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Abstract

The DC and Nyquist responses of the filters in a two-channel perfect reconstruction filter
bank are expressed in terms of the lifting filters in a lifting decomposition. The computation
makes use of the cascade-form representation of lifting steps as lower- and upper-triangular
factor matrices in the polyphase-with-advance representation. A functional relationship is
derived connecting the DC and Nyquist responses via the polyphase determinant, and it is
shown that the responses for a lifted filter bank can be computed recursively using the DC
responses of the lifting filters. These results are applied to derive the filter bank normaliza-
tion specifications in Part 2 of the ISO/IEC JPEG 2000 still image coding standard.

Key words: Filter bank, wavelet, polyphase, lifting, JPEG 2000.

1 Corresponding author. E-mail address: brislawn@lanl.gov; office: (1) 505 665 1165;
FAX: (1) 505 665 5220.
2 Los Alamos National Laboratory is operated by Los Alamos National Security LLC for
the U.S. Department of Energy.

Preprint submitted to Elsevier Science 16 November 2006



1 Introduction

The filter banks considered in this paper have the form of Figure 1; see [1–5]. This
direct-form representation is equivalent to thepolyphase-with-advance representa-
tion in Figure 2 [6,7]. We study a cascade decomposition of these polyphase matri-
ces known as thelifting factorization[8,6]. As proven in [6], lifting is a universal
representation for two-channel finite impulse response (FIR) perfect reconstruction
filter banks. Figure 3 shows a lifting decomposition of an analysis filter bank with
two cascaded lifting filters,S0(z) andS1(z). Thescaling factor, K, specifies a gain
normalization of the channels.

Since lifting is a universal representation, arbitrary filter banks can be specified
in terms of a lifting factorization; i.e., a sequence of lifting filters,Si(z). When a
filter bank is defined in this way, the DC and Nyquist responses are determined
by the lifting filters and the scaling factor,K. Thus, any effort to scale the channel
gains must compute the contribution attributable to the lifting filters. This paper
derives a method of performing such a calculation via a recursion on the lifting
filters, without requiring conversion of the lifting representation into the direct-
form representation of Figure 1.

1.1 Motivation and Outline of the Paper

The need for such analysis arose during the authors’ involvement in the ISO/IEC
JPEG 2000 still image coding standard. While JPEG 2000 Part 1 (the “Baseline”
standard) [9] only provides two predefined filter banks, users may specify arbitrary
two-channel FIR filter banks in JPEG 2000 Part 2 (Extensions) [10] (henceforth
just “Part 2”). Part 2 enables this by providing syntax for compressed codestreams
that allows users to signal the lifting parameters of a custom filter bank.

To simplify the specification of quantization and entropy coding, however, gain
normalization is not left up to the user, and the standard specifies normalization
requirements that filter banks must satisfy in JPEG 2000 codestreams. These re-
quirements, which total less than one page of content in Part 2 [10], are not derived
or explained in the standard and are extremely cryptic as written. Our goal in the
present paper is to construct a lifting-domain approach to calculating a filter bank’s
DC and Nyquist responses that can be applied to deriving and explaining the nor-
malization specifications in JPEG 2000 Part 2. Gain normalization is a fundamental
part of digital filtering, and this paper should also be of benefit to anyone develop-
ing other signal processing applications using lifted filter banks.

Readers desiring more background on JPEG 2000 are referred to [11–16]. A great
deal of useful material on filter banks and lifting is provided in the book of Taub-
man and Marcellin [16], but that volume principally addresses JPEG 2000 Part 1,
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and Part 2 extensions are only mentioned briefly. In particular, the normalization
specifications for Part 2 user-defined filter banks are not covered in [16].

The outline of the paper is as follows. In the next subsection we summarize a few
results from the polyphase-with-advance theory; readers who desire a more thor-
ough treatment are directed to [7]. Section 2 explores the relationship between the
DC and Nyquist responses in a perfect reconstruction filter bank and derives recur-
sive formulas for filter responses in terms of the DC responses of the lifting filters,
without requiring conversion to a direct-form representation. Section 3 reveals the
functional intent of the JPEG 2000 filter bank normalization requirements and ex-
presses them in terms of a recursive formula for lowpass DC response.

1.2 The Polyphase-with-Advance Representation

The relationship between the lowpass and highpass analysis filters,H0(z) andH1(z),
in Figure 1 and the filter elements in the polyphase analysis matrix,Ha(z), in Fig-
ure 2 can be stated succinctly in matrix-vector arithmetic. Using an underscore to
denote vectors, the relationship, which is derived in [7, Formula (9)], can be written

H(z) ≡

H0(z)

H1(z)

 = Ha(z
2)

1z
 . (1)

Figure 2 is an FIR filter bank with FIR inverse if and only if detHa(z) = az−d for
somea , 0, d ∈ Z. In [6], Daubechies and Sweldens simplify this condition, for
the sake of defining lifting factorizations, by assuming thata = 1 andd = 0:

detHa(z) = 1 . (2)

They prove that any FIR filter bank satisfying (2) has alifting factorization,

Ha(z) = diag(1/K, K) SNLS−1(z) · · ·S1(z) S0(z) , (3)

where the lifting matrices,Si(z), are upper- or lower-triangular with ones on the
diagonal and a lifting filter,Si(z), in the off-diagonal position.NLS denotes the
number of lifting steps. The scaling factor,K, constitutes a single degree of freedom
that can be adjusted to redistribute gain between the lowpass and highpass channels.
Note that (2), together with the upper- and lower-triangular structure of the lifting
matrices, forces the scaling matrix, diag(1/K, K), to have a determinant of 1.

The update characteristic, m0, of the first lifting step in Figure 3 is defined as
“lowpass” (coded with a zero:m0 = 0). Similarly, the update characteristic,m1,
of the next lifting step is “highpass” (m1 = 1). Because the update characteristic
of successive steps alternates, it is only necessary to transmit to the decoder the
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update characteristic,minit , of the initial synthesis lifting step, which is the same as
the update characteristic of thelast analysis lifting step,SNLS−1(z).

Figure 4 is areversiblefilter bank implementation: the rounding function,R, in each
lifting step implies that Figure 4 maps integer input to integer subbands. More-
over, the impulse response coefficients of the lifting filters in a reversible system
are restricted to dyadic rationals. This means that a reversible system is capable of
bit-perfect reconstruction of integer signals in fixed-precision arithmetic, which en-
ables lossless subband coding. The system in Figure 3 is referred to asirreversible
to emphasize that it is not immune to roundoff error or other finite-precision effects;
irreversible filter banks are only mathematically invertible in “perfect” arithmetic.

2 Calculation of Responses for Lifted Filter Banks

When designing a digital filter, one degree of freedom is usually regarded as trivial;
e.g., the DC response,H0(1), of a lowpass filter, or the Nyquist response,H1(−1),
of a highpass filter. In the case of filterbankssatisfying (2), one degree of freedom
is consumed by normalizing the polyphase determinant. This means we cannot fur-
ther normalize both the lowpass DC response and the highpass Nyquist response
without using up a nontrivial degree of freedom. In this section we derive the re-
lationship between the DC and Nyquist responses in a perfect reconstruction filter
bank and express the lowpass DC response explicitly in terms of lifting filters.

2.1 Relationship Between DC and Nyquist Responses

Formula (1) allows us to represent both the DC and Nyquist responses for the filter
bank by a single matrix equation,H0(1) H0(−1)

H1(1) H1(−1)

 =
Ha00(1) Ha01(1)

Ha10(1) Ha11(1)


1 1

1 −1

 . (4)

Taking the determinant of both sides of (4) gives

H0(1)H1(−1)− H1(1)H0(−1) = −2 detHa(1) . (5)

(This equation is also derived, by somewhat different methods and in different no-
tation, in [16, Section 6.1.3].) If the filter bank satisfies one or more vanishing
moment conditions (e.g., if it is a wavelet filter bank), then the second term on the
left-hand side of (5) vanishes,H1(1)H0(−1) = 0, leaving a relationship connecting
the lowpass DC response and the highpass Nyquist response:

H0(1)H1(−1) = −2 detHa(1) . (6)
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If, in addition, detHa(z) = 1 andH0(1) = 1, then the highpass Nyquist response is

H1(−1) = −2 . (7)

In practice, systems like JPEG 2000 that use multiresolution filter bank cascades
usually use wavelet filter banks because the regularity of the analog wavelet in-
fluences the properties of the cascaded filter bank. There are also approximation-
theoretic reasons for using filter banks corresponding to wavelets with a couple of
vanishing moments in source coding applications. If, for some reason, an applica-
tion employs a filter bank that doesnot satisfy any vanishing moment conditions,
then the second term in (5) will not be zero andH1(−1) will generally not equal−2.

2.2 Calculation of DC and Nyquist Responses

Assume a filter bank is specified by lifting matrices,Si(z). We compute the contri-
bution to the DC and Nyquist responses made by the lifting filters; in Section 3 we
adjust the scaling factor,K, to achieve a desired lowpass DC response. Note that
these formulas and the gains computed from the direct-form impulse responses are
only equivalent in perfect arithmetic; i.e., without regard for finite-precision effects.
Let E(z) denote theunnormalizedcascade of lifting steps,

E(z) ≡ SNLS−1(z) · · ·S1(z)S0(z) ,

and letE(n)(z) denote thenth partial product:

E(n)(z) = Sn(z) · · ·S0(z) for n = 0, . . . ,NLS − 1.

The vector of corresponding lowpass and highpass scalar filters is given by (1):

E
(n)
0 (z)

E(n)
1 (z)

 ≡ E(n)(z) = Sn(z
2) · · ·S0(z

2)

1z


= Sn(z
2) E(n−1)(z) . (8)

Using (8), the DC responses can be built from the lifting steps via the recursion

E(n)(1) = Sn(1)E(n−1)(1) for n = 0, . . . ,NLS − 1, where (9)

E(−1)(1) ≡

11
 .

Similarly, the vector of Nyquist responses is given by the recursion

E(n)(−1) = Sn(1)E(n−1)(−1) for n = 0, . . . ,NLS − 1, where (10)
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E(−1)(−1) ≡

 1

−1

 .
These formulas raise an interesting asymmetry between the DC and Nyquist re-
sponses of the lifting filters. By (4), both the DC and Nyquist responses of the anal-
ysis filters,H0(z) andH1(z), are determined by the DC responses of the polyphase
filters, Hai j (1), while (9) and (10) show that the DC and Nyquist responses of the
analysis filters are also determined by the DC responses of the lifting filters,Sn(1).

To see that we cannot compute the responses of the analysis filters in terms of the
Nyquistresponses of the lifting filters, consider banks of WS (whole-sample sym-
metric, or type I) linear phase filters. As shown in [16,7], WS filter banks always
have lifting factorizations in terms of HS (half-sample symmetric, or type II) linear
phase lifting filters, which have a Nyquist response of zero:Si(−1) = 0. Note that
different (unnormalized) lifted WS filter banks can have different responses at DC
or Nyquist; e.g., this is the case with the 5-tap/3-tap and 9-tap/7-tap WS wavelet
filter banks specified in JPEG 2000 Part 1 [9, Annex F]. Thus, any functional ex-
pression that depends only on the Nyquist responses of the lifting filters is incapable
of computing the DC or Nyquist responses of WS analysis filters,H0(z) andH1(z).

An even more interesting situation holds for filter banks containing an HS lowpass
filter and an HA (half-sample antisymmetric, or type IV) highpass filter. As shown
in [7], HS/HA filter banks can always be lifted from a concentric, equal-length
“base” HS/HA filter bank by lifting steps with WA (whole-sample antisymmetric,
or type III) linear phase lifting filters. For instance, a 2-tap/10-tap HS/HA filter
bank [10, Annex H.4.1.1.3] can be lifted from the Haar filter bank by a fourth-order
WA highpass lifting update. WA filters have a DC response of zero,Si(1) = 0, and
are therefore subject to the following consequence of formulas (9) and (10).

Theorem 1 Given a base filter bank,B(z), all filter banks lifted fromB(z) using
lifting filters with a DC response of zero necessarily have the same DC and Nyquist
responses asB(z).

Theorem 1 implies that, e.g., the 2-tap/10-tap HS/HA filter bank has the same DC
and Nyquist responses as the Haar filter bank. In comparison, there is no analog of
Theorem 1 for WS filter banks since there are no constraints on the DC responses
of their HS lifting filters.

2.3 Recursive Calculation of the Lowpass DC Response

In light of Section 2.1, we focus on normalizing the lowpass DC response in a filter
bank using (9). If (2) is not assumed then the highpass Nyquist response can be
treated as a second trivial degree of freedom and normalized using (10).
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We will computeE0(1) ≡ E(NLS−1)

0 (1) by deriving a scalar recursion, based on (9),
that expressesE0(1) in terms of the DC responses,Si(1), of the lifting filters. Let
Bn denote themost recently modified entryin the DC response vector,E(n)(1). For
instance, ifS0(z) is upper-triangular then the parameterB0 is defined as follows:

E
(0)
0 (1)

E(0)
1 (1)

=
1 S0(1)

0 1


11


=

S0(1)+ 1

1

 ≡
 B0

1

 .
The last equation above definesB0 = S0(1)+ 1. Using (9) to defineB1, B2, . . . :

E
(1)
0 (1)

E(1)
1 (1)

=
 1 0

S1(1) 1


 B0

1


=

 B0

S1(1) B0 + 1

 ≡
 B0

B1

 ,
which definesB1 = S1(1)B0 + 1, followed by

E
(2)
0 (1)

E(2)
1 (1)

=
1 S2(1)

0 1


 B0

B1


=

S2(1) B1 + B0

B1

 ≡
 B2

B1

 ,
which definesB2 = S2(1)B1 + B0, etc. Analogous definitions hold forB0, B1, etc.
if the first lifting step is lower-triangular:

E
(0)
0 (1)

E(0)
1 (1)

=
 1 0

S0(1) 1


11


=

 1

S0(1)+ 1

 ≡
 1

B0

 ,
which definesB0 = S0(1)+ 1, followed by
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E
(1)
0 (1)

E(1)
1 (1)

=
1 S1(1)

0 1


 1

B0


=

S1(1) B0 + 1

B0

 ≡
 B1

B0


and so forth. In either case, the matrix-vector recursion (9) can be written very
compactly as a scalar recursion onBn:

Bn = Sn(1) Bn−1 + Bn−2 for n = 0, . . . ,NLS − 1, where (11)

B−1 ≡ B−2 ≡ 1 .

The question of which parameter,Bn, gives the value of the final lowpass DC re-
sponse,E0(1), depends on the update characteristic,minit , of the last analysis lifting
step. Ifminit = 0, i.e., if SNLS−1(z) is a lowpass lifting step (upper-triangular matrix),
then the last step in the recursion (11) updates the lowpass DC response so

E0(1) = BNLS−1 if minit = 0 . (12)

If minit = 1, i.e., ifSNLS−1(z) is ahighpassstep (lower-triangular matrix), then the last
step in the recursion (11) updates thehighpassDC response:BNLS−1 = E1(1). Thus,
the final lowpass DC response is given by the next-to-last step in the recursion:

E0(1) = BNLS−2 if minit = 1 . (13)

3 Normalization of User-Defined Filter Banks in JPEG 2000

The normalization requirements for user-defined filter banks in JPEG 2000 Part 2
form one of the more inscrutable specifications in the standard. In particular, the
signal processing intent is not at all obvious from the cryptic specifications (which
the authors helped write) in Part 2 [10, Annex G.2.1 and Annex H.1.1]. This is
partly because the standard documents are written in “standardese” that avoids
most higher-level concepts from digital signal processing, such as matrix-vector
algebra or transform analysis of linear filters. Instead, all specifications are written
as explicit arithmetic formulas in order to avoid normative references to external lit-
erature and to minimize the terminology defined normatively within the standard.
This makes both writing and reading such a document extremely challenging, and
writing the filter bank normalization requirements gave the standards committee
enough trouble that the authors believe a high-level derivation will prove useful.
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Given an irreversible, lifted analysis filter bank satisfying (2),

Ha(z) = diag(1/K, K) E(z) ,

the intent of the normalization specifications in JPEG 2000 Part 2 [10, Annex G.2.1]
is to set the scaling factor,K, so that the lowpass analysis filter will have unit
response at DC,H0(1) = 1. To achieve this,K must equal the DC response of the
unnormalizedlowpass filter corresponding toE(z); i.e.,

K = E0(1) , 0 . (14)

Unfortunately, the JPEG 2000 standard avoids saying so in plain language. Instead
of simply defining Kin terms of a formula like (14), Part 2 lets the encoder signal
a value forK in the JPEG 2000 codestream and then specifies a “normalization”
the codestream must satisfy in terms of the arcane scalar recursion (11). (This par-
ticular scalar recursion is used in the standard to avoid reliance on matrix-vector
notation.) We now show how to interpret the normalization specifications given
in [10, Annex G.2.1] in terms of the theory developed in Section 2.

3.1 Filter Bank Normalization Specifications in JPEG 2000 Part 2

JPEG 2000 Part 1 provides two linear phase filter bank options. One is a reversible,
multiplier-free lifted implementation of the 5-tap/3-tap piecewise-linear B-spline
wavelet filter bank constructed by LeGall and Tabatabai [17]. The other option is
the irreversible 9-tap/7-tap floating-point wavelet filter bank constructed by Cohen,
Daubechies, and Feauveau [18,1]. Both are defined in such a way thatH0(1) = 1.

JPEG 2000 Part 2 allows lifted representations for arbitrary FIR filter banks. Part 2
Annex G specifies signaling and implementation for WS filter banks lifted using HS
lifting filters, while Annex H coversarbitrary lifted FIR filter banks with no sym-
metry assumptions on either the analysis filters or the lifting filters. Part 2 usesDi

to denote the “sum of the lifting coefficients”; i.e., the DC response,Di ≡ Si(1), of
the i th lifting filter. This puts (11) into the form of [10, Annex G.2.1, formula G.1]:

Bn = Dn Bn−1 + Bn−2 for n = 0, . . . ,NLS − 1, where (15)

B−1 ≡ B−2 ≡ 1 .

The analysis that led to formulas (12) and (13) now gives the normalization specifi-
cations for user-defined irreversible filter banks that appear in [10, Annex G.2.1.2]:

BNLS−2=K if minit = 1, or (16)
BNLS−1=K if minit = 0. (17)
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It might seem tortured logic to present these specifications (without explanation)
as requirements that a codestream must satisfy. Why not simplydefine K in the
decoder via (15), (16) and (17)? One reason is that it is more convenient to signal
K (even though it is redundant) than to force the decoder to computeK using (15).
Another is to avoid the finite-precision effects that would occur ifK were com-
puted by the decoder using (15). This makes it necessary to ensure that the code-
stream contains the correct scaling factor, a somewhat awkward requirement since
the JPEG 2000 standard only imposes specifications on decoders and codestreams.

Finally, if the filter bank isreversiblethen there are no scaling factors. In this case,
the standard requires that the lifting filters be scaled so that theunnormalizedlow-
pass DC response is unity. Note that this does not depend on the rounding rules used
in the reversible implementation; i.e., it specifies the lowpass DC gain of thelinear
filter bank. This is expressed in [10, Annex G.2.1.1] for reversible filter banks by

BNLS−2=1 if minit = 1, or (18)
BNLS−1=1 if minit = 0. (19)

4 Conclusions

Formulas have been derived for the DC and Nyquist responses of a lifted two-
channel filter bank in terms of the lifting filters, without requiring conversion to a
direct-form representation. For wavelet filter banks, a functional relationship be-
tween the filters determines the highpass Nyquist response in terms of the lowpass
DC response and the polyphase determinant. For arbitrary lifted filter banks, both
the DC and Nyquist responses are functions of the DC responses of the lifting fil-
ters, and recursive formulas have been derived for computing the analysis filter re-
sponses. These results have been applied to derive the normalization specifications
for filter banks in Part 2 of the ISO/IEC JPEG 2000 image coding standard.
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Fig. 1. Direct-form representation of a two-channel multirate filter bank.
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Fig. 2. The polyphase-with-advance filter bank representation.
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Fig. 3. Example of a lifted two-channel analysis filter bank.
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Fig. 4. Reversible implementation of a lifted analysis filter bank.
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