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Abstract— We present a technique for combining prior knowl-
edge about transformations that should be ignored with a
covariance matrix estimated from training data to make an
improved Mahalanobis distance classifier. Modern classification
problems often involve objects represented by high-dimensional
vectors or images (for example, sampled speech or human faces).
The complex statistical structure of these representations is often
difficult to infer from the relatively limited training data sets
that are available in practice. Thus, we wish to efficiently utilize
any available a priori information, such as transformations of
the representations with respect to which the associated objects
are known to retain the same classification (for example, spatial
shifts of an image of a handwritten digit do not alter the identity
of the digit). These transformations, which are often relatively
simple in the space of the underlying objects, are usually non-
linear in the space of the object representation, making their
inclusion within the framework of a standard statistical classifier
difficult. Motivated by prior work of Simard et al., we have
constructed a new classifier which combines statistical informa-
tion from training data and linear approximations to known
invariance transformations. When tested on a face recognition
task, performance was found to exceed by a significant margin
that of the best algorithm in a reference software distribution.

I. I NTRODUCTION

The task of identifying objects and features from image
data is central in many active research fields. In this paper
we address the inherent problem that a single object may give
rise to many possible images, depending on factors such as
the lighting conditions, the pose of the object, and its location
and orientation relative to the camera. Classification should
be invariant with respect to changes in such parameters, but
recent empirical studies [1] have shown that the variation in
the images produced from these sources for a single object are
often of the same order of magnitude as the variation between
different objects.

Inspired by the work of Simard et al. [2] [3], we think of
each object as generating a low dimensional manifold in image
space by a group of transformations corresponding to changes
in position, orientation, lighting, etc. If the functional form the
transformation group is known, we could in principle calculate
the entire manifold associated with a given object from a single
image of it. Classification based on the entire manifold, instead
of a single point leads to procedures that will be invariant to
changes in instances from that group of transformations. The
procedures we describe here approximate such a classification
of equivalence classes of images. They are quite general and

we expect them to be useful in the many contexts outside
of face recognition and image processing where the problem
of transformations to which classification should be invariant
occur. For example, they provide a framework for classifying
near field sonar signals by incorporating Doppler effects in an
invariant manner. Although the procedures are general, in the
remainder of the paper, we will use the termsfacesor objects
and image classificationfor concreteness.

Of course there are difficulties. The set of manifolds in
image space from all possible objects does not fill the image
space, and thus does not properly partition it into equivalence
classes of images. Since the manifolds are highly nonlinear,
finding the manifold to which a new point belongs is computa-
tionally expensive. For noisy data, the computational problem
is further compounded with the uncertainty in the assigned
manifold.

To address these problems, we use tangents to the manifolds
at selected points in image space. Using first and second
derivatives of the transformations, our procedures provide sub-
stantial improvements to current image classification methods.

II. COMBINING WITHIN CLASS COVARIANCES AND

L INEAR APPROXIMATIONS TOINVARIANCES

Here we outline our approach. For a more detailed develop-
ment, see [4]. We start with the standard Mahalanobis distance
classifier

k̂(Y) = argmin
k

(Y−µk)TC−1
w (Y−µk),

whereCw is the within class covariance for all of the classes,
µk is the mean for classk, andY is the image to be classified.
We incorporate the known invariances while retaining this
classifier structure by augmenting the within class covariance
Cw to obtain class specific covariances,Ck for each classk.
We design the augmentations to allow excursions in directions
tangent to the manifold generated by the transformations to
which the classifier should be invariant. We have sketched a
geometrical view of our approach in Fig. 1.

Denote the transformations with respect to which invariance
is desired byτ(Y,θ), whereY∈Y andθ∈Θ are the image and
transform parameters respectively. The second order Taylor
series for the transformation is

τ(Y,θ) = τ(Y,0)+Vθ+θTHθ+R,
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Fig. 1. A geometrical view of classification with augmented covariance matrices: The dots represent the centersµk about which approximations are made,
the curves represent the true invariant manifolds, the straight lines represent tangents to the manifolds, and the ellipses represent the pooled within class
covarianceCw estimated from the data. A new observationY is assigned to a classk∈ {1,2,3} using k̂(Y) = argmink(Y−µk)TC−1

k (Y−µk). The novel aspect
is our calculation ofCk = Cw +αC̃k whereα is a parameter corresponding to a Lagrange multiplier, andC̃k is a function of the tangent and curvature of the
manifold (from the first and second derivatives respectively) with weighting of directions according to relevance estimated by diagonalizingCw.

whereR is the remainder,

(Vk)i =
∂τ(Yk,θ)

∂θi

∣∣∣∣
θ=0

, and (Hk)i, j =
∂2τ(Y,θ)
∂θi∂θ j

∣∣∣∣
θ=0

.

We define
Ck = Cw +αVkCθ,kV

T
k , (1)

WhereCθ,k is a dim(Θ)×dim(Θ) matrix. We require thatCθ,k

be non-negative definite. ConsequentlyVkCθ,kVT
k is also non-

negative definite. WhenC−1
k is used as a metric, the effect of

the termVkCθ,kVT
k is to discount displacement components in

the subspace spanned byVk, and the degree of the discount
is controlled byCθ,k. We developed [4] our treatment of
Cθ,k by thinking of θ as having a Gaussian distribution and
calculating expected values with respect to its distribution.
Here we present some of that treatment, minimizing the prob-
abilistic interpretation. Roughly,Cθ,k characterizes the costs
of excursions ofθ. We chooseCθ,k to balance the conflicting
goals

Big: We want to allowθ to be large so that we can classify
images with large displacements in the invariant
directions.

Small:We wantθTHθ∈ Y to be small so that the truncated
Taylor series will be a good approximation.

We search for a resolution of these conflicting goals in terms
of a norm onθ and the covarianceCθ,k. For the remainder of
this section let us consider a single individualk and drop the
extra subscript, i.e., we will denote the covariance ofθ for this
individual byCθ.

If, for a particular image componentd, the HessianHd has
both a positive eigenvalueλ1 and a negative eigenvalueλ2,
then the quadratic termθTHθ is zero along a directione0

which is a linear combination of the corresponding eigen-
vectors, i.e.(γe0)

T Hd (γe0) = 0 ∀γ. We suspect that higher

order terms will contribute to significant errors whenγ ≥
min

(
|λ1|

1
2 , |λ2|

1
2

)
, so we eliminate the canceling effect by

replacingHd with its positive square root, i.e. if an eigenvalue
λ of Hd is negative, replace it with−λ. This suggests the
following mean root squarenorm

|θ|Hmrs
≡

√
N

∑
d=1

θT
√

HdHd θ. (2)

Consider the following objection to the norm in Eqn. (2).
If there is an image componentd which is unimportant for
recognition and for whichHd is large, e.g. a sharp boundary
in the background, then requiring|θ|Hmrs

to be small might
prevent parameter excursions that would only disrupt the
background. To address this objection, we use the eigenvalues
of the pooled within class covariance matrixCw to quantify the
importance of the components. If there is a large within class
variance in the direction of componentd, we will not curtail
particular parameter excursions just because they cause errors
in componentd.

We develop our formula forCθ in terms of the eigen-
decomposition

Cw = ∑
d

edλdeT
d

as follows. Break the dim(Θ)× dim(Y )× dim(Θ) tensorH
into components

Hd ≡ eT
d H. (3)

Then for each component, define the dim(Θ)×dim(Θ) matrix

H+
d ≡

√
(Hd)

T Hd, (4)

and take the average to get

H̄ ≡∑
d

H+
d |λd|−

1
2 . (5)



Define the norm
|θ|H̄ ≡

√
θTH̄θ.

Given H andCw, one can calculatēH using Equations (3),
(4), and (5). Then by using the determinant|Cθ| to quantify
goal Big: (allow θ to be large) and usingE |θ|2H̄ to quantify
goal Small: (keepθTHθ ∈ Y small), we get the constrained
optimization problem:

Maximize the determinant|Cθ|
Subject to

E |θ|2H̄ ≤ γ, (6)

whereγ is a constant.
The solution to the problem is

Cθ = α(H̄)−1
, (7)

whereα, which is a function ofγ, is a constant that balances
the competing goals.

To verify that Eqn. (7) indeed solves the optimization
problem, note:

E |θ|2H̄ = E

(
∑
k,l

θkH̄k,l θl

)
= ∑

k,l

H̄k,l E(θkθl )

= Tr(H̄Cθ) .

In the coordinates that diagonalizēH, Eqn. (6) only constrains
the diagonal entries ofCθ. Of the symmetric positive definite
matrices with specific diagonal entries, the matrix that has the
largest determinant is simply diagonal. SoCθ and H̄ must be
simultaneously diagonalizable, and the problem reduces to

Maximize:
dim(Θ)

∏
l=1

σl

Subject to:
dim(Θ)

∑
l=1

σl hl = γ.

The Lagrange multipliers method yields Eqn. (7).
Summary:Given a new imageY, we estimate its class with

k̂(Y) = argmin
k

(Y−µk)TC−1
k (Y−µk),

whereCk = Cw +αVkCθ,kVT
k . We have derived the parameters

of this classifier by synthesizing statistics from training data
with analytic knowledge about transformations we wish to
ignore.

III. FACE RECOGNITION RESULTS

We tested our techniques by applying them to a face
recognition task and found that they reduce the error rate by
more than 20% (from an error rate of 26.7% to an error rate of
20.6%). We used an analytic expression for transformations in
image space and developed procedures for evaluating first and
second derivatives of the transformations. The transformations
have the following five degrees of freedom:

• Horizontal translation

• Vertical translation
• Horizontal scaling
• Vertical scaling
• Rotation

To implement the test, we relied on the FERET data set [5]
and a source code package from Beveridge et al. [6], [7] at
CSU for evaluating face recognition algorithms.

Version 4.0 (October 2002) of the CSU package contains
source code that implements 13 different face recognition
algorithms, scripts for applying those algorithms to images
from the FERET data set, and source code for Monte Carlo
studies of the distribution of the performance of the recogni-
tion algorithms. Following Turk and Pentland [8], all of the
CSU algorithms use principal component analysis as a first
step. Those with the best recognition rates also follow Zhao
et al. [9] and use a discriminant analysis. For each algorithm
tested, the CSU evaluation procedure reports a distribution of
performance levels. The specific task is defined in terms of a
single probe image and agallery of NG images. The images
in the gallery are photographs ofNG distinct individuals.
The gallery contains a singletarget image, which is another
photograph of the individual represented in the probe image.
Using distances reported by the algorithm under test, the
evaluation procedure sorts the gallery into a list, placing the
target image as close to the top as it can. The algorithm scores
a success at rankn if the target is in the firstn entries of the
sorted list. The CSU evaluation procedure randomly selects
NG× 10,000 gallery-probe pairs and reports the distribution
of successful recognition rates as a function of rank.

Restricting the test data set to those images in the FERET
data that satisfy the following criteria:

• Coordinates of the eyes have been measured and are part
of the FERET data.

• There are at least four images of each individual.
• The photographs of each individual were taken on at least

two separate occasions.

yields a set of 640 images consisting of 160 individuals with
4 images of each individual. Thus we useNG = 160. Of the
remaining images for which eye coordinates are given, we
used a training set of 591 images consisting of 3 images per
individual for 197 individuals. The testing and training images
were uniformly preprocessed by code from the CSU package.
In [6] the authors describe the preprocessing as,

“All our FERET imagery has been preprocessed
using code originally developed at NIST and used
in the FERET evaluations. We have taken this code
and converted it . . .
Spatial normalization rotates, translates and scales
the images so that the eyes are placed at fixed
points in the imagery based on a ground truth file
of eye coordinates supplied with the FERET data.
The images are cropped to a standard size, 150 by
130 pixels. The NIST code also masks out pixels not
lying within an oval shaped face region and scales
the pixel data range of each image within the face



region. In the source imagery, grey level values are
integers in the range 0 to 255. These pixel values
are first histogram equalized and then shifted and
scaled such that the mean value of all pixels in the
face region is zero and the standard deviation is one.”

Each recognition algorithm calculates subspaces and fits
parameters using the preprocessed training images and knowl-
edge of the identity of the individuals in the images. Then,
using those parameters, each algorithm constructs a matrix
consisting of the distances between each pair of images in
the testing set of 640 images. Thus, in the training phase,
one can calculate the mean image,µk, of an individual, but in
the testing phase, the algorithm has no information about the
identity of the individuals in the images.

We developed three recognition algorithms: the first consists
of the general techniques of Section II combined with minor
modifications to fit the test task. We developed the second two
algorithms after observing that the CSU algorithms based on
angular distance perform best (see Fig. 2). In Section II we
supposed that we would have several examples of each class,
making an estimate of each class meanµk plausible, but for
the task defined by the CSU evaluation procedure, we must
simply provide 640×640 interimage distances.

The most obvious method for fitting our classification
approach within this distance-based framework is to define the
distance between imageYk andYl as the Mahalanobis distance

d0(Yk,Yl ) = (Yk−Yl )TC−1
k (Yk−Yl ).

Note, however, that this distance is not symmetric, since the
augmented covariance is only relevant to one of the two
images. Consequently, the symmetrized distance

d′0(Yk,Yl ) =
d0(Yk,Yl )+d0(Yl ,Yk)

2
is used for the distance matrix. After observing that of the
CSU algorithms, those based on angular distance perform best
(see Fig. 2), we developed two additional algorithms. The
“Mahalanobis Angle” distance is

d1(Yk,Yl ) =
YT

k C−1
k Yl√

YT
k C−1

k Yk

√
YT

l C−1
k Yl

,

with symmetrized version

d′1(Yk,Yl ) =
d1(Yk,Yl )+d1(Yl ,Yk)

2
.

Instead of symmetrizingd1(Yk,Yl ), we also define the sym-
metric distance

d′2(Yk,Yl ) =
YT

k A−1
kl Yl√

YT
k A−1

kl Yk

√
YT

l A−1
kl Yl

,

where
Akl = (Ck +Cl )−1.

Evaluating each of the first two distances on the test set of 640
images takes about 30 minutes on a 2.2 GHz Pentium III. We
found that the second distance performed better than the first.

Because we estimated that evaluating the third distance would
take about 160 hours, we instead implemented a hybrid, con-
structed by computingd′1(Yk,Yl ) and then computingd′2(Yk,Yl )
only for those distance below some threshold (further detail
may be found in [4]).

Each of our algorithms operates in a subspace learned from
the training data and uses an estimated covariance,

Ck = Cw +αVkH̄
−1
k VT

k ,

associated with each imageYk. We list the key ideas here:

• Use the training data (which includes image identi-
ties) to calculate raw within-class sample covariances,
C′

w. Regularize the raw covariances as follows: (1) Do
an eigenvalue-eigenvector decomposition to findC′

w =
QΛ′QT . (2) Sum the eigenvalues,S= ∑i λ′i . (3) SetCw =
C′

w +δSI, which has no eigenvalues less thanδS.
• Conceptually convolve the test image with a Gaussian

kernel that has mean zero and variance[(
h−1

8

)2
0

0
(

h−1
8

)2

]
,

where h is an adjustable parameter in the code that
must be an odd integer. Change variables to transfer
differentiation from the image to the kernel. Evaluate the
matricesVk and H̄k by convolving (using FFT methods)
differentiated kernels with the image.

Thusα, δ, andh are three adjustable parameters in the estimate
of Ck. We investigated the dependence of the performance on
these parameters [4], and chose the valuesα = 100,h= 11, and
δ = 0.0003. Our experiments indicated that the classification
performance was not sensitive to small changes in these
choices.

Results are displayed in Fig. 2 and Fig. 3. Each of our
algorithms performs better than all of the algorithms in the
CSU package.

IV. CONCLUSIONS

We have presented techniques for constructing classifiers
that combine statistical information from training data with
tangent approximations to known transformations, and we
demonstrated the techniques by applying them to a face
recognition task. The techniques we created are a significant
step forward from the work of Simard et al. due to the careful
use of the curvature term for the control of the approximation
errors implicit in the procedure. For the face recognition task
we used a five parameter group of invariant transformations
consisting of rotation, shifts, and scalings. On the face test
case, a classifier based on our techniques has an error rate
more than 20% lower than that of the best algorithm in a
reference software distribution.

The improvement we obtained is surprising because our
techniques handle rotation, shifts, and scalings, but we also
preprocessed the FERET data with a program from CSU that
centers, rotates, and scales each image based on measured
eye coordinates. While our techniques may compensate for
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errors in the measured eye coordinates or weaknesses in
the preprocessing algorithms, we suspect that much of the
improvement is due to similarities between the transformations
we handle and differences between images. For example, a
smile is probably something like a dilation in the horizontal
direction.
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