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Abstract We present a novel inverse modeling strategy to estimate spatially distributed parameters of
nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likeli-
hood functional, which contains spatially discrete measurements of the system parameters and spatiotem-
porally discrete measurements of the transient system states. The piecewise continuity prior for the
parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimiz-
ing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate
hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulic
head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a
high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation,
and extent of the intrusion from the steady-state data only. Addition of transient measurements of hydraulic
head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of
observation locations.

1. Introduction

Hydraulic and transport properties of subsurface environments, such as hydraulic conductivity, transmissiv-
ity, and dispersivity, are often highly heterogeneous. Ubiquitous spatial variability is a product of multiple
geological, mechanical, and physicochemical processes that form subsurface environments [Nœtinger et al.,
2005; Carrera et al., 2005]. Heterogeneity is observed over a large range of scales, from well-defined large
geological structures with significantly different hydrogeological properties to smaller variations of these
properties inside each structure. Accounting for multiple scales of heterogeneity in complex geologic envi-
ronments is a prerequisite for construction of accurate and reliable predictive models [Winter et al., 2003; de
Marsily et al., 2005].

Once a conceptual model of the subsurface processes has been constructed and a set of corresponding
parameters has been identified, the next step is to estimate the values of these parameters via an appropri-
ate inversion process that leverages both available field observations and prior knowledge and expecta-
tions, such as large-scale delineation of structures from geological analyses and models. Comprehensive
reviews of alternative inversion strategies can be found in Carrera et al. [2005] and Franssen et al. [2009].
Most of these techniques are designed to handle a single heterogeneity scale [Wohlberg et al., 2012]: either
single-facies heterogeneous systems [Franssen et al., 2009] or multiple homogeneous facies [Iglesias and
McLaughlin, 2011; Wohlberg et al., 2006; Tartakovsky and Wohlberg, 2004]. A two-scale alternative [Hu, 2002;
Hu and Le Ravalec-Dupin, 2004] combines a zonation approach for large-scale facies delineation with a sto-
chastic description of within-facies variability. This strategy is strongly dependent on the selection of an
adequate stochastic model.

We present an inversion methodology, which uses observations of both system parameters and transient
system states to estimate the underlying parameter fields. No strong assumptions, such as prescribed zona-
tion or stochastic models for small-scale heterogeneity, are introduced. Instead, we adopt a Bayesian frame-
work, which incorporates the knowledge of spatial distribution of system parameters. Specifically, we chose
a piecewise continuous representation of these parameters as their priors. The total variation (TV) regulariza-
tion [Rudin et al., 1992] is used to define the prior with desired properties. A maximum a posteriori (MAP)
estimator of the system parameters is obtained by solving the associated high-dimensional nonlinear

Key Points:
� New inverse modeling technique for

systems with piecewise continuous
parameters
� New linearized functional

minimization method for nonlinear
parameter estimation
� Method proposed resolves large-

scale features of parameters from
sparse data

Correspondence to:
D. M. Tartakovsky,
dmt@ucsd.edu

Citation:
Barajas-Solano, D. A., B. E. Wohlberg,
V. V. Vesselinov, and D. M. Tartakovsky
(2015), Linear functional minimization
for inverse modeling, Water Resour.
Res., 51, 4516–4531, doi:10.1002/
2014WR016179.

Received 2 AUG 2014

Accepted 23 MAY 2015

Accepted article online 1 JUN 2015

Published online 21 JUN 2015

VC 2015. American Geophysical Union.

All Rights Reserved.

BARAJAS-SOLANO ET AL. LINEAR FUNCTIONAL MINIMIZATION FOR INVERSE MODELING 4516

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2014WR016179
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


optimization problem. The linearized functional minimization algorithm [Wohlberg et al., 2012] is used in
this task. This algorithm splits the nonlinearities of the log-posterior into two parts, each of which is treated
separately in an iterative scheme: the nonlinearity of the data fidelity terms associated with system states is
treated using a linearization approach similar to the Levenberg-Marquardt method [Bube and Langan, 1997;
Bachmayr and Burger, 2009]; and the nonlinearity associated with the TV regularization operator is dealt
with using the alternating direction method of multipliers (ADMM) [Boyd et al., 2010].

Our implementation of the TV regularization is different from those used for inverse modeling of spatially
distributed parameters of elliptic equations [Ascher and Haber, 2004; Chung et al., 2005; Bachmayr and Bur-
ger, 2009]. Furthermore, our methodology allows incorporation of transient measurements of various sys-
tem states. This feature is essential for history matching, where information of the response of measured
system states can be leveraged to improve the reconstruction of the model parameters. Our implementa-
tion uses measurements of a model parameter and a single state, but can be extended to include multiple
states. Lee and Kitanidis [2013] have employed the TV regularization as a prior for Bayesian inverse modeling
and structure identification in the context of hydrogeological applications. Their work employs a TV prior to
sample the Bayesian posterior, and does not use transient measurements of system states. In contrast, we
focus on efficient computation of the MAP estimator defined by the Bayesian posterior via an optimization
algorithm.

Section 2 presents our inversion methodology in the context of saturated flow. The linearized functional
minimization algorithm is described in section 3. The numerical schemes used both to solve the forward
problem and to compute sensitivities are outlined in section 4. Computational cost of the overall inversion
procedure is analyzed in section 5. In section 6, we apply our inversion methodology to a synthetic two-
dimensional saturated flow problem with a highly heterogeneous, piecewise continuous conductivity field.
Conductivity data are collected over a grid of discrete sampling locations, together with measurements of
hydraulic head at a number of discrete locations. Conclusions and implications of our work are presented in
section 7.

2. Problem Formulation

We consider an n-dimensional groundwater flow equation

@h
@t

5r � ðKrhÞ1qðx; tÞ; (1)

subject to appropriate boundary and initial conditions. Here KðxÞ is the spatially varying saturated hydraulic
conductivity (a system parameter), hðx; tÞ is the hydraulic head (a system state), and the source term qðx; tÞ
represents, e.g., pumping wells. A spatiotemporal discretization of (1) replaces the continuous functions KðxÞ
and hðx; tÞ with their discrete counterparts arranged in vectors k and h, respectively. We employ a method-
of-lines (MOL) discretization, in which KðxÞ is evaluated at Nk discrete grid points in a computational domain
and hðx; tÞ is computed at Nh discrete grid points in space and Nt discrete points in time. As a result, vectors k
and h have Nk and NhNt components, respectively. Combined with the initial and boundary conditions, (1)
defines a nonlinear map h5fðkÞ.

Suppose that hydraulic conductivity KðxÞ is measured at Nobs;k grid points (Nobs;k � Nk ) of the numerical
mesh used to discretize (1). Suppose further that hydraulic head hðx; tÞ is measured at Nobs;h grid points at
each of the Nt discrete time points. The support volume of the conductivity measurements is considered
representative of the cell size in the numerical model. These measurements are assembled into vectors k̂
and ĥ whose dimensions are Nobs;k and Nobs;hNt , respectively. Linear operators Mk and Mh provide spatio-
temporal maps between k and k̂ and between h and ĥ, such that Mk k5k̂ and Mhh5ĥ . The measurement
operator matrices Mk and Mh have dimensions Nobs;k3Nk and Nobs;hNt3NhNt , respectively. Errors in mea-
surement of hydraulic conductivity and hydraulic head are assumed to be normal with covariance matrices
Rk and Rh, respectively.

Our goal is to compute estimators of k and h using the nonlinear map h5fðkÞ and the available measure-
ments k̂ and ĥ . Since the measurement operator Mk is in general highly undetermined, it is not possible to
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use direct inversion or to compute an ordinary least squares estimator of k from k̂ . Instead, we pose an
inversion problem by including the state variable data ĥ, together with the available general knowledge of
the properties of KðxÞ and hðx; tÞ.

Following Wohlberg et al. [2012], we express the inversion problem in a variational form as the minimization
of a (negative) likelihood functional. This likelihood is composed of data fidelity terms, which penalize the
difference between model estimates and measurements, and regularization terms, which express the prior
knowledge of the properties of the (discretized) fields k and h. Enforcing the constraint h5fðkÞ, that gives
rise to an optimization problem over k,

kMAP5 arg min
k

1
2

Mk k2k̂
� �>

Rk Mk k2k̂
� �

1
1
2

MhfðkÞ2ĥ
� �>

Rh MhfðkÞ2ĥ
� �

1cRkðkÞ1
d
2

RhðfðkÞÞ; (2)

where RkðkÞ and Rhðh5fðkÞÞ are the regularization terms for k and h, respectively. The estimators kMAP and
hMAP5fðkMAPÞ are known as maximum a posteriori (MAP) estimators of k and h.

Without loss of generality, we assume that observation errors are independent and that ðRkÞii5a21 and
ðRhÞii5b21, where a; b > 0 are two constants. Then the optimization problem (2) reduces to

kMAP5 arg min
k

a
2
jjMk k2k̂jj221

b
2
jjMhfðkÞ2ĥjj221cRkðkÞ1

d
2

RhðfðkÞÞ: (3)

From the Bayesian perspective, the data fidelity terms provide the likelihood of observations given a cer-
tain configuration of k, and the regularization terms provide the priors on k and h. The inversion coeffi-
cients a, b, c, and d determine the extent to which low probability is assigned to a certain k
configuration, i.e., the relative contributions of each term in (3). As indicated before, the coefficients a
and b are proportional to the inverse of the variance of the error of the observations of k and h, respec-
tively. Similarly, c and d correspond to the degree of confidence in the prior hypothesis captured by the
respective regularization terms. Since we are not interested in the values of the likelihood, only relative
values of the inversion coefficients are relevant to the minimization process. Therefore, without loss of
generality, we set a 5 1.

In subsurface environments consisting of multiple facies (see section 1), the hydraulic conductivity field KðxÞ
is piecewise continuous. To reflect this knowledge, we select the regularization for k to be given by the ‘1

norm of the gradient of the conductivity field rK . This regularization is often referred to as total variation
(TV) [Rudin et al., 1992]. In n-dimensional domains, it penalizes general heterogeneous fields and promotes
fields with low small-scale variation inside facies and large jumps across the (n21)-dimensional surfaces sep-
arating the facies. Since h is continuous and defined by the map h5fðkÞ, we impose no additional regularity
requirement on h. Instead, we add an additional regularization term for k, which penalizes the ‘2 norm of
rK . This increases stability during the minimization of (3). To avoid interference with the regularization
properties of the TV norm, the ‘2 regularization term is multiplied by a coefficient d, which satisfies the
inequality d� c.

Two sources contribute to high nonlinearity of the objective functional (3): the data fidelity penalty on
the deviation of the modeled head from observations, jjMhfðkÞ2ĥjj22, and the TV norm. The latter also
renders the optimization functional nondifferentiable with respect to k. Without the TV norm, the prob-
lem is equivalent to a nonlinear least squares estimation, which can be solved by a variety of standard
techniques (e.g., Levenberg-Marquardt). On the other hand, the problem without the nonquadratic pen-
alty is equivalent to linear minimization equipped with the TV norm, for which many efficient numerical
approaches have been proposed [Rodr�ıguez and Wohlberg, 2009; Goldstein and Osher, 2009; Boyd et al.,
2010]. We pursue a hybrid approach [Wohlberg et al., 2012] that combines the strengths of the methods
designed for dealing with each type of nonlinearity. This strategy separates the two sources of nonli-
nearity by first linearizing the map h5fðkÞ and then minimizing a sequence of the linearized models
equipped with the TV norm.

For a current estimate kðcÞ of the minimizer, we replace fðcÞ with the affine model [Bube and Langan, 1997;
Bachmayr and Burger, 2009]
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fðkÞ � fðkðcÞÞ1JfðkðcÞÞðk2kðcÞÞ; (4)

where JfðkðcÞÞ5@f=@kðcÞ is the Jacobian of f evaluated at kðcÞ. Next, we approximate the head data fidelity
term with

jjMhfðkÞ2ĥjj22 � jjMhJfðkðcÞÞk1MhffðkðcÞÞ2JfðkðcÞÞkðcÞg2ĥjj22: (5)

The modified minimization problem associated with the iterate kðcÞ is a quadratic form, except for the TV
norm. Any of the previously mentioned TV optimization schemes can be used to solve this optimization
problem. A solution of this linearized subproblem yields a new iterate kðc11Þ, for which a new linearized
minimization problem is solved, and so forth. This linearized functional minimization (LFM) algorithm is
described below.

3. Linearized Functional Minimization

We use the LFM algorithm [Wohlberg et al., 2012] to solve (3) together with a TV regularization term. In
broad terms, this algorithm is a combination of the Levenberg trust-region algorithm, which is employed to
propose linearized minimization subproblems, and the Alternating Direction Method of Multipliers (ADMM)
approach [Boyd et al., 2010], which is used to solve these subproblems.

Consider a generalized problem with a parameter vector u 2 RN and a state vector v 2 RM , stemming from
a suitable discretization of a partial-differential equation (PDE) on a two-dimensional domain X and time
interval ð0; T �. The discretized PDE provides a map v5fðuÞ. Let P and Q denote measurement operators
such that Pu5s and Qv5t, with s 2 RN0 and t5RM0, and M0 � M and N0 � N. The cost functional (3) with a
TV regularization term takes the form

arg min
u

a
2
jjPu2sjj221

b
2
jjQfðuÞ2tjj221cjjDðuÞjj11

d
2
jjDðuÞjj22; (6)

where Dð�Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Dxð�Þ�21½Dyð�Þ�2

q
is a discretized gradient magnitude operator, with the operations ½��2 andffiffi�p understood as element-wise, and Dx and Dy are linear discrete differentiation operators in the x and y

directions, respectively.

We use an iterative trust region approach to minimize (6). Starting from an iterate uðcÞ, we define the next
iterate as uð1Þ5uðcÞ1w, where w is chosen so as to minimize a suitably chosen linearization of (6). For a w
with small squared L2-norm, jjwjj22, we employ an affine model

v � vðcÞ1Aw;

where vðcÞ5fðuðcÞÞ, and A is the Jacobian matrix of fðuðcÞÞ, whose elements are Apq5@fpðuðcÞÞ=@uq. The step
w is chosen as the minimizer of

arg min
w

a�

2
jjPðuðcÞ1wÞ2sjj221

b�

2
jjQðvðcÞ1AwÞ2tjj221 c�jjDðuðcÞ1wÞjj11

d�

2
jjDðuðcÞ1wÞjj221

1
2
jjwjj22; (7)

where the penalty on jjwjj22 is added to provide regularity (convexity) of the solution. The inversion coeffi-
cients of the linearized problem, a�; b�; c�, and d�, are chosen initially to coincide with their counterparts in
(6). They can also be allowed to vary in conjunction in order to control the trust region size throughout the
minimization process.

The ADMM approach [Boyd et al., 2010] is used to minimize the linearized functional (7). This allows us to
split the regularization terms from the deviation penalties. Introducing auxiliary variables dx and dy , we
recast (7) as

arg min
w

a�

2
jjPðuðcÞ1wÞ2sjj221

b�

2
jjQðvðcÞ1AwÞ2tjj221 c�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x 1d2
y

q
k11

d�

2
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x 1d2
y

q
k2

21
1
2
jjwjj22; (8)
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subject to dx5DxðuðcÞ1wÞ and dy5DyðuðcÞ1wÞ. This constrained problem is solved iteratively via a splitting
scheme

wðk11Þ � arg min
w

k
2
jjDx w2ðdðkÞx 2DxuðcÞ2bðkÞx Þjj

2
21

k
2
jjDy w2ðdðkÞy 2Dy uðcÞ2bðkÞy Þjj

2
2

1
1
2
jjwjj221

a�

2
jjPw2ðs2PuðcÞÞjj221

b�

2
jjQAw2ðt2QvðcÞÞjj22;

(9)

and

ðdðk11Þ
x ;dðk11Þ

y Þ � arg min
dx ;dy

c�k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x 1d2
y

q
k11

d�

2
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x 1d2
y

q
k2

21
k
2
jjDx wðk11Þ2ðdx2Dx uðcÞ2bðkÞx Þjj

2
2

1
k
2
jjDy wðk11Þ2ðdy2Dy uðcÞ2bðkÞy Þjj

2
2;

(10)

where k > 0. The dual variables bx and by are updated as

bðk11Þ
x 5bðkÞx 1DxðuðcÞ1wðk11ÞÞ2dðk11Þ

x ; (11)

bðk11Þ
y 5bðkÞy 1DyðuðcÞ1wðk11ÞÞ2dðk11Þ

y : (12)

Initial values for the iteration scheme are set to bð0Þx 50; bð0Þy 50; dð0Þx 5Dx uðcÞ, and dð0Þy 5Dy uðcÞ.

A solution to the linear minimization problem (9) is obtained by differentiating and setting equal to 0 the
argument of the right-hand side of (9), and then solving the resulting N 3 N linear algebraic system

ðK1b�A>Q>QAÞwðk11Þ5rðkÞ; (13)

where

K5IN1a�P>P1kD>x Dx1kD>y Dy ; (14)

IN is the N 3 N identity matrix, and

rðkÞ5a�P>ðs2PuðcÞÞ1b�A>Q>ðt2QvðcÞÞ1kD>x ðdðkÞx 2Dx uðcÞ2bðkÞx Þ1kD>y ðdðkÞy 2Dy uðcÞ2bðkÞy Þ: (15)

The problem for dðk11Þ
x and dðk11Þ

y is solved component-wise to yield

dðk11Þ
xi 5hxirðhxi; hyi; c

�=k; d�=kÞ; (16)

and

dðk11Þ
yi 5hyirðhxi; hyi; c

�=k; d�=kÞ; (17)

where hx5DxðuðcÞ1wðk11ÞÞ1bðkÞx ; hy5DyðuðcÞ1wðk11ÞÞ1bðkÞy , and r is the shrinkage function [Goldstein and
Osher, 2009] defined as

rða; b; n; gÞ5 max ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a21b2
p

2nÞ
ð11gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a21b2
p : (18)

The splitting scheme can be generalized to three-dimensional domains, in which case one introduces an
additional variable dz subject to dz5DzðuðcÞ1wÞ into the splitting. The ðdx ;dy ;dzÞ subproblem is solved via
the ansatz dxi5hxir; dyi5hyir, and dzi5hzir, which leads to a shrinkage formula similar to (18) except withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21b21c2
p

instead of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a21b2
p

.

The iteration procedure (9)–(12) is repeated until the relative change in the functional (7) between iterations
falls below a certain tolerance. Completing this iteration procedure produces a candidate w, which is
accepted or rejected as follows. (i) The candidate is accepted if it produces a reduction of the functional (6)
and rejected otherwise. (ii) If the candidate is rejected, the coefficients a�; b�; c�, and d� are reduced by a
factor of 2 (thus reducing the trust region) and a new candidate is computed. This process is repeated until
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a satisfactory candidate is found. (iii) If the first candidate w for a certain starting point is satisfactory, the
coefficients a�; b�; c� , and d� are increased by a factor of 2 (thus expanding the trust region).

The minimization of (6) is carried until the relative change in the functional falls below a certain tolerance.
The vector uð1Þ5uðcÞ1w of the last iteration is taken as the estimator of the parameter vector.

4. Sensitivity Analysis

The methodology described in the previous section requires computing the state and the Jacobian associ-
ated with each iterate of the model parameter vector u. We employ a method-of-lines (MOL) strategy to
solve the flow equation (1). An MOL discretization of (1) produces a system of Nh linear ODEs

V
d
dt

1FðkÞ
� �

~hðtÞ5gðkÞ1q; (19)

where ~hðtÞ is the hydraulic head vector at time t, V and F are the corresponding ‘‘capacitance’’ and ‘‘conduc-
tivity’’ matrices of the discretization scheme, g is the forcing vector associated with the boundary condi-
tions, and q is the forcing vector representing the pumping rates.

The set of ODEs (19) is integrated in time using an appropriate time stepping scheme, and the state vector
is stored for the Nt discrete observation times t1; t2; . . . tNt . The full state vector is assembled as
h5½~hðt1Þ>; ~hðt2Þ>; . . . ~hðtNt Þ

>�>.

For stationary analysis, (19) reduces to the linear system of algebraic equations

FðkÞh5gðkÞ1q; (20)

where h is the stationary hydraulic head vector, and q is the stationary forcing vector representing the aqui-
fer pumping rates.

4.1. Forward Sensitivity Analysis
Assuming that the aquifer pumping rates vector q is independent of k, and using the chain rule with
respect to the ith element of k in (19), we obtain a set of linear ODEs governing the evolution of the ith col-
umn of the sensitivity matrix J;i5@~h=@ki :

V
d
dt

1FðkÞ
� �

J;i5
@gðkÞ
@ki

2
@FðkÞ
@ki

~h: (21)

Let G be an Nh3Nk matrix whose columns are given by the right-hand side of (21),

G;ið~hÞ5
@gðkÞ
@ki

2
@FðkÞ
@ki

~h: (22)

Then, (21) is rewritten as

V
d
dt

1FðkÞ
� �

J5Gð~hÞ: (23)

Computation of the sensitivity matrix requires the integration in time of Nk sets of Nh ODEs. For each for-
ward simulation, the sensitivities at the Nt observation times are stored, and the Jacobian A of the functional
h5fðkÞ is assembled as A5½Jðt1Þ>; Jðt2Þ>; . . . JðtNt Þ

>�>.

The sets of ODEs (19) and (23) are similar, differing only in their arguments and right-hand sides. There-
fore, computation of the state vector and Jacobian can be understood as the simultaneous time stepping
of NhðNk11Þ linear ODEs. Given that one of the leading costs of the time stepping of linear systems of
ODEs using implicit schemes is the factorization of the time stepping matrix, time integration of state and
sensitivities together leads to significant computational savings.

For stationary analysis, the ith column of the sensitivity matrix is given by the linear system of equations

FðkÞJ5GðhÞ; (24)

where h is the solution to (20).
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4.2. Adjoint Sensitivity Analysis
A solution to the set of ODEs (20) and the linear system of equations (24) provides the complete sensitivity
information of the system codified in the Jacobian matrix A of size NhNt3Nk , i.e., the sensitivity of all hydraulic
head degrees of freedom to the spatial configuration of hydraulic conductivity. On the other hand, the linear-
ized functional minimization algorithm of section 3 requires the restricted Jacobian MhA of smaller dimension
Nobs;hNt3Nk , i.e., only the sensitivity of the hydraulic head at the given spatiotemporal observation location.

The various rows of the restricted Jacobian MhA can be computed directly via adjoint sensitivity analysis
without having to solve the forward problems (23) and (24) for the full Jacobian. This alternative approach
can lead to a significant reduction in computational cost per iteration step of the LFM algorithm if the num-
ber of observation locations of head is much smaller than the number of degrees of freedom of the discrete
conductivity field.

In the stationary case, Mh is of dimension Nobs;h3Nh, and A5J. Let Ih5½1;Nh�, and Iobs;h 	 Ih be the sub-
set of indices corresponding to observation locations. We denote these indices by li, i 2 ½1;Nobs;h�. Let eli be
the Nh31 vector with components ðeli Þj51 if j 5 li and zero otherwise. By construction, e>li

corresponds to
the ith row of Mh. Left-multiplying (24) with F21 and e>li

, we obtain the following expression for the li;m
component of the Jacobian,

@hli

@km
5Jli ;m5e>li

FðkÞ21GðhÞ;m: (25)

Let us introduce the set of adjoint vectors lli
(li 2 Iobs;h), defined as l>li

5eli F
21. We assemble the various

adjoint vectors into the Nobs;h3Nh matrix l5½ll1 ; . . . ; llNobs;h
� in order to obtain the adjoint linear system of

equations

l>FðkÞ5Mh: (26)

Combining (26) and (25) we obtain

MhJ5l>GðhÞ: (27)

Compared to solving (24) directly, computing l via (26) requires the solution of Nobs;h linear systems of
equations of dimension Nh3Nh, as opposed to Nk. This leads to a significant reduction in computational
cost if Nobs;h � Nk and Nh is large.

In the transient case, we have Mh5INt 
M~h , where INt is the Nt3Nt identity matrix, and M~h is the Nobs;h3Nh

spatial observation operator. Similar to the stationary case, it is possible to compute the product M~h JðTÞ
directly without having to explicitly com-
pute JðTÞ by solving an adjoint problem of
smaller dimension [Cao et al., 2003].

The Nobs;h3Nh adjoint variable l is defined
as a solution of the ODE set adjoint to (19),
together with a terminal condition at t 5 T,
i.e.,

dl>ðtÞ
dt

V2l>ðtÞFðkÞ50; l>ðTÞV5M~h :

(28)

The restricted Jacobian M~h JðTÞ is given by

M~h JðTÞ5l>ð0ÞVJð0Þ1
ðT

0
l>ðtÞGð~hðtÞÞdt;

(29)

where Jð0Þ is the sensitivity of the initial
condition ~hð0Þ to k.

The time stepping of the adjoint ODEs (28)
requires the solution of Nobs;hNt linear

 

 

0 2 4 6 8 10 12
0

2

4

6

8

10

12

−2

0

2

4

6

8

10

Figure 1. Synthetic log hydraulic conductivity field for test case 1. Hydraulic
conductivity observation locations are indicated with crosses. Hydraulic head
observation locations are indicated with circles.
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algebraic systems of size Nh3Nh per time step, com-
pared to Nk systems for the forward ODEs (23). This
leads to a significant reduction in computational cost
if Nobs;hNt � Nk and Nh large.

Computation of the restricted sensitivity matrix M~h JðTÞ
via (29) requires integrating the ODEs (19) forward in
time from t 5 0 to t 5 T, integrating the adjoint ODEs

(28) backward in time from t 5 T to t 5 0, and storing both ~hðtÞ and lðtÞ at certain time steps in order to evalu-
ate the quadrature in the right-hand side of (29). If the total number of stored time steps is large, this may
result in expensive memory requirements. As a solution, one can employ the so-called checkpointing approach
[Serban and Hindmarsh, 2005], which reduces the memory requirements by introducing at most one additional
forward integration of the state.

5. Computational Cost

The feasibility of this inversion strategy depends on one’s ability to efficiently solve both the forward prob-
lems and the iterative optimization subproblems. The most expensive operations of this method are (i) inte-
gration of the forward ODEs (19), (ii) integration of either forward (23) or backward (29) sensitivity
problems, and (iii) solution of the linear algebraic system (13). Below we discuss these operations and their
computational complexity as implemented in order to ensure adequate scaling with the number of obser-
vations and the number of degrees of freedom.

5.1. Outer Iteration Scaling
Time stepping of the ODEs using implicit methods requires solving the various linear algebraic systems of
size Nh3Nh per time step. We therefore use high-order, variable-step ODE integrators for their solution. The
use of high-order methods with variable time steps allows for accurate time stepping with long time steps,
reducing the total amount of time steps and the overall cost. Several robust high-order implicit schemes are
known to perform well on sets of ODEs stemming from MOL discretizations. These include the CVODES pack-
age [Serban and Hindmarsh, 2005], which uses high-order backward differences formulae (BDF), and Implicit
Runge-Kutta (IRK) methods [Hairer and Wanner, 1999]. In the simulations reported below we used the three-
stage, order 5 Radau IIA IRK formula, which allows for time step selection via a posteriori error control.

Following the discussion in section 4.1, the computational cost of forward integration of the state and Jaco-
bian ODEs (19) and (23) is

Cfwd5OðNDtðNk11ÞNg
hÞ; (30)

where NDt is the number of time steps, and g is a scaling coefficient specific to the linear solver employed.
For 2-D problems, we have g � 1 for both optimal iterative solvers and direct multifrontal triangular solvers
for sparse matrices. The sparse solver also requires an additional OðN3=2

h Þ work for factoring the time step-
ping matrix, which is done once for each outer iteration of the LFM algorithm.

For backward sensitivity analysis (section 4.2), i.e., forward integration of the state ODE (19) and backward
integration of the adjoint ODE (29), the computational cost is

Cbwd5OðNDtðNobs;hNt12ÞNg
hÞ: (31)

Comparison of (30) and (31) reveals that the backward sensitivity approach is preferable for computing the
Jacobian matrix when the number of observations of hydraulic head is smaller than the number of degrees

of freedom of the conductivity field, i.e., when
Nobs;hNt � Nk . This condition generally holds
for the inversion applications of interest.

Our implementation allows one to control both
the error of the state and the adjoint variable
(or the Jacobian itself, for forward sensitivity
analysis). Our experience shows that controlling

Table 1. Properties of Point Loadings of the Test Cases

Scenario
Pumping

Well Location
Pumping

Rate [L T21]

1 No pumping
2 ð6:0; 6:0Þ 53100

3 ð2:8; 6:0Þ 53103

Table 2. Inversion Parameter Sets for Test Case 1

Set a b c d

a 1.0 1.0 1:031026 2:031028

b 1.0 0.5 1:031026 2:031028

c 1.0 1.0 1:031024 2:031028

d 1.0 0.5 1:031024 2:031028
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for the Jacobian error tends to produce
smaller steps than controlling solely for
the state error, without any appreciable
impact in the inversion procedure.
Hence, we use only state error control.
The accuracy of the Jacobian’s approxi-
mation affects chiefly the computation
of wðk11Þ in (9) and (13). If the approxi-
mation of A were to be insufficiently
accurate to negatively affect the compu-
tation of w, the candidate would still be
rejected if it does not decrease the
objective functional (6). Nevertheless,
our experience shows that this is not the
case: controlling only for the error of the
state produces adequate approximations
of A.

5.2. Inner Iteration Scaling
The linear system (13) is of size Nk3Nk .

The Jacobian matrix A is a dense matrix, and so is (to a lesser extent) the product A>Q>QA, which makes
the solution of the system (13) expensive. Fortunately, this operation can be recast as a sequence of less
expensive operations. By repeated applications of the matrix inversion lemma we rewrite (13) as

Kc15rðkÞ; (32)

KC15A>Q>; (33)

ððb�Þ21INobs;h Nt 1QAC1Þc25QAc1; (34)

Kc35A>Q>c2; (35)

wðk11Þ5c12c3; (36)

where INobs;h Nt is the Nobs;hNt3Nobs;hNt identity matrix. This procedure requires the solution of Nobs;h

Nt12 sparse linear algebraic systems of size Nk3Nk of the form Kx5b, plus a smaller, dense sys-
tem of size Nobs;hNt3Nobs;hNt , which results in a more favorable scaling of computational cost
when Nobs;hNt � Nk .

The sparsity pattern of K is that of the discrete Laplacian operator, i.e., pentadiagonal and heptadiagonal
for structured 2-D and 3-D hydraulic conductivity grids, respectively, allowing for the efficient solution of
the systems (32), (33), and (35). When using direct methods, the factorization of K needs to be recomputed
only when there is a change in the trust region and the coefficient a� changes.

6. Application

The inversion strategy is tested with a synthetic hydraulic conductivity field in the square domain ½0; 12�3½0;
12� ½L� with a resolution of 30 conductivity cells per spatial direction. The reference log conductivity field (Figure
1) is made of two heterogeneous facies with spatial averages differing by several orders of magnitude. Meas-

urements of hydraulic conductivity are
taken at Nobs;k525 cells. Note that there
are only two head and conductivity obser-
vations in the low-conductivity region.

We consider three aquifer pumping sce-
narios. The first scenario is of zero
pumping rate, resulting in a stationary
hydraulic head field. The other two
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Figure 2. MAP estimator of hydraulic conductivity field for test case 1, Scenario
1, computed using the (a) inversion parameter set in Table 2.

Table 3. Penalty Results for Test Case 1, Pumping Scenario 2, Computed Using
the Inversion Parameters of Table 2

Set jjPu2sjj22=2 jjQv2tjj22=2 TV jjDðuÞjj1 jjDðuÞjj22
a 9:69310211 4:2531026 5:923102 3:593103

b 2:81310210 1:6831025 6:103102 3:753103

c 1:0331026 7:0431024 5:973102 3:483103

d 9:8031027 1:7331023 5:943102 3:643103
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scenarios represent a single pumping
location of rate and location indicated in
Table 1, i.e., synthetic pumping tests.
The pumping locations are shown in Fig-
ures 3 and 4. Scenario 2 corresponds to
a pumping well located at the low-
conductivity region, so that there is sig-
nificant observed drawdown only in the

immediate vicinity of the pumping location. Scenario 3 corresponds to a pumping well located at the
high-conductivity region, so that there is significant observed drawdown at various observation locations
through the high- and low-conductivity regions. The pumping rate for Scenario 3 is chosen so that
observed drawdowns are comparable to that of Scenario 2.

Measurements of hydraulic head are taken at Nobs;h525 locations and at Nt 5 6 discrete times ð1024; 1023;

1022; 1021; 100; 101Þ ½T �. Given the initial rapid increase in drawdown at the observation locations, we
employ a logarithmic scale for the observation times in order to capture this behavior.

A first-order finite element scheme is used to compute the head response at the nodes of each conductivity
cell given internal (water discharge or aquifer pumping) and boundary conditions. Boundary conditions are
of constant hydraulic heads h 5 20 ½L� along the left boundary and h 5 10 ½L� along the right boundary. No-
flow boundary conditions are imposed along the upper and lower boundaries. The initial condition is the
stationary hydraulic head field without aquifer pumping.

Table 4. Penalty Results for Test Case 1, Pumping Scenario 3, Computed Using
the Inversion Parameters of Table 2

Set jjPu2sjj22=2 jjQv2tjj22=2 TV jjDðuÞjj1 jjDðuÞjj22
a 2:24310210 2:1331025 1:063103 1:523104

b 6:0131028 1:8531023 8:723102 9:183103

c 5:9531027 1:6831023 6:383102 5:783103

d 1:0731026 5:3531023 6:063102 4:293103

(a)
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Figure 3. MAP estimator of hydraulic conductivity field for test case 1, Scenario 2, computed using the (a)–(d) inversion parameter set in Table 2.
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Additionally, the inversion is performed for four combinations of the inversion parameters a, b, c, and d of
equation (3), indicated in Table 2. The parameter sets are chosen to evaluate the effect of different degrees
of penalization of the deviation of reconstructed heads, TV regularization, and ‘2 regularization.

Figure 2 shows the estimated conductivity fields obtained for the first (pumping-free) scenario, together
with the set (a) of inversion parameters (as listed in Table 2). The MAP estimator captures the properties of
the discrete structures of the original field, namely, the location, orientation and extent of the low-
conductivity intrusion, even though the intrusion itself is highly undersampled (2 out of 25 conductivity
measurements). Additionally, the intrusion is reconstructed as a region of conductivity higher than in the
original field.

The satisfactory reconstruction is a result of the information provided by the hydraulic head
observations, together with the piecewise a priori information provided by the TV norm. One can think of
the heads data fidelity term, after the linearization of the functional h5fðkÞ around the solution, as a quad-
ratic form

1
2

w>A>Q>QAw1ðother termsÞ:

The rank of the symmetric positive semidefinite matrix A>Q>QA gives an idea of the dimensionality of the
parameter subspace observable via measurements of the system state. In the first pumping scenario the
matrix A>Q>QA, evaluated around the estimated field shown in Figure 2, has an effective rank of 25 (i.e.,
equal to the number of head observations). Its eigenvectors show that the introduction of state measure-
ments allows for observation of features that extend spatially beyond the observation points. This added
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Figure 4. MAP estimator of hydraulic conductivity field for test case 1, Scenario 3, computed using the (a)–(d) inversion parameter set in Table 2.
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information, together with the piecewise
regularity assumptions encapsulated into
the TV norm, allows for the reconstruction
shown in Figure 2.

While the reconstruction in Figure 2 cap-
tures the overall trend in hydraulic conduc-
tivity, it treats the actual observed cells as
isolated, pointwise features. This is an effect
of the TV norm, which in dimensions n> 1
penalizes discontinuities along (n21)-
dimensional manifolds separating facies, in
favor of point discontinuities. Point discon-
tinuities imply only n jumps per discontinu-
ity and therefore introduce less total
variation than a jump across a manifold of
large surface area. This effect is more
noticeable at the observed cells with values
more separated from the overall trend of
the field.

Figure 5. Reference log hydraulic conductivity field and MAP estimators for test case 2, computed for various densities q of the observation network of hydraulic head, c5131028, and
d51310210.

Figure 6. RMSE of MAP estimator of hydraulic conductivity field for test
case 2, for varying density of the observation network of hydraulic head.
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Figure 3 shows the estimated conductivity
fields obtained for the second pumping
scenario. The conductivity estimator is simi-
lar to the one obtained for the steady case,
albeit with an additional feature. In the
immediate vicinity of the head and conduc-
tivity observation locations along the low-
conductivity intrusion, the conductivity field
is more accurately estimated as being of
lower conductivity. This effect is more
noticeable in the vicinity of the head obser-
vation location ð5:6; 6:0Þ, for which there is
a significant observed drawdown. The
extent of the low-conductivity patch
around observation point ð5:6; 6:0Þ is lim-
ited by the TV regularization. As mentioned
earlier, it has a tendency to reduce the area
of the surface separating the dark blue
patch around ð5:6; 6:0Þ and the surround-
ing low-conductivity intrusion. Indeed, the
extent of this patch is reduced as the TV

coefficient c increases (Figures 3c and 3d). The selection of b and c (Figure 3) affects the overall regularity of
the field and the accuracy of the match of head observations, as seen in Table 3.

Comparison of Figures 2 and 3 reveal that the addition of transient information clearly has an effect on the
reconstruction results. This is to be expected because more information is available in Scenario 2. The rank
of A>Q>QA, evaluated around the estimated field shown in Figure 3a, increases from 25 (Test 1) to 76,
which implies that more information from the underlying field can be recovered.

Figure 4 shows the estimated conductivity fields obtained for the third pumping scenario. Locating the
pumping well at the high-conductivity region produces a significant variation of heads in observation loca-
tions both along the low-conductivity intrusion and the center and upper left portion of the high-
conductivity region. As expected, the addition of more transient data increases the amount of recoverable
information. The rank of A>Q>QA (with A evaluated around the reconstructed field shown in Figure 4a)

increases from 25 (Test 1) to 121.

Figure 4a shows that for a stringent pen-
alty on the reconstruction of heads (b 5 1)
and a relatively lax TV requirement
(c5131026) this increase of information
produces a reconstruction of the intrusion
that includes two fingers of high conduc-
tivity connecting two observation loca-
tions. This implies that in order to
accurately match head observations (see
Table 4 with 1

2 jjQv2tjj2252:1331025)
without introducing either the required
heterogeneity into the field (which would
significantly increase TV) or the well-
delineated border between facies (which
is not observable), our reconstruction
approach prefers to pay a small price in
TV by introducing the aforementioned fin-
gers of high conductivity. It is to be
expected that a more regular reconstruc-
tion can be obtained either by relaxing

Figure 7. CPU time of MAP estimator for test case 2, for varying number of
hydraulic head observation locations, Nobs;h . Solid blue line is of unit slope,
indicating linear behavior.
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Figure 8. Reference piecewise uniform log hydraulic conductivity field and
MAP estimators for test case 3.
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the penalty on reconstruction of heads (Figure 4b, which increases 1
2 jjQv2tjj22 from 2:1331025 to

1:8531023) or by increasing the TV coefficient (Figure 4c, which increases 1
2 jjQv2tjj22 to 1:6831023, but

decreases TV from 1:063103 to 6:383102). A proper selection of inversion parameters reflecting the desired
balance between reconstruction and regularization is the responsibility of the modeler.

6.1. Computational Effort
In addition to the test case studied above, we consider a second test case characterized by a more complex
heterogeneity pattern, shown in Figure 5. The reference hydraulic conductivity field is extracted from the
bottom layer of the SPE10 test case, discretized on a 60 3 110 grid of elements of size 20310 ½L�. Similar to
Figure 2, we compute the MAP estimator from stationary observations of hydraulic head. No observations
of hydraulic conductivity are taken, which corresponds to a 5 0. Boundary conditions for hydraulic head are
again 20 [L] and 10 [L] along the left and right boundaries, respectively, and no-flow along the top and bot-
tom boundaries.

In order to evaluate the scaling properties of the proposed methodology with problem size, we compute
the MAP estimator for hydraulic head observation networks of varying density. The density of the observa-
tion network q is defined as the ratio of observation locations to total hydraulic head degrees of freedom,
i.e., q5Nobs;h=Nh. The MAP estimators for various observation network densities are shown in Figure 5.

Figure 6 shows the RMS difference between the MAP estimator kMAP and the reference field kref for increas-
ing density q. Together with Figure 5 it demonstrates that, as the density increases, the heterogeneity pat-
tern of the reference field is captured more accurately. As the minimizer of the functional (3), the MAP
estimator kMAP approaches, with increasing density, a hydraulic conductivity configuration that minimizes
the total variation, while reconstructing hydraulic head observations accurately.

In order to evaluate the computational effort as a function of problem size, we present in Figure 7 the CPU
time of computing kMAP for different values of Nobs;h. For this problem, the dominant computational cost is
that of the inner iterations (7)–(18), particularly the solution of the linear system (13), which we solve
employing the procedure outlined in section 5.2. Figure 7 shows shown that CPU time scales approximately
linearly with increasing Nobs;h, which indicates that the computational cost of the solution to the dense lin-
ear system (34) scales linearly with Nobs;h. This is also consistent with the linear scaling with Nobs;h of the

Table 5. Penalty Results for the Piecewise Uniform Synthetic Field of Figure 8

Set q a b c d jjQv2tjj22=2 RMSE ðkref2kMAPÞ

a 2:8831022 0.0 1.0 1:031028 1:0310210 5:0831028 6.470
b 2:8831022 0.0 1.0 0.0 2:031028 1:6131028 6.478

Figure 9. MAP estimators of the reference conductivity field 8, computed using a hydraulic head observation network with density q52:8831022.
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computational cost of computing the Jacobian matrix via the adjoint sensitivity analysis (31) discussed in
section 5.1.

Finally, in order to emphasize the usefulness of the TV norm for parameter estimation, we consider the syn-
thetic hydraulic conductivity field in Figure 8. This field is obtained from the reference field of Figure 5 by
setting all conductivity values larger than 0 to 10, and less or equal to 0 to 26. Using a hydraulic head
observation network with density q52:8831022, we compute the MAP estimator using the inversion
parameters shown in Table 5. The set (b) of inversion parameters corresponds to computing the estimator
without TV regularization, and only L2 regularization. The MAP estimators are shown in Figure 9.

Table 5 shows that the MAP estimators computed with and without TV regularization both accurately
recover hydraulic head observations and have an approximately equal RMS difference with respect to the
reference field. Nevertheless, Figure 9 shows that incorporating TV regularization allows the modeler to
more clearly identify the discrete structures of the hydraulic conductivity field. Not employing TV regulariza-
tion on the other hand results in a smoother estimator, with less clearly separated structures.

7. Conclusions and Future Work

Our numerical experiments show that the linearized functional minimization algorithm is a feasible and
promising approach for inverse modeling of geophysical systems. The applications to a steady flow inver-
sion problem show that the strategy can be used to detect large-scale discrete structures of the parameter
field, provided it is equipped with appropriate regularization terms reflecting the prior knowledge of the
field (e.g., the TV norm). Incorporation of transient information about the state variables increases the
amount of information that can be recovered (Scenarios 2 and 3 shown in Figures 3 and 4). The modeler
must pay attention to a possible appearance of extraneous features in the reconstructed field. These are
introduced by the algorithm in order to match additional head observations, while keeping the total varia-
tion of the field low (Figure 4).

The approach is not limited to systems described by linear governing partial differential equations, such as
the groundwater flow equation (1). All that is required is for the Jacobian of the implicit functional relating
the system parameters to the system states to be computable. This implies that the strategy can be easily
expanded to incorporate measurements of multiple state variables and both measurements and previous
knowledge of multiple spatially distributed parameters.

Our linearized functional minimization approach to inverse modeling presents a promising avenue of
research. Future work will be focused on (i) the inclusion of other sources of data, such as quantitative trans-
port observations (e.g., tracer data, arrival times, and breakthrough curves), or qualitative or ‘‘soft’’ data; and
(ii) the design of a regularization operator that improves on TV by addressing its observed limitations. These
limitations include the tendency to penalize large discontinuity surfaces in favor of smaller surfaces or even
point discontinuities (see section 6). Additionally, the trust region approach used to minimize (6) can be
improved for robustness and efficiency, together with the selection of the inversion parameters.
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