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Abstract. We present techniques for constructing classifiers that combine statistical information from
training data with tangent approximations to known transformations, and we demonstrate the techniques

by applying them to a face recognition task. Our approach is to build Bayes classifiers with approximate

class-conditional probability densities for measured data. The high dimension of the measurements in
modern classification problems such as speech or image recognition makes inferring probability densities

from feasibly sized training data sets difficult. We address the difficulty by imposing severely simplifying

assumptions and exploiting a priori information about transformations to which classification should be
invariant. For the face recognition task, we used a five parameter group of such transformations consisting
of rotation, shifts, and scalings. On the face recognition task, a classifier based on our techniques has an

error rate that is 20% lower than that of the best algorithm in a reference software distribution.
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1. Introduction

The task of identifying objects and features from image data is central in many active research fields.
In this paper we address the inherent problem that a single object may give rise to many possible images,
depending on factors such as the lighting conditions, and the location and orientation of the object relative
to the camera. Ideally, the classification should be invariant with respect to such changes, because recent
empirical studies [4, 5] have shown that the variation induced by these sources in images of a single object
is often as large as the variation induced by varying objects.

Inspired by the work of Simard et al. [8, 9], we think of each object as generating a low dimensional
manifold in image space by a group of transformations corresponding to changes in nuisance parameters.
Given the functional form of the transformation group corresponding to a subset of the nuisance parameters,
we could in principle calculate the corresponding manifold associated with a given object from a single
image of it. Classification based on the entire manifold leads to procedures that will be invariant to changes
induced by that group of transformations. The procedures we describe here approximate such a classification
of equivalence classes of images. They are quite general, and we expect them to be useful in the many
data analysis problems involving transformations to which classification should be invariant. Although the
procedures are general, in the remainder of the paper, we will use terms such as faces, objects, and image
classification for concreteness.

Figure 1 illustrates our intuition about equivalence classes of images. The following problems make it
difficult to build a classifier that exactly implements this intuition: (1) since these manifolds (i.e., equivalence
classes) are highly nonlinear, finding the manifold to which a new point belongs is computationally expensive
and (2) for noisy data, the computational problem is further compounded by the uncertainty in the assigned
manifold. To address these problems, we use tangents to the manifolds at selected points in image space and
model limited excursions by a random effects model with variance related to the curvature of the manifold.
Using first and second derivatives of the transformations, our procedures provide substantial improvements
to current image classification methods.

2. Structure of our model

We approach the classification problem as a problem of learning from examples. For this paper, an image
I ∈ I of an object Y ∈ Y consists of a raster of N pixels that we choose to represent by a single vector in
RN , with I ⊂ RN . We think of the examples as independent realizations from a joint distribution of images
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RN−k ∼ RN mod {invariant leaves}

Invariant leaves ∼ Rk

Example 1 of class 1
Example 2 of class 1
Example 1 of class 2

Figure 1. Equivalence classes in image space: The cartoon on the left depicts orbits gen-
erated by a k-dimensional nuisance parameter ψ. Roughly, the orbits form the leaves of a
foliation of the data subset that we are taking to be I ⊂ RN . Data points on these invariant
leaves are considered identical for the purposes of our classification. In the quotient space
(∼ RN−k) we find that points which seemed far apart in RN (but are images of the same
object) are identified, whereas points that were close in RN are distinguished — see the
three example points colored cyan, black, and blue. To implement a Bayes classifier, we
could either work in the quotient space, with class-conditional densities defined there, or
work in RN , with each class-conditional density spread uniformly over the corresponding
invariant leaf.

and objects P(I, Y ) = P(I|Y )π(Y ). Given a set of examples of images of objects {(Ii, Yi) : 1 ≤ i ≤ n}, we
want to estimate a classification rule Ŷ : I 7→ Y that assigns to each image an object identifier.

We would like to assess the performance of classification rules by the expected value of the classification
error. Given a classification rule Ŷ and a pair of values I and Y , the classification error is

(1) c(I, Y, Ŷ ) ≡

{
0 if Ŷ (I) = Y

1 otherwise ,

and its expected value is

(2) c̄(Ŷ ) ≡ E(Y,I)c(I, Y, Ŷ ) .

The Bayes classifier

Ŷ (I) = argmax
k

P(Y = k|I)(3a)

= argmax
k

P(I|Y = k)π(k)(3b)

minimizes the expected classification error and is therefore the standard against which all classification rules
are compared.

Many traditional classification procedures can be cast as Bayes classifiers for specific choices of class-
conditional probability distributions P(I|Y ). For example, if the P(I|Y ) are Gaussian distributions with
class specific means µk = EI|Yk

(I) but common within-class covariance Cw = EI|Yk
(I−µk)(I−µk)t ∀k, then



CLASSIFICATION MODULO INVARIANCE 3

for the best classifier, the decision boundaries are hyperplanes in I (see page 39 of Duda, Hart, and Stork
[3]). Departures from these model assumptions degrade the performance of the classifier. In particular, the
above assumptions do not hold for many image classification tasks. This paper presents a framework for
modeling known sources of image variability which in turn leads to better approximations of the within-
class data-generating distributions. As a result, classification rules using these distributions have smaller
classification errors.

The high dimension of the measurements in modern classification problems such as speech or image recog-
nition makes inferring statistical structure from feasibly sized training data sets difficult. A common practice
is to use principal component analysis (PCA) as a preprocessing step to reduce the effective dimensionality
of the data before applying classification algorithms. For our work on faces, we followed the default in the
code we obtained from the Colorado State University (CSU) archive [1, 2] and used 60% of the number of
training images as the number of eigenvectors to retain. This approach works well in practice.

To motivate our proposed modeling of the class-conditional probability distribution, note that images
from an object Y will vary with nuisance parameters ψ which characterize effects such as the location of the
camera, the orientation of the object, pose, lighting conditions, and facial expression. The variation leads
to a set of images that lie on a low dimensional manifold in image space through a function τ : Y ×Ψ 7→ I.
Thus, we represent the jth image of object Yi by

(4) Iij = τ(Yi, ψij) + εij ,

in which εij denotes the measurement error. As the variations along the manifold are usually not well
controlled, we shall also view ψij as a random displacement that is independent of εij . If enough images
of the same object were available, one might discover each manifold τ(Yi, ·) from data using nonparametric
estimation techniques such as local linear embedding (LLE) [7] or the ISOMAP algorithm [10]. Our data
set was not large enough for these methods.

Instead, we propose to approximate the manifolds τ(Yi, ·) by exploiting known mathematical properties
in the problem. To this end, we decompose the nuisance parameters into two components, ψ = (θ, η). We
will use analytic expressions to describe the effects of the first component, the analytic nuisance parameters,
denoted by θ. The second component, denoted by η, parameterizes variations that we will handle with a
stochastic model to be fitted to the training data. For face images, we let θ describe changes in position,
orientation, and scale of the object relative to the camera, and we imagine η being a vector of parameters
for characteristics such as lighting and the contractions of specific facial muscles. Changes in θ move images
on a submanifold τ(Yi, ·, η).

If we consider only small excursions of ψij from its mean ψ̄i ≡ (θ̄i, η̄i), we may linearize the model

τ(Yi, ψij) ≈ µi + Vi(θij − θ̄i) + Ui(ηij − η̄i)(5a)
where

µi ≡ τ(Yi, ψ̄i),(5b)

Vi ≡
∂τ(Yi, ψij)

∂θij

∣∣∣∣
ψij=ψ̄i

,(5c)

and

Ui ≡
∂τ(Yi, ψij)

∂ηij

∣∣∣∣
ψij=ψ̄i

.(5d)

Note that for each i in Eq. (5a), the derivative matrices Vi are known, whereas the derivative matrices Ui
are not. In analogy to random-effect models, we respond to ignorance about and inability to estimate the
Ui by treating them as random. Thus we group Ui(ηij − η̄i) with εij into an error term. Making the further
simplifying assumption that θij , Ui(ηij − η̄i), and εij are independent and Gaussian, yields

(6) Iij ∼ N
(
µi, ViCθ,iV

t
i + Cw

)
.

For each individual i, we calculate Cθ,i, the analytic nuisance-parameter covariance, using the techniques of
section 3, and we estimate the pooled within-class covariance Cw from the training data.
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3. Deriving model parameters from data and second-order approximations to manifolds

According to Eq. (6), the class-conditional densities are Gaussian, i.e.,

(7) P(I|Yi) =
1√

(2π)N |Ci|
exp

(
−1

2
(I − µi)tC−1

i (I − µi)
)
,

where N is the dimension of I. All that remains before we can implement a Bayes classifier, Eq. (3), is to
specify the parameter values, which we do as follows:

The class mean, µi: Use the mean of the images available for individual Yi.
The class-conditional covariance matrix Ci:

(8) Ci ≡ ViCθ,iV
t
i + Cw

The prior probabilities for the classes, π(i): For simplicity, we suppose that π(i) ∝
√
|Ci|.

The pooled within-class covariance, Cw: Fit to the training data.
Tangent to the manifold, Vi: Differentiate the function τ with respect to the analytic nuisance pa-

rameters θ and evaluate at µi (see Appendix B).
The covariance of the analytic nuisance parameters, Cθ,i: We use a formula, Eq. (17), for this

matrix that depends on the second derivative of the function τ and the within-class covariance matrix
Cw. We justify Eq. (17) in Subsection 3.1, and we explain the calculation of second derivatives in
Appendix B.

With these parameters, the Bayes classifier simply minimizes Mahalanobis distance,

Ŷ (I) = argmax
i

P(I|Y = i)π(i)(9a)

= argmin
i

(I − µi)tC−1
i (I − µi) .(9b)

3.1. Covariance of the analytic nuisance parameters. We choose Cθ for each individual Yi (we drop
the second subscript on Cθ,i) as a compromise between two contradictory goals. We want to allow large
excursions in the tangent directions, and at the same time we want to limit the error of approximating the
manifold with its tangent. Figure 2 illustrates the situation. The intuition is that in order to constrain the
distance from points on the tangent to the true manifold, the bounds on displacements along the tangent
should be inversely proportional to the second derivative. If everything were scalar, we could writeH ≡ ∂2τ(θ)

∂θ2

and

(10) σθ ∝
1
H

.

Since all of the variables are vectors, we must generalize Eq. (10). In terms of the Taylor series

τ(Y, θ) = τ(Y, 0) + V θ + θtHθ +R,

where we have set ψ̄ = 0 and

(11) Vi =
∂τ(Y, θ)
∂θi

∣∣∣∣
θ=0

and Hi,j =
∂2τ(Y, θ)
∂θi∂θj

∣∣∣∣
θ=0

,

there are two conflicting goals:
Big: We want to allow θ to be large so that we can classify images with large displacements in the

invariant directions.
Small: We want θtHθ ∈ I to be small so that the truncated Taylor series will be a good approximation.

We have assumed that the distribution of θ is Gaussian. Now we search for a resolution of these conflicting
goals in terms of a norm on Θ and the covariance of its distribution, Cθ.

If, for a particular image component d, the Hessian Hd has both a positive eigenvalue λ1 and a negative
eigenvalue λ2, then the quadratic term is zero along a direction e0 that is a linear combination of the
corresponding eigenvectors, i.e., (γe0)

t
Hd (γe0) = 0 ∀γ. We suspect that higher-order terms will contribute

to significant errors when γ ≥ min
(
|λ1|

1
2 , |λ2|

1
2

)
, so we eliminate the canceling effect by replacing Hd with
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µ1 = τ(Y1, 0)

V1θ1

Cw

τ(Y1, θ1)

V2θ2

µ2 = τ(Y2, 0)

Cw

τ(Y3, θ3)

µ3 = τ(Y3, 0)

V3θ3

Cw

τ(F2, θ2)

Figure 2. A geometric view of the model. For each class k ∈ {1, 2, 3}, the black dot
labeled µk represents the class mean, the blue curve labeled τ(Yk, θk) represents the manifold
generated by the analytic nuisance parameters, the red line labeled Vkθk represents the
tangent to the manifold at µk, and the green ellipse labeled Cw represents level sets of
(I − µk)tC−1

w (I − µk). To obtain class-specific covariance matrices Ck, we augment the
pooled covariance with a term whose direction is given by the tangent to the manifold and
whose magnitude is proportional to the inverse of the curvature of the manifold.

the positive square root of (HdHd), i.e., if an eigenvalue λ of Hd is negative, replace it with −λ. This suggests
the following mean root square norm

(12) |θ|Hmrs
≡

√√√√ N∑
d=1

θt
√
HdHd θ .

The last modification we make to the norm addresses the following objection. The norm of Eq. (12) would
suppress useful parameter excursions in any direction d for which Hd was large, even if that direction were
unimportant for recognition. For example, this effect would suppress horizontal shifts of a face image if the
background had vertical stripes with sharp edges. Our modification uses the eigenvalues, λd, of the pooled
within-class covariance matrix Cw to quantify the importance each component of an image. We suppose
that larger values of λd correspond to directions that are less important for recognition. If there is a large
within-class variance in the direction of component d, we allow large parameter excursions in that direction
even if they cause large errors in that component.

Using the eigen-decomposition
Cw =

∑
d

λdede
t
d

we break the dim(Θ)× dim(I)× dim(Θ) tensor H into components

(13) Hd ≡ etdH .

For each component, we define the dim(Θ)× dim(Θ) matrix

(14) H+
d ≡

√
HdHd ,

and take the average to get

(15) H̄ ≡
∑
d

H+
d λ

− 1
2

d .

Then we define the norm
|θ|H̄ ≡

√
θtH̄θ.
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Given H and Cw, one can calculate H̄ using Eqs. (13), (14), and (15). Then by using the determinant
|Cθ| to quantify goal Big: (allow θ to be large) and using E (|θ|H̄)2 to quantify goal Small: (keep θtHθ ∈ I
small), we get the constrained optimization problem:

Maximize: the determinant |Cθ|
Subject to:

(16) E (|θ|H̄)2 ≤ γ ,

where γ is a constant.
The solution to the problem is

(17) Cθ = α
(
H̄

)−1
,

where α, which is a function of γ, is a constant that balances the competing goals.
To verify that Eq. (17) indeed solves the optimization problem, note the following:

E (|θ|H̄)2 = E

∑
i,j

θiH̄i,jθj


=

∑
i,j

H̄i,jE (θiθj)

= Tr
(
H̄Cθ

)
.

In the coordinates that diagonalize H̄, Eq. (16) only constrains the diagonal entries of Cθ. Of the symmetric
positive definite matrices with specific diagonal entries, the matrix that has the largest determinant is simply
diagonal. So Cθ and H̄ must be simultaneously diagonalizable, and the problem reduces to

Maximize:
dim(Θ)∏
i=1

σi

Subject to:
dim(Θ)∑
i=1

σihi = γ .

The Lagrange multiplier method yields Eq. (17).

Summary. Given a new image I, we estimate its class with

Ŷ (I) ≡ argmin
k

(I − µk)tC−1
k (I − µk) ,

where Eq. (8) gives Ck in terms of Cθ,k which in turn is given by Eq. (17). We have derived the parameters
of this classifier by synthesizing statistics from training data with analytic knowledge about transformations
we wish to ignore.

4. Application to Face Recognition

We tested our techniques by applying them to a face recognition task and found that they reduce the
error rate by more than 20% (from an error rate of 26.7% to an error rate of 20.6%). We used an analytic
expression for transformations in image space and developed procedures for evaluating first and second
derivatives of the transformations. The transformations have the following five degrees of freedom:

• Horizontal translation
• Vertical translation
• Horizontal scaling
• Vertical scaling
• Rotation

To implement the test, we relied on the FERET data set [6] and a source code package from Beveridge et
al. [1, 2] at CSU for evaluating face recognition algorithms.
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4.1. The test task. Version 4.0 (October 2002) of the CSU package contains source code that implements
13 different face recognition algorithms, scripts for applying those algorithms to images from the FERET
data set, and source code for Monte Carlo studies of the distribution of the performance of the recognition
algorithms. For each algorithm tested, the CSU evaluation procedure reports a distribution of performance
levels. The specific task is defined in terms of a single probe image and a gallery of NG images. The images
in the gallery are photographs of NG distinct individuals. The gallery contains a single target image, which
is another photograph of the individual represented in the probe image. Using distances reported by the
algorithm under test, the evaluation procedure sorts the gallery into a list, placing the target image as close
to the top as it can. The algorithm scores a success at rank n if the target is in the first n entries of the
sorted list. The CSU evaluation procedure randomly selects NG × 10, 000 gallery-probe pairs and reports
the distribution of successful recognition rates as a function of rank. By applying the evaluation procedure
to two of the recognition algorithms distributed by CSU, we produced Fig. 3.
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Figure 3. Recognition rate versus rank for two face recognition algorithms: Linear discrim-
inant analysis with correlation distance (LDA Correlation) and principal component analysis
with Euclidean distance (PCA Euclidean). For detailed descriptions of these recognition al-
gorithms see [1, 2]. Of the recognition algorithms in the CSU package, linear discriminant
analysis with correlation distance has the best recognition rate and principal component
analysis with Euclidean distance has the worst recognition rate. For each algorithm, esti-
mates of the mean recognition rate and a 95% confidence interval appear.

Restricting the test data set to those images in the FERET data that satisfy the following criteria:
• Coordinates of the eyes have been measured and are part of the FERET data.
• There are at least four images of each individual.
• The photographs of each individual were taken on at least two separate occasions.

yields a set of 640 images consisting of 4 images each of 160 individuals. Thus we use NG = 160. Of the
remaining images for which eye coordinates are given, we used a training set of 591 images consisting of 3
images per individual for 197 individuals. The testing and training images were uniformly preprocessed by
code from the CSU package. In [1] the authors describe the preprocessing as,

“All our FERET imagery has been preprocessed using code originally developed at NIST
and used in the FERET evaluations. We have taken this code and converted it . . .

Spatial normalization rotates, translates and scales the images so that the eyes are placed
at fixed points in the imagery based on a ground truth file of eye coordinates supplied with
the FERET data. The images are cropped to a standard size, 150 by 130 pixels. The NIST
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code also masks out pixels not lying within an oval shaped face region and scales the pixel
data range of each image within the face region. In the source imagery, grey level values
are integers in the range 0 to 255. These pixel values are first histogram equalized and then
shifted and scaled such that the mean value of all pixels in the face region is zero and the
standard deviation is one.”

Each recognition algorithm calculates subspaces and fits parameters using the preprocessed training images
and knowledge of the identity of the individuals in the images. Then, using those parameters, each algorithm
constructs a matrix consisting of the distances between each pair of images in the testing set of 640 images.
Thus, in the training phase, one can calculate the mean image, µi, of an individual, but in the testing phase,
the algorithm has no information about the identity of the individuals in the images. Distributions for the
Rank 1 recognition performance of 13 algorithms distributed in the CSU package appear in Fig. 4. Following
Turk and Pentland [11], all of the CSU algorithms use principal component analysis as a first step. Those
with the best recognition rates also follow Zhao et al. [12] and use a discriminant analysis.

PCA Euclidean

LDA ldaSoft

PCA Correlation

PCA Covariance

LDA Maha Angle

LDA Cityblock

PCA Cityblock

Bayesian MAP

LDA Euclidean

Bayesian ML

PCA Maha Angle
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Figure 4. Approximate distributions for the Rank 1 recognition performance of thirteen
algorithms. For each algorithm, a Gaussian is plotted with a mean and variance estimated
by a Monte-Carlo study — the key lists the algorithms in order of decreasing mean. Code
for both the recognition algorithms and the Monte-Carlo study came from Beveridge et al.
of Colorado State University [2].

4.2. Modifications to our approach. We developed three recognition algorithms for the test task of
Subsection 4.1. The first consists of the general techniques of Section 3 combined with minor modifications
to fit the test task. In Section 3 we supposed that we would have several examples of each class, making an
estimate of each class mean µk plausible, but for the task defined by the CSU evaluation procedure, we must
simply provide 640×640 interimage distances. We developed the second two algorithms after observing that
the CSU algorithms based on angular distance perform best (see Fig. 4).

Each of our algorithms operates in a subspace learned from the training data and uses an estimated
covariance,

Ck = Cw + αVkH̄
−1
k V tk ,
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associated with each image Ik (see Eq. (8)). While the details of our estimation of Ck for each test image
appear in Appendix A, we list the key ideas here:

• Use the training data (which includes image identities) to calculate raw within-class sample co-
variances, C̃w. Regularize the raw covariances as follows: (1) Do an eigen-decomposition to find
C̃w = QΛ̃Qt. (2) Sum the eigenvalues, S =

∑
i λ̃i. (3) Using a small parameter δ, put a floor on the

regularized eigenvalues, λi = λ̃i + δS. (4) Multiply to get the estimated matrix Cw = QΛQt, which
has no eigenvalues less than δS.

• Conceptually convolve the test image with a Gaussian kernel that has mean zero and variance[(
h−1

8

)2
0

0
(
h−1

8

)2

]
,

where h is an adjustable parameter in the code that must be an odd integer. Change variables to
transfer differentiation from the image to the kernel. Evaluate the matrices Vk and H̄k (see Eqs. (11)
and (17)) by convolving (using FFT methods) differentiated kernels with the image.

Thus α, δ, and h are three adjustable parameters in the estimate of Ck.
Given two images, I1 and I2, our three algorithms report the following three distances:

• Symmetrization of Original Idea

(18) D1(I1, I2) = (I1 − I2)t
(
C−1

1 + C−1
2

)
(I1 − I2)

• Mahalanobis Angle then Symmetrize

(19) D2(I1, I2) = 2− It1C
−1
1 I2√(

It1C
−1
1 I1

) (
It2C

−1
1 I2

) − It1C
−1
2 I2√(

It1C
−1
2 I1

) (
It2C

−1
2 I2

)
• Symmetrize Covariance then Mahalanobis Angle

D3(I1, I2) = 1− It1AI2√
(It1AI1) (It2AI2)

,(20)

where A = (C1 + C2)
−1

Evaluating each of the first two distances on the test set of 640 images takes about 30 minutes on a
2.2 GHz Pentium III. We found that the second distance performed better than the first. Because we
estimated that evaluating the third distance would take about 160 hours, we instead implemented a hybrid
of D2 and D3, with the idea of using the faster D2 to identify a subgroup of images that probably contains
the match and then applying D3 to that subgroup to make better guesses. In more detail, we do the following
steps.

(1) For all image pairs calculate D2(Ii, Ij).
(2) If D2(Ii, Ij) is less than a threshold ε, calculate D3(Ii, Ij).
(3) Find a scaling factor s such that if D2(Ii, Ij) ≥ ε, then s ·D2(Ii, Ij) > D3(Ik, Il) ∀(k, l).
(4) For all pairs (i, j) report the following:

(21) D̃3 =

{
D3(Ii, Ij) if D2(Ii, Ij) < ε

s ·D2(Ii, Ij) otherwise
.

The idea of the hybrid is that the key to better Rank 1 recognition is doing well with images that are close
to each other. There are 205, 120 = (640)(640+1)

2 interimage distances, but of those, only 1, 600 = 160 · (4)(4+1)
2

are distances between images of the same individual. The parametric plot in Fig. 5 indicates that there is a
value of ε for which 75% of the 1,600 within-class distances will be calculated using D3(Ii, Ij) while 98.7%
of all interimage distances will be calculated using only D2.
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Figure 5. A parametric plot, with independent parameter ε, comparing the fraction of all
distances less than ε in the distance matrix against the fraction of distances less than ε that
correspond to within-class distances. We used a value of ε that is greater than 75% of all
within-class distances and less than 98.7% of all distances.

4.3. Results. We are pleased that, as depicted in Fig. 6, each of our algorithms performs better than all
of the algorithms in the CSU package. The figure displays results for the following algorithms (in order of
Rank 1 performance):

D̃3: The hybrid defined in Eq. (21) that uses symmetrized covariance and then Mahalanobis angle for
fine distinctions. The parameter values were set as follows: α (which balances second-order errors
with extent of tangent approximation) set to 100, δ (which characterizes the regularization of the
estimated within-class covariance matrix) set to 0.0003, and h (the width of the kernel used for
calculating derivatives) set to 11.

D2: Mahalanobis angle then symmetrize, defined in Eq. (19). Parameters α, δ, and h set as for D̃3.
D2(α = 0): The same as D2 above, except that α = 0. Note that this simple algorithm, which does

not use any tangent information, outperforms D1 and all of the algorithms in the CSU package.
D1: Symmetrization of the ideas described in Section 3, defined in Eq. (18). Parameters α, δ, and h

set as for D̃3. We are surprised that the angular distance algorithms are better than this one.
Linear discriminant analysis (LDA) Correlation: Fisher LDA followed by a correlation measure

of distance. This is the best of the algorithms in the CSU package.

In choosing parameters and subspaces, we either followed the CSU defaults or optimized performance of
D2 on the test set. For the initial PCA projection, the CSU default is to retain 60% of the degrees of freedom.
Thus, if the principal component analysis starts with N images and N is less than the number of pixels in
each image, then the dimension of the retained subspace is 0.6(N − 1). Since we used 591 training images,
we projected to a PCA subspace of dimension 354. The singular value decomposition (SVD) spectrum of
the preprocessed training images appears in Fig. 7.

Figure 8 describes the sensitivity of the Rank 1 recognition rate for D2 to changes in the adjustable
parameters in our estimates of Ck for each image Ik. Level sets of recognition rate are roughly elliptical
in the (h, log(δ)) planes at fixed α values, and they extend indefinitely in the positive α direction. This
indefinite extent suggests that rather than carefully choosing Cθ in terms of H̄ with all of the discussion
in Section 3, we could obtain the same performance by simply projecting out the directions tangent to the
invariant transformations. We believe that this curious result follows from the data being so sparse that the
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Figure 6. The mean recognition rate and 95% confidence intervals as a function of rank
for the following algorithms: D̃3 (the hybrid algorithm); D2 (Mahalanobis angle then sym-
metrize); D2(α = 0) (D2 with α set to 0, which uses the pooled within-class covariance,
Cw, but no tangent information); D1 (symmetrization of original idea); and the best of
the algorithms in the CSU package (linear discriminant analysis, LDA, with a correlation
measure of distance).
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Figure 7. The singular spectrum of the training data. Following the CSU default, we use
a projection that retains the first 354 directions (the cut-off point is indicated on the plot).

tangent spaces at each image do not include or even come close to other images and that for denser data
sets, finite values of α would be optimal.

On the basis of the plots in Fig. 8, we chose the values α = 100, h = 11, and δ = 0.0003. We chose
values of α and h that yielded slightly suboptimal performance because of a prejudice for smaller α values
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Figure 8. Dependence of the Rank 1 recognition rate for D2 on α, h, and δ. Recall that
α balances control of second-order errors with the ability to accommodate large excursions
on the invariant manifolds, h is the width of the smoothing kernel used in calculating
derivatives, and δ is the parameter that characterizes the regularization of the within-class
covariance matrix, Cw. In the upper plot, h = 11, and in the lower plot, α = 100.

and because the algorithms run faster with smaller h values. The flatness of the plots in Fig. 8 suggests
that if we had chosen the parameter values on the basis of performance on a set of training images that our
performance on the test set would not change much.

The 354× 354 within-class covariance matrix Cw has 62,385 degrees of freedom, and we estimate it using
591 images of 197 individuals, i.e., 394 degrees of freedom. We are surprised that the optimal regularization
is not more severe. Figure 9 illustrates the magnitude of the regularization that we used.
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Figure 9. Plots of the eigenvalue spectrum of the within-class covariance before and after
regularization (C̃w and Cw respectively).

5. Conclusions

We have presented techniques for constructing classifiers that combine statistical information from training
data with tangent approximations to known transformations, and we have demonstrated the techniques by
applying them to a face recognition task. Our techniques improve on the work of Simard et al. by using a
curvature term to control approximation errors. For the face recognition task we used a five parameter group
of invariant transformations consisting of rotation, shifts, and scalings. On the face test case, a classifier
based on our techniques has an error rate more than 20% lower than that of the best algorithm in a reference
software distribution.

The improvement we obtained is surprising because our techniques handle rotation, shifts, and scalings,
but we also preprocessed the FERET data with a program from CSU that centers, rotates, and scales each
image based on measured eye coordinates. While our techniques may compensate for errors in the measured
eye coordinates or weaknesses in the preprocessing algorithms, we suspect that much of the improvement is
due to similarities between the transformations we handle and differences between images. For example, a
smile is probably something like a dilation in the horizontal direction.

We expect competitive results on other data classification tasks such as the recognition of near field sonar
signatures perturbed by time varying Doppler shifts, the removal of atmospheric haze from hyperspectral
data and compensation for channel characteristics in speaker identification.

Appendix A. Algorithm

In describing the algorithms, when we refer to our example, we mean the face recognition work described
in Section 4.

A.1. Algorithm training.
1: Compute the mean of the training images Xi, i ∈ {1, ..., NTr} (for our example NTr = 591.)

µ ≡ 1
NTr

NTr∑
i=1

Xi

2: Compute the SVD of the matrix whose columns are the training images with mean removed:

[U, S,W ] = SVD(X̂) ,
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where
X̂ ≡ [X̂1, ..., X̂NTr ] = [X1 − µ, ...,XNTr − µ]

and S is diagonal, and we have that X̂ = USW t.
3: Pick Nproj, the reduced dimension, by simply setting Nproj = b.6NTrc. Now create the corresponding

projection matrix P:
P = [W1W2...WNproj ]

t

4: Define Xi,k to be the ith instance of the kth individual: this is simply a re-labeling of the NTr

training images. Define Nk to be the number of instances of the kth individual. For each individual
k, compute the mean µk, by

µk ≡
1
Nk

Nk∑
i=1

Xi,k

and use this to create the reduced (dimensional) population, Xi,k defined by:

R̂i,k ≡ PX̂i,k = PXi,k −Pµk.

Note that we are working in the reduced dimensional description space now.
5: Compute the within-class covariance:

C̃w =
1
NTr

R̂R̂t ,

where R̂ is the matrix with columns R̂i,k defined in the previous step.
6: Compute the eigenvalue decomposition of C̃w:

C̃wΛ̃ = Λ̃E ,

where E is the matrix whose columns ek are the eigenvectors of C̃w and Λ̃ = {λ̃k}NTr
1 is the vector

of eigenvalues of C̃w.
7: Regularize C̃w. Set Λ = Λ̃ + δSI, where S =

∑
k λ̃k and I is the vector of 1s the same length as Λ̃

for our example we set δ = 0.0003. Now define Cw ≡ EΛEt.

A.2. Algorithm testing.
1: For each image Zk, 1 ≤ k ≤ NTe in the test set (for our example, NTe = 640), compute the

derivatives Vk and the Hessian matrix H̄k:

Ck ≡ Cw + αPVkH̄kV
t
kP

t ,

where

H̄k =
∑
d

√
HdHd

λd
,

where
√
A is the principal square root of the matrix A and

H̄d ≡ H(P ted, ·, ·) ,
where H(P ted, ·, ·) is the matrix that results from applying the projected second derivative tensor
to the dth eigenvector of Cw and λd is the eigenvalue corresponding to the dth eigenvector (see
Eq. (14)).

2: Remove the mean from the test images, project

Îk = PZk − Pµ

and compute the distance matrix D′ with {i, j}th component. For example, in the case of D1 (see
Eq. (18)), we calculate

d
′

i,j = (Îi − Îj)tC−1
i (Îi − Îj) for 1 ≤ i, j ≤ NTe .
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3: Symmetrize the resulting matrix D′ to get D:

D ≡ 1
2

(
D′ +D′t) .

4: Do the permutation experiments to obtain the histograms and rank curves by a re-sampling of the
distances in the matrix D computed in the previous step.

A.3. Algorithm summary. The algorithm uses training data to select the reduced dimensional description
of the data (training and test data). The training data are also used to generate the first global metric which
is then modified locally through computations performed on the test data to yield a locally varying metric
which is used to generate a distance matrix which contains all the pairwise distances between all pairs of the
test data.

Appendix B. Derivatives

In this appendix we give explicit formulas for the calculation of tangents and second-derivative tensors
for the five-parameter transformation that we used in our example. The action of any particular element of
this five-parameter transformation produces another image of the same individual. We represent this action
as

I → τ(θ)I ,

where we have that θ ≡ {θi}5
1 and

τ(0)I = I.

If we define

Ĩθ(x, y) ≡
∫

(τ(θ)I)(u, v)K(x− u, y − v) dudv ,

then we can express the tangents we are interested in as

Dθi
I ≡ lim

ε→0
∆θi,εI ,

where

∆θi,εI ≡
1
||ε||

(
Ĩθ=ε(x, y)− Ĩθ=0(x, y)

)
,

where ε = {εj}5
1 = εδij .

B.1. Our Five-Parameter Group. Essentially, the game is to transfer the derivatives to the kernels,
thereby obtaining a new kernel whose convolution with the image generates the desired tangent vector
(image).

B.1.1. Translation. We will let θ1 and θ2 be the parameters that translate the image in the x and y directions
respectively. Then we find that, after a change of variables,

∆θ1,εI =
1
|θ1|

∫
I(u+ θ1, v)K(x− u, y − v)− I(u, v)K(x− u, y − v)dudv

=
1
|θ1|

∫
I(u, v) (K(x− u+ θ1, y − v)−K(x− u, y − v)) dudv

∆θ2,εI =
1
|θ2|

∫
I(u, v + θ2)K(x− u, y − v)− I(u, v)K(x− u, y − v)dudv

=
1
|θ2|

∫
I(u, v) (K(x− u, y − v + θ2)−K(x− u, y − v)) dudv .



16 FRASER, HENGARTNER, VIXIE, AND WOHLBERG

B.1.2. Scaling. We let 1 + θ3 and 1 + θ4 be the parameters that scale the x and y directions respectively.

∆θ3,εI =
1
|θ3|

∫
I(

u

1 + θ3
, v)K(x− u, y − v)− I(u, v)K(x− u, y − v)dudv

=
1
|θ3|

∫
I(u, v) ((1 + θ3)K(x−u−θ3u, y − v)−K(x− u, y − v)) dudv

∆θ4,εI =
1
|θ4|

∫
I(u,

v

1 + θ4
)K(x− u, y − v)− I(u, v)K(x− u, y − v)dudv

=
1
|θ4|

∫
I(u, v) ((1 + θ4)K(x− u, y−v−θ4v)−K(x− u, y − v)) dudv

B.1.3. Rotation. If we let θ5 be the angle of rotation around the origin u = 0, v = 0, then we find that

∆θ5,εI =
1
|θ5|

∫
I(c5u+s5v,−s5u+c5v)K(x−u, y−v)−I(u, v)K(x−u, y−v)dudv

=
1
|θ3|

∫
I(u, v) (K(x− c5u+s5v, y − s5u−c5v)−K(x−u, y−v)) dudv .

where c5 and s5 are cos(θ5) and sin(θ5) respectively.

B.2. The kernel. Combining the results above to first order in the θis, we get the combined kernel

(1 + θ3)(1 + θ4)K(x− u+ θ1 − θ3u+ θ5v, y − v + θ2 − θ4v − θ5u) ,

which is valid for the calculation of first derivatives (only).

B.3. The derivatives. Taking the limit as the θis go to 0, we get

Kθ1 = K1

Kθ2 = K2

Kθ3 = K − uK1

Kθ4 = K − vK2

Kθ5 = vK1 − uK2 .

B.4. Second-order terms. For the calculations of the second derivatives independent of order, we need the
transformations to commute. Since they do not, we form a specific composition which we can then differen-
tiate twice to get the second order term (the Hessian tensor). We consider the five-parameter transformation
formed by first rotating, then scaling, then translating. We get

(1 + θ3 + θ4 + θ3θ4)K( x− u+ θ1 − θ3u+ θ5v + θ1θ3 − θ2θ5 + θ5θ4v +
θ25
2
u,

y − v + θ2 − θ4v − θ5u+ θ2θ4 + θ1θ5 − θ5θ3u+
θ25
2
v) ,

which we can write as

p1(θ)K(x− u+ p2(θ, u, v), y − v + p3(θ, u, v)) ,

which can now be differentiated twice to get the kernels that give the components of the second derivative
tensor.
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B.5. The terms. Taking the second derivatives and evaluating at θ = 0, we get

Kθ1,θ1 = K1,1

Kθ1,θ2 = K1,2

Kθ1,θ3 = 2K1 − uK1,1

Kθ1,θ4 = K1 − vK1,2

Kθ1,θ5 = K2 + vK1,1 − uK1,2

Kθ2,θ2 = K2,2

Kθ2,θ3 = K2 − uK2,1

Kθ2,θ4 = 2K2 − vK2,2

Kθ2,θ5 = −K1 + vK2,1 − uK2,2

Kθ3,θ3 = −2uK1 + u2K1,1

Kθ3,θ4 = K − uK1 − vK2 + uvK1,2

Kθ3,θ5 = vK1 − uK2 − uvK1,1 + u2K1,2

Kθ4,θ4 = −2vK2 + v2K2,2

Kθ4,θ5 = vK1 − uK2 + (uv − v2)K1,2 + uvK2,2

Kθ5,θ5 = uK1 + vK2 + v2K1,1 − 2uvK1,2 + u2K2,2 .

B.6. Calculation of K1,K2,K1,1,K1,2, and K2,2. If we use a Gaussian kernel

K(s, t) ≡ 1
2πσ2

exp(−(s2 + t2)/2σ2) ,

we get

K1 = Ks = − 1
2πσ4

s exp(−(s2 + t2)/2σ2)

K2 = Kt = − 1
2πσ4

t exp(−(s2 + t2)/2σ2)

K1,1 = Ks,s = − 1
2πσ4

exp(−(s2 + t2)/2σ2) +
1

2πσ6
s2 exp(−(s2 + t2)/2σ2)

K1,2 = Ks,t =
1

2πσ6
st exp(−(s2 + t2)/2σ2)

K2,2 = Kt,t = − 1
2πσ4

exp(−(s2 + t2)/2σ2) +
1

2πσ6
t2 exp(−(s2 + t2)/2σ2) .

B.7. Example convolution. Finally, we may put the results above together to get any derivative by
convolution in the following way. As an example, we compute the entry of the second derivative tensor
corresponding to the kernel Kθ3,θ5 . Remark: Note that even though the kernels are not shift invariant, we
can still use FFTs to do the convolution by moving some terms in the kernel over to the image (effectively
premultiplying the image by some function – in our case, polynomial terms).
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Dθ3,θ4I =
∫
I(u, v)(K(x− u, y − v)− uK1(x− u, y − v)

−vK2(x− u, y − v) + uvK1,2(x− u, y − v))dudv

=
∫
I(u, v)K(x− u, y − v)dudv

+
∫

(−uI(u, v))K1(x− u, y − v)dudv

+
∫

(−vI(u, v))K2(x− u, y − v)dudv

+
∫

(uvI(u, v))K1,2(x− u, y − v)dudv

=
∫
I(u, v)

1
2πσ2

exp(−((x− u)2 + (y − v)2)/2σ2)dudv

+
∫

(uI(u, v))
1

2πσ4
(x− u) exp(−((x− u)2 + (y − v)2)/2σ2)dudv

+
∫

(vI(u, v))
1

2πσ4
(y − v) exp(−((x− u)2 + (y − v)2)/2σ2)dudv

+
∫

(uvI(u, v))
1

2πσ6
(x− u)(y − v) exp(−((x− u)2 + (y − v)2)/2σ2)dudv

Figure 10. Depicted in this figure: left most we see a smoothed figure, center the figure
shifted up with the first order approximation to the shift and on the right, the shift including
the first and second order terms. The shifted figures are visibly, though slightly, higher, with
the second order correction slightly higher than the first order shift. The figure is 300 by
300 pixels and the shift is 12 pixels.

B.8. Example Application of first and second order terms.
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