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Abstract—Linear phase FIR filter banks form an integral part
of the ISO/IEC JPEG 2000 image coding standard. One feature
they enable is lossless subband coding based on reversible filter
bank implementations. While this meshes well with symmetric
boundary-handling techniques for whole-sample symmetric (odd-
length) linear phase filters, there are obstructions with half-
sample symmetric (even-length) filters, a fact that influenced
the JPEG 2000 standard. We show how these obstructions can
be overcome for a class of half-sample symmetric filter banks
by employing lattice vector quantization to ensure symmetry-
preserving rounding in reversible implementations.

I. Introduction
We present some subtle problems in the lossless implemen-

tation of perfect reconstruction multirate filter banks [1], [2].
One approach for constructing invertible integer to integer
transforms is to use rounded updates in a lifting factoriza-
tion [3], [4]. This method is known as reversible implemen-
tation of a filter bank [5], [6]. Rounding operations applied
to the output of each filter ensure that each lifting update
uses integer addition and can therefore be inverted losslessly
using integer subtraction. (Filter banks implemented without
rounding are referred to as irreversible). A major application of
reversible filter banks to date has been image coding, including
the ISO/IEC JPEG 2000 image coding standard [7], [8].
A common method of handling boundary conditions for

linear phase filter banks with finite-length input vectors is
to extend the vectors by symmetric reflection, an approach
known as symmetric (pre-)extension [9], [10]. When a filter
bank and boundary scheme allow a vector of length N0 to be
transformed and reconstructed perfectly from just N0 subband
coefficients we say the scheme is nonexpansive. One advantage
of symmetric pre-extension over circular convolution is that it
is nonexpansive for all N0, whereas circular convolution is
only nonexpansive when N0 is even.
Instead of pre-extending input vectors, one can also define

extension operations within each lifting step (called lifting step
extensions [11], [12], [13], [14], [15], [16]) in a way that
yields invertible, nonexpansive transforms. Moreover, one can
sometimes choose lifting step extensions so that the resulting
transform is equivalent to symmetric pre-extension. This is
the case for type 1 odd-length linear phase (whole-sample
symmetric, or WS) filter banks, which factor using type 2
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Fig. 1. Direct form representation of a two-channel filter bank.

even-length linear phase (half-sample symmetric, or HS) lifting
filters. Thus, e.g., the specification of lifting step extension
for arbitrary filter banks in JPEG 2000 Part 2 [8, Annex H],
based on recommendations in [17], is compatible with the
specification of symmetric pre-extension for WS filter banks
in JPEG 2000 Part 1 [7, Annex F] and Part 2 [8, Annex G].
The analogous issues for HS filter banks are considerably

more complicated [16]. HS filter banks are lifted using whole-
sample antisymmetric (WA) lifting filters to lift from a “base”
HS filter bank, B(z), with equal-length filters. The equal-length
base filter bank in turn factors using non-WA lifting steps. For
instance, the Haar filter bank, normalized as in [4], [8], factors
using zeroth-order lifting steps:

Bhaar(z) =
[
1/2 1/2
−1 1

]
=

[
1 1/2
0 1

] [
1 0
−1 1

]
. (1)

Further complications arise when considering reversible im-
plementations. While everything works out nicely for arbitrary
reversible WS filter banks, this is not the case for arbitrary
reversible HS filter banks.

A. Perfect Reconstruction Filter Banks
The direct-form representation of a two-channel multirate

filter bank is shown in Figure 1. This is a perfect reconstruc-
tion filter bank if X̂(z) = Az−DX(z) for some A � 0 and integer
D. We follow [4] in assuming that A = 1 and D = 0.
The polyphase-with-advance representation [4], [18] is

shown in Figure 2. This representation forms the basis for the
lifting factorizations used in the JPEG 2000 standard. In this
representation, the perfect reconstruction condition becomes
det Ha(z) = 1, with Gs(z) = H−1

a (z).
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Fig. 2. Polyphase-with-advance representation of a filter bank.
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Fig. 3. Lifting decomposition of an analysis filter bank with two lifting steps.

B. Lifting Factorization
Any FIR polyphase matrix of determinant 1 has a lifting

factorization [4] into a diagonal gain matrix and alternating
upper and lower triangular matrices. This has the form

Ha(z) = diag(1/K,K)SNLS−1(z) · · · S1(z)S0(z) , (2)

Sk(z) =
[
1 S k(z)
0 1

]
or Sk(z) =

[
1 0

S k(z) 1

]
,

where the lifting filters, S k(z), are Laurent polynomials. The
block diagram in Figure 3 illustrates a factorization of an
analysis bank with two lifting steps, corresponding to

Ha(z) =
[
1/K 0
0 K

] [
1 0

S 1(z) 1

] [
1 S 0(z)
0 1

]
.

C. Reversible Lifting Implementations
Reversible filter bank implementations [5], [6] are formed

by inserting rounding operations, R, in each step of a lifting
factorization as shown in Figure 4. For numerical robustness
and implementation efficiency, it is customary to use lifting
filters whose coefficients are dyadic rationals.

D. Symmetric Extensions of Finite-Length Signals
Filter bank boundary-handling for a finite-length input vec-

tor, x(n), n = 0, . . . ,N0−1, can be accomplished by extending
x symmetrically at its left and right ends. The E(1,1)s and
E(2,2)s extensions, constructed by reflection with whole- and
half-sample symmetry, respectively, are shown in Figures 5(b)
and 6(a) for N0 even. The extended signal, x̃, is continued
periodically as an infinite-duration, periodic-symmetric signal.
The symmetries of the polyphase components, x̃0 and x̃1, for
the WS extension, x̃ ≡ E(1,1)s x, of period 2N0 − 2 are shown in
Figures 5(c–d). Both polyphase components have linear phase,
with period N0 − 1. Open dots indicate even-indexed samples
and filled dots indicate odd-indexed samples. The figures show
two complete periods of x̃ and two periods of x̃0 and x̃1.
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Fig. 4. Reversible lifting implementation of an analysis filter bank.
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Fig. 5. Polyphase component symmetries for WS extension (even number
of input samples). (a) Even-length input. (b) Periodic WS extension,
x̃ = E(1,1)s x. (c) Even channel, x̃0(k). (d) Odd channel, x̃1(k).

II. Linear Phase Filter Banks

A. Subband Symmetries for Linear Phase Filter Banks

1) Whole-sample symmetric filter banks: Let {H0, H1} be a
WS analysis filter bank that satisfies the delay-minimized con-
vention [18, Section III-B-1]: h0 is symmetric about 0 and h1
is symmetric about −1. Let the input signal be x̃(n) = E(1,1)s x.
It follows from [18, Theorem 4] that the output subbands,
ỹ0 and ỹ1, have the same symmetries as the polyphase input
components (cf. Figure 5), specifically:

ỹ0 is symmetric about 0 and (N0 − 1)/2, and
ỹ1 is symmetric about −1/2 and (N0 − 2)/2.

879



0 N0-1

(a) x̃(n)

2N0-1

0 N0-1

(b) ỹ0(k)
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Fig. 6. Subband symmetries generated by an HS filter bank from an even-
length input. (a) Periodic HS extension, x̃ = E(2,2)s x. (b) Lowpass subband,
ỹ0(k). (c) Highpass subband, ỹ1(k).

2) Half-sample symmetric filter banks: An HS analy-
sis bank satisfying the concentric delay-minimized conven-
tion [18, Section III-C.1] has h0 symmetric about −1/2 and
h1 antisymmetric about −1/2. If x̃(n) = E(2,2)s x, the subband
symmetries follow from [18, Theorem 7]:

ỹ0(n) is symmetric about −1/2 and (N0 − 1)/2, and
ỹ1(n) is antisymmetric about −1/2 and (N0 − 1)/2.

B. Lifting Factorization of Linear Phase Filter Banks

1) Whole-sample symmetric filter banks: The lifting factor-
ization of WS filter banks is described by [18, Theorem 9].
Theorem 1: A delay-minimized WS filter bank of determi-

nant 1 factors completely into lifting matrices (2) whose lifting
filters, S k(z), are half-sample symmetric. It follows that the
lifting matrices, Sk(z), are themselves WS polyphase matrices.
2) Half-sample symmetric filter banks: Factoring HS filter

banks into linear phase lifting steps is more complicated. The
linear phase filters that lift an HS filter bank to a higher-
order HS filter bank are whole-sample antisymmetric (WA,
or type 3) filters. Unfortunately, HS filter banks never factor
completely into WA lifting steps [18, Theorem 13]; cf. (1). In
general, when factoring an HS filter bank into WA lifting steps
one always reaches a point at which one is left with a lower-
order HS factor containing filters of equal lengths, which
cannot be factored using WA lifting steps [18, Theorem 14].
Theorem 2: Every concentric delay-minimized HS filter

bank can be lifted using WA lifting steps from an equal-length
HS base filter bank, B(z):

Ha(z) = SNLS−1(z) · · ·B(z) . (3)

↓

X(z)

z

Y1(z)

↓
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E0 S 1(z)

Y0(z)

+

+

S 0(z)

Fig. 8. Lifted filter bank with lifting step extensions.

III. Symmetric Extension forWS Filter Banks

The extended filter bank in Figure 7 is a boundary-handling
scheme that preserves perfect reconstruction. In symmetric
pre-extension [9], [10], E extends the input vector, x, into
a periodic-symmetric signal, x̃, as in Section I-D. For a WS
filter bank with x̃ ≡ E(1,1)s x, the subband symmetries described
in Section II-A.1 are exploited by projections P0 and P1 that
retain only half of a symmetric period in each subband. When
Y0 and Y1 have a total of just N0 samples between them,
as they do in the WS case for both even and odd N0, the
extended filter bank is called nonexpansive. In the synthesis
bank, the full periodic-symmetric subbands are restored by
symmetric extension operators E0 and E1. The synthesis filters
then reconstruct the extended input, x̃. The projection, P, gives
the output vector x̂ the same length as the input.

A. Lifting Step Extensions

One problem with symmetric pre-extension for cascade im-
plementations is that the resulting transforms are “internally”
expansive because they must carry boundary extension data
forward from one cascade step to the next. We can eliminate
this internal expansiveness if Ha(z) is WS. Consider a lifting
factorization of Ha(z) into HS lifting steps. Each lifting matrix,
Sk(z), is a WS filter bank in its own right, so all intermediate
subbands (the outputs of the Sk(z)) are symmetric. Thus, we
can construct an “internally” nonexpansive implementation
that’s equivalent to WS pre-extension without carrying bound-
ary data from one lifting step to the next. Instead, we carry
just N0 samples forward for both channels combined and then
create the symmetrically extrapolated input for the next lifting
step by extending the subband being filtered, as shown in
Figure 8. We call this strategy lifting step extension.
Because symmetric pre-extension is based on an extension

applied prior to the filter bank (see Figure 7), symmetric pre-
extension transforms are insensitive to how the filter bank
is implemented; e.g., via direct-form filtering or lifting. In
contrast, reversible implementation is tied to one particular
lifting factorization. Reversibility does not, however, depend
on boundary-handling so long as the same process is used
for both analysis and synthesis. For instance, one can apply
a reversible lifting factorization of a WS filter bank to a
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Fig. 7. Filter bank with symmetric pre-extension for nonexpansive transformation of finite input vectors.

symmetrically pre-extended input to obtain a reversible, non-
expansive transform for both even- and odd-length inputs. This
is reversible because the finite-length integer subbands, y0 and
y1, in Figure 7 are obtained by truncating symmetric integer
subbands, which can be reconstructed losslessly by symmetric
extensions in the synthesis bank. Similar reasoning shows
that lifting step extension provides lossless reconstruction with
reversible WS filter banks and that the resulting transform is
equivalent to reversible symmetric pre-extension.

IV. Symmetric Extension for HS Filter Banks
As shown in [9], symmetric pre-extension via Figure 7

also provides nonexpansive perfect reconstruction for all ir-
reversible HS filter banks if the input extension is x̃ =
E(2,2)s x. Problems arise, however, if we attempt to construct
lifting step extension schemes for HS filter banks that are
equivalent to symmetric pre-extension. As seen in Figure 6(a),
the polyphase components of E(2,2)s x are not symmetric but
instead form mirror images of one another. Thus, unlike the
WS case, there is no way to extend x1 in the first lifting
step of Figure 8 to obtain the same extended polyphase
component, x̃1, as that defined by symmetric pre-extension.
Instead, a lifting implementation of an HS filter bank must be
initialized with symmetric pre-extension in the base HS filter
bank, B(z), to obtain symmetric/antisymmetric intermediate
subbands. Subsequent WA lifting steps, Sk(z), will preserve
these symmetries so, after B(z), we can stop carrying forward
boundary extensions for intermediate subbands and instead
proceed via lifting step extension. This scheme, which was
described in [12], is particularly simple for the Haar base filter
bank, Bhaar(z), since the lifting steps (1) are zeroth-order.
Things are more complicated for reversible HS filter banks.

Consider a symmetrically pre-extended reversible HS base
filter bank that generates a symmetric even channel, x̃0, and
an antisymmetric odd channel, x̃1. For instance, the Haar
filter bank with lifting factorization (1) generates symmet-
ric/antisymmetric subbands using floor function rounding. Let
S(z) be a subsequent highpass WA lifting update. Since s ∗ x̃0
is antisymmetric, the updated odd channel, x̃1 + R(s ∗ x̃0),
will be antisymmetric if R preserves the antisymmetry of
s ∗ x̃0. This forces R to be an odd function: R(−x) = −R(x).
This constraint is satisfied by, e.g., fractional-part (integer)
truncation. In contrast, if S (z) is a WA filter in a lowpass
lifting update then s∗ x̃1 will be symmetric. Since any rounding
rule will preserve symmetry, there are no constraints on the
rounding rule for reversible lowpass updates.

A. Rounding in the Equal-Length HS Base Filter Bank

In some cases, symmetric pre-extension may fail to pro-
duce symmetric/antisymmetric subbands due to rounding in
the equal-length HS base. Consider the Haar analysis bank,
Bhaar(z), and its inverse, Gs(z) = B−1haar(z). The matrix B′haar ≡ GTs
will be referred to as the dual Haar filter bank. Let the dual
Haar have the lifting factorization

B′haar(z) =
[

1 1
−1/2 1/2

]
=

[
1 0

−1/2 1

] [
1 1
0 1

]
. (4)

In contrast to Bhaar, which generates symmetric/antisymmetric
subbands from x̃ = E(2,2)s x using floor rounding, it is shown
in [16] that there is no rounding function for which the lifting
factorization (4) produces antisymmetric highpass subbands.
While broken antisymmetry doesn’t break reversibility of

B′haar, it is problematic if B′haar is used as a base filter bank.
In [16] we analyze the 6-tap/2-tap wavelet filter bank shown in
Figure 9: symmetry is broken in both channels and symmetric
extension in the synthesis filter bank incorrectly regenerates
the truncated subbands, leading to incorrect signal synthesis.

V. Symmetry-Preserving Lattice Vector Quanitzation

Since scalar rounding can’t generate the subband symme-
tries for symmetric pre-extension in the dual Haar, we consider
alternative rounding strategies based on lattice vector quanti-
zation. Consider the case N0 = 4. Extend an integer-valued
input vector x = [a, b, c, d] to a symmetric-periodic signal with
period x̃ = [a, b, c, d, d, c, b, a]. The polyphase components
have periods x̃0 = [a, c, d, b] and x̃1 = [b, d, c, a]. The result,
x̃(1)0 , of the first lifting step in Figure 10 is symmetric and
integer-valued without rounding since S 0(z) = 1. Define a
simple lattice vector quantizer Q1 : R

N0 → Z
N0 for rounding

the output of S 1(z) = −1/2:
Q1([w, x, y, z]) ≡ [�w�, �x�, �y	, �z	] .

Apply Q1 to the output of S 1 and update channel 1:

x̃(2)1 = x̃1 + Q1
(
s1 ∗ x̃(1)0

)
= [ b, d, c, a ] +
[�−(a + b)/2�, �−(c + d)/2�, �−(c + d)/2	, �−(a + b)/2	] .

Now add the first and last elements in x̃(2)1 :

x̃(2)1 (0) + x̃
(2)
1 (3) = b + �−(a + b)/2� + a + �−(a + b)/2	

= b + a − (a + b) = 0
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Fig. 9. The dual Haar base filter bank with a third lifting step that lifts it to the 6-tap/2-tap HS filter bank.
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Fig. 10. The dual Haar filter bank rounded with a lattice vector quantizer.

using the identity

�n/2� + �n/2	 = n , n ∈ Z .

Similarly, x̃(2)1 (1) + x̃
(2)
1 (2) = 0, proving that x̃(2)1 has an

antisymmetric period.
This allows reversible HS filter banks lifted from the dual

Haar to be implemented using symmetric pre-extension or
an equivalent lifting step extension scheme. A considerably
more general theoretical treatment of symmetric extension for
reversible HS filter banks using lattice vector quantization
rounding functions is presented in the forthcoming paper [16].
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