS THE ADMM PENALTY PARAMETER).

Parameter

l Method [ A | m | v | p
(i) 4.360 33.11 — 4.36
(ii) 2.750 20.09 — 52.48
(iii) 0.003 | 316.23 6.81 | 46.41
(iv) 0.575 4.36 — 10.00
(v) 5.000 — 12.00 | 10.00
(vi) 0.820 — — —

compromise made in parameter selection, but it can be seen that
the worst performance is obtained by method (ii), which makes
no attempt to model the inter-channel correlations in the signal. A
very large difference in performance is observed between the /;-
TV baseline method and the CSC methods. The CSC methods are,
however, all more than an order of magnitude slower than the ¢;-TV
baseline.

TABLE IV

SALT & PEPPER DENOISING PERFORMANCE COMPARISON.
Method PSNR

| Dictionary Representation [dB]

(i) Multi-Channel Single Channel 44.92
(ii) | Single Channel | Independent Multi-Channel | 42.53
(iii) | Single Channel | ¢3 ; Coupled Multi-Channel | 45.08
(iv) | Product (Dict. B) Multi-Channel 42.92
(v) | Product (PCA B) | £2,1 Coupled Multi-Channel | 43.24

[ ] 01-TV [ 34.21 |

VI. CONCLUSION

Our recent comparison of CDL algorithms found the most effective
method for single-channel images to consist of an ADMM algorithm
for the CSC stage and an ADMM Consensus algorithm for the
dictionary update stage, both implemented in parallel [5]. Since
the ADMM algorithm for CSC with a multi-channel dictionary [4]
scales poorly with the number of channels, C, in this work we have
considered CDL algorithms with FISTA methods for both the CSC
and dictionary update stages®. The results presented in Sec. V-A
confirm that this approach has significantly better scaling with C
than the ADMM-based approach, giving similar time performance for
C' = 3, and much better time performance when C = 33. While the
standard FISTA methods have the disadvantage of having parameters
that are more difficult to set for optimal performance than those of
the ADMM methods, we have found that a recent robust FISTA
variant [22] provides a useful compromise, being somewhat more
computationally expensive, but having performance that is largely
insensitive to the initial parameter selection.

We have also evaluated the effectiveness of a number of different
methods for convolutional sparse representation of multi-channel im-
agery by comparing their performance in the denoising of hyperspec-
tral imagery subject to salt & pepper noise. The results of Sec. V-B
indicate that all of these different methods give very substantially

3An ADMM Consensus CSC algorithm with consensus across different
channels would scale well with the number of channels, but we have not
empirically evaluated this option.

better performance than the ¢1-TV baseline method. As expected,
the CSC-based methods that model inter-channel correlations provide
the best performance. Although the product dictionary methods, (iv)
and (v), give slightly inferior performance to the single-channel
dictionary/¢5 ;1 term coupled method, (iii), it is worth noting that
the use of the spectral dictionary B makes it possible to reduce
the number of channels in the sparse representation (i.e. by taking
Mp < C) when memory requirements are a concern.
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