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ABSTRACT

We develop the noncausal polyphase-with-advance
representation that underlies the theory of lifted fil-
ter banks and wavelet transforms used in the ISO/IEC
JPEG 2000 image coding standard. The theory in-
cludes a matrix algebra framework for analyzing lin-
ear phase two-channel filter banks. Whole- and half-
sample symmetric filter banks are characterized com-
pletely in terms of the theory, and linear phase lift-
ing factorizations are developed for both classes of
linear phase filter banks.

1. INTRODUCTION

The polyphase-with-advance representation is a non-
causal structure for two-channel perfect reconstruc-
tion multirate filter banks [1, 2, 3, 4]. The polyphase-
with-advance representation underlies the theory of
lifted filter banks and wavelet transforms as devel-
oped by Sweldens and Daubechies [5, 6] and pro-
vides the setting for the lifting factorizations used
in the ISO/IEC JPEG 2000 still image coding stan-
dard [7, 8, 9], which the authors helped to develop.

Our treatment [10] of the polyphase-with-advance
representation develops an extensive matrix algebra
framework that goes far beyond the results of [6].
Specifically, we focus on analyzing and implement-
ing linear phase two-channel filter banks via linear
phase lifting cascade schemes. Whole-sample sym-
metric (WS) and half-sample symmetric (HS) linear
phase filter banks, shown in Figure 1, are charac-
terized completely in terms of the polyphase-with-
advance representation. The theory benefits signifi-
cantly from several group-theoretic structures aris-
ing in the polyphase-with-advance representation.
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Fig. 1. (a) Whole-sample symmetric filter bank.
(b) Half-sample symmetric filter bank.

It is known that the polyphase matrices of per-
fect reconstruction FIR filter banks form an infinite-
dimensional nonabelian group, but it seems to be
much less widely recognized that WS polyphase ma-
trices form a subgroup of the FIR filter bank group.
Although WS filter banks are treated in [9], which
provides extensive coverage of Part 1 (the “Baseline”)
of the JPEG 2000 standard, we simplify the study
of WS filter banks using these elementary group-
theoretic concepts. Our approach also simplifies
matters by using the polyphase-with-advance repre-
sentation to avoid the time-varying convolution op-
eration defined in [9].

More generally, however, our goal is to provide
a thorough treatment of the general filter bank the-
ory behind the Part 2 algorithms for user-defined
wavelet transforms, which has not been done to date
in the published literature. As part of this treat-
ment [11], we derive one of the more mysterious fil-
ter bank specifications in the JPEG 2000 standard:
the requirements for user-defined filter bank nor-
malization. Other work in preparation based on the
polyphase-with-advance theory [12] analyzes the fail-
ure of lossless reconstruction for reversible HS filter
banks in the context of symmetric boundary exten-
sion techniques [13, 14].
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Fig. 2. The polyphase-with-advance filter bank representation.

2. THE POLYPHASE-WITH-ADVANCE
REPRESENTATION

Lifting is defined in JPEG 2000 by low-level arith-
metic expressions derived from the development pre-
sented in [6], which is based on the polyphase repre-
sentation shown in Figure 2. This particular style of
polyphase representation is called “polyphase with
advance” in [3] because of the one-sample advance
used to demultiplex the input into even- and odd-
indexed samples in the analysis bank.

The analysis polyphase matrix, Ha(z), acts on
the vector of even and odd channels,

X(z) =
[
X0(z)
X1(z)

]
. (1)

It is shown in [10] that whole-sample symmetry of x
about i0 ∈ Z can be expressed equivalently in terms
of the transform-domain polyphase vector as

X(z−1) = zi0Λ(z)X(z) where (2)

Λ(z) ≡ diag(1, z−1) .

Similarly, it is shown that Ha(z) is the polyphase
matrix of a WS filter bank whose lowpass and high-
pass filters have group delays γ0 = 0 and γ1 = −1,
respectively, if and only if

Ha(z−1) = Λ(z)Ha(z)Λ(z−1) , (3)

which implies

Gs(z−1) = Λ(z)Gs(z)Λ(z−1) . (4)

Together, (3) and (4) imply

Theorem 1 (WS Group Property) WS filter banks sat-
isfying (3) form a subgroup (the WS subgroup) of the
FIR filter bank group.

This fact simplifies a number of details involved in
factoring or synthesizing WS filter banks in the poly-
phase domain.

Another advantage of the polyphase-with-advance
matrix algebra is that it simplifies the analysis of

symmetry properties for filter bank output subbands
in interleaved form, the description of filter bank
output employed in the JPEG 2000 standard. The
following result is used in [9] to perform symmet-
ric extension transforms [13, 14] on finite-length in-
put signals using an equivalent extension policy in
the lifting domain. The interested reader may com-
pare the short proof from [10] using polyphase-with-
advance matrix algebra with the proof in [9] using a
special form of time-varying convolution.

Theorem 2 Letx(n) be whole-sample symmetric about
i0, and let y(n) be the interleaved output from an
analysis filter bank, Ha(z). If Ha(z) is WS with group
delays γ0 = 0 and γ1 = −1 then the interleaved out-
put is also whole-sample symmetric about i0.

The analogous theory for HS filter banks leads
to quite different results. Unlike (3), which says that
the polyphase components of WS filters are symmet-
ric, the polyphase components of HS filters are mir-
ror images of each other. When both filters share
the same axis of symmetry, γ0 = −1/2 = γ1, this is
expressed algebraically in [10] as

Ha(z−1) = L Ha(z) J where (5)

L ≡ diag(1, −1) ; J ≡
[

0 1
1 0

]
. (6)

Unlike WS filter banks, these relationships do not
define a group. While there is an analog of Theo-
rem 2 for HS filter banks, developing extension poli-
cies in the lifting domain that are mathematically
equivalent to symmetric extension for HS filter banks
turns out to be greatly complicated by difficulties
arising in the lifting factorization of HS filter banks
into linear phase lifting steps.

3. LIFTING DECOMPOSITIONS

A lifting representation for a polyphase-with-advance
analysis matrix is defined to be a cascade-form de-
composition,

Ha(z) = diag(1/K, K)SNLS−1(z) · · ·S1(z)S0(z) , (7)
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Fig. 3. Lifting factorization in the polyphase-with-advance representation.

where the factor matrices, Si(z), are alternately lower-
or upper-triangular with 1’s on the diagonal. For
instance, the lowpass (even-channel) update in Fig-
ure 3(a) is described by an upper-triangular matrix,

S0(z) =
[

1 S0(z)
0 1

]
, (8)

while the highpass (odd-channel) update is described
by a lower-triangular matrix,

S1(z) =
[

1 0
S1(z) 1

]
. (9)

The synthesis bank, Gs(z) = H−1
a (z), is

Gs(z) = S−1
0 (z) · · ·S−1

NLS−1(z)diag(K, 1/K) , (10)

where the inverses of lifting matrices are formed
simply by negating the lifting filter. For instance,
the inverse of the lowpass update matrix in (8) is

S−1
0 (z) =

[
1 −S0(z)
0 1

]
. (11)

Figure 3(b) depicts the lifted synthesis bank corre-
sponding to the analysis bank in Figure 3(a).

3.1. Lifting Structures for WS Filter Banks

Suppose Ha(z) is a WS analysis bank satisfying (3)
and left-lift it to a new filter bank, F(z):

F(z) = S(z)Ha(z) . (12)

By Theorem 1, it follows immediately that F(z) is
WS if and only if S(z) also satisfies (3). The same
conclusion holds for right-lifts, F(z) = Ha(z)S(z).

The lifting filters in lifting matrices satisfying (3)
are characterized in [10] by

Lemma 3 A lifting matrix, S(z), lifts a WS filter bank
to another WS filter bank if and only if S(z) also
satisfies (3). An upper-triangular lifting matrix sat-
isfies (3) if and only if its lifting filter is half-sample
symmetric about 1/2. A lower-triangular lifting ma-
trix satisfies (3) if and only if its filter is HS about−1/2.

It is important to distinguish between the whole-
sample symmetric filter bank corresponding to the
lifting matrix, S(z), and its half-sample symmetric
lifting filter, S(z). We refer to a lifting matrix satis-
fying (3) as an HS lifting step.

Once we know that the only way to lift one WS
filter bank to another is using HS lifting filters, it is
natural to ask whether it is always possible to factor
a WS filter bank completely into HS lifting steps. The
existence of such factorizations was proven in [9],
and in [10] we present an explicit construction of the
factors via an inductive order-reducing factorization
process, inspired by the Lifting Theorem [15, 16].

Theorem 4 Ha(z) is a WS filter bank if and only if it
can be factored as a WS group product,

Ha(z) = diag(1/K, K)SNLS−1(z) · · ·S0(z) , (13)

where each lifting filter, Si(z), is half-sample sym-
metric.

3.2. Lifting Structures for HS Filter Banks

Now suppose that Ha(z) is an HS filter bank satis-
fying (5) and left-lift it to a new filter bank, F(z), as
in (12). In [10] we show

Lemma 5 F(z) also satisfies (5) if and only if S(z) sat-
isfies

S(z−1) = L S(z)L = S−1(z) , (14)

which is equivalent to having a lifting filter that is
whole-sample anti-symmetric (WA) about n = 0.

Because there is no group law for HS filter banks,
the situation for right-lifts is totally different:

Theorem 6 (No right-lifting HS filter banks) Suppose
Ha(z) is an HS filter bank. If F(z) is right-lifted from
Ha(z),

F(z) = Ha(z)S(z) ,

then F(z) can only be an HS filter bank if S(z) = I
and F(z) = Ha(z).



Also unlike the WS case, there are no trivial (ze-
roth order) HS filter banks. Any HS filter bank with
two first-order filters is equivalent, modulo gain fac-
tors, to the Haar filter bank. This immediately presents
a factorization problem: one can verify by direct cal-
culation that the Haar filter bank cannot be lifted
from a diagonal gain matrix, diag(1/K, K), using WA
lifting steps. Indeed, the lifting factorization of the
Haar filter bank specified in JPEG-2000 Part 2 [8, An-
nex H.4.1.1.1] uses delay-free lifting steps,

S0(z) =
[

1 0
−1 1

]
, S1(z) =

[
1 1/2
0 1

]
. (15)

This behavior is actually typical of HS filter banks
whose filters have equal orders. If we attempt to
factor off a WA lifting step, it follows that any such
factorization necessarily increases the order of the
filter bank. The only way to reduce order in an equal-
length HS filter bank is by factoring off a zeroth-
order lifting step. Since such a step cannot be WA,
Lemma 5 implies that the downlifted filter bank will
not be HS, which is exactly what happens in the fac-
torization of the Haar filter bank (15). Higher-order
HS filter banks can be lifted from the Haar filter
bank using WA lifting steps, but the lifting factor-
ization of such filter banks will always include non-
WA steps like those in (15). For instance, the 2-
tap/10-tap HS filter bank specified in Part 2 [8, An-
nex H.4.1.1.3] is lifted from the Haar filter bank via
a highpass 4th-order WA lifting update.

Another important example of this obstruction
to WA factorization is the 6-tap/10-tap HS filter bank
specified in [8, Annex H.4.1.2.1]. This filter bank
was originally constructed by spectral factorization
techniques, and it has a lifting factorization of the
form

Ha(z) = S(z)B(z) ,

where S(z) is a second-order WA filter and B(z) is an
equal-length (6-tap/6-tap) HS filter bank. As above,
B(z) cannot be factored further using WA lifting steps.
We refer to B(z) as an equal-length HS base filter
bank. Such base filter banks are unavoidable when
factoring HS filter banks:

Theorem 7 Ha(z) is an HS filter bank if and only if
it can be factored as

Ha(z) = diag(1/K, K)SNLS−1(z) · · ·B(z) . (16)

Each lifting filter, Si(z) is WA, and B(z) is an equal-
length base HS filter bank.

4. NORMALIZATION OF FILTER BANKS IN
JPEG 2000

In [11] we derive one of the more mysterious specifi-
cations in the JPEG 2000 standard: the requirements
for filter bank normalization. Let E(z) denotes the
unnormalized cascade of lifting steps in (7),

E(z) ≡ SNLS−1(z) · · ·S1(z)S0(z) .

Given a lifted analysis filter bank,

Ha(z) = diag(1/K, K)E(z) ,

the unstated intention of the normalization specifi-
cation in JPEG 2000 Part 2 is to set the constant K
so that the analysis bank will have unit lowpass gain
at DC:

H0(1) = 1 . (17)

To achieve this, K must equal the DC gain of the
unnormalized lowpass filter in E(z),

K = E0(1) ≠ 0 . (18)

Let E(n)(z) denote the nth partial product of lift-
ing steps in an analysis filter bank:

E(n)(z) = Sn(z) · · ·S0(z) for n = 0, . . . , NLS − 1.

In [11] it is shown that the vector of corresponding
time-domain filters is:

E(n)(z) ≡
[
E(n)0 (z)
E(n)1 (z)

]

= Sn(z2) · · ·S0(z2)
[

1
z

]
. (19)

Using (19), it follows that the vector of DC gains can
be built up from the lifting steps via the recursion:

E(n)(1) = Sn(1) E(n−1)(1) for n = 0, . . . , NLS − 1,
(20)

where

E(−1)(1) ≡
[

1
1

]
.

The goal is computing K ≡ E(NLS−1)
0 (1) via a scalar

version of (20). We show in [11] that this is accom-
plished in JPEG 2000 Part 2 [8, Annex G.2.1] via the
mathematically equivalent scalar recursion

Bn = Dn Bn−1 + Bn−2 for n = 0, . . . , NLS − 1 , (21)

where
B−1 ≡ B−2 ≡ 1 , Dn ≡ Sn(1) .



For irreversible filter banks, the constant, K, is

K = BNLS−1 if minit = 0 ; K = BNLS−2 if minit = 1 .

The flag minit indicates whether the last analysis
lifting step is a lowpass update (minit = 0) or a high-
pass update (minit = 1).

Finally, if the filter bank is reversible then there
are no gain factors in either the analysis or synthesis
filter banks. In this case, the standard requires that
the lifting filters be scaled so that the unnormalized
lowpass DC gain is unity. This is expressed in [8,
Annex G.2.1.1] for reversible filter banks by

BNLS−1 = 1 if minit = 0 ; BNLS−2 = 1 if minit = 1 .

5. CONCLUSIONS

This paper has described the matrix theory for the
“polyphase-with-advance” representation that under-
lies the theory of lifting for two-channel perfect re-
construction filter banks. Our approach has em-
phasized the simplifying role played by the alge-
braic groups that arise naturally in the polyphase
structures associated with linear phase filter banks.
The matrix theory has been applied to developing
the foundations for the specification of filter banks
via lifting in Part 2 of the ISO/IEC JPEG-2000 image
coding standard. We have obtained new, rigorous
proofs of such results as the characterization of the
effects of a WS filter bank (or HS lifting steps, which
are WS filter banks in their own right) on the symme-
try of a whole-sample symmetric input signal, and
the existence of HS lifting step factorizations for WS
filter banks. These results have been generalized us-
ing the polyphase-with-advance theory to prove the
existence of WA lifting step factorizations for HS fil-
ter banks. We have also shown that equal-length
HS base filter banks, which cannot be factored into
WA lifting steps, are unavoidable when factoring HS
filter banks. Finally, we have outlined the normal-
ization specifications for user-defined filter banks
in Part 2 of the JPEG 2000 standard.
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